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 Marketing strategies and proper inventory replenishment policies are often incorporated by 
enterprises to stimulate demand and maximize profit. The aim of this paper is to represent an 
integrated model for dynamic pricing and inventory control of deteriorating items. To reflect the 
dynamic characteristic of the problem, the selling price is defined as a time-dependent function of 
the initial selling price and the discount rate. In this regard, the price is exponentially discounted 
to compensate negative impact of the deterioration. The planning horizon is assumed to be 
infinite and the deterioration rate is time-dependent. In addition to price, the demand rate is 
dependent on advertisement as a powerful marketing tool. Several theoretical results and an 
iterative solution algorithm are developed to provide the optimal solution. Finally, to show 
validity of the model and illustrate the solution procedure, numerical results are presented. 
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1. Introduction  

 
Dynamic pricing is the process of changing price during a period due to variations in stock level, 
demand level, inventory quality, etc. It is one of the most efficient tools of the revenue management, 
which enhances ability of the firms in managing demand and making profit. In recent years, this 
marketing strategy has been widely used by industries (Coy, 2000) due to three main reasons including  
emergence of a very competitive environment in businesses and industries, increasing access to 
demand information, and ease of applying price changes due to advent of new technologies. In classic 
inventory control models, it is assumed that the goods can be held infinitely for future demand, while 
such assumption does not hold in reality as the majority of the products lose their original value as time 
passes and for some of them this happens more quickly (Khanlarzade et al., 2014). These products are 
called deteriorating items. In inventory management problems, deterioration is defined as damage, 
putrefaction, demolition, evaporation, expiration, and reduction of efficiency and margin value of 
product, which lead to a decrease in product serviceability (Yang & Wee, 2003). Medicine, fruits and 
vegetables, seasonal and temporary products, and electronic devices are common examples of 
deteriorating items. Since deterioration results in a drop in quality and stock-level of the inventory, it 
imposes additional costs on the inventory system. Therefore, efficient inventory control of deteriorating 
items is of great importance. 
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Previously, pricing and inventory management policies were incorporated separately; however 
integration of these two policies enhances the profit of the firms through coordination of supply and 
demand. Integrated decision making on inventory management and pricing decisions for deteriorating 
products is a branch of revenue management, which has attracted many researchers working in 
inventory management, economy, marketing and operations research areas. In this study an integrated 
model for dynamic pricing and inventory control of deteriorating products is developed. To tackle the 
practical conditions of the inventory systems, not only the deterioration rate changes over time, but also 
the selling price is assumed to be time-dependent. In addition, the demand rate is dependent on 
advertisement, which is modeled as the frequency of advertisement in each cycle. To characterize the 
optimal solution, some useful theoretical results are derived based on which an iterative and simple 
solution algorithm is developed.  
 

The remainder of the paper is organized as follows: In section 2, the literature body of the problem is 
briefly reviewed and the related research gaps are distinguished. The assumptions and notations of the 
model are presented in section 3. In section 4, the mathematical model of the inventory system is 
formulated. Section 5 provides the theoretical results and the solution algorithm, which are applied to 
obtain the optimal solution. Numerical results are represented in section 6. Finally section 7, finishes 
the paper with conclusion and recommended future research directions. 

2. Literature review 
 
Dynamic pricing and inventory control of deteriorating items have attracted a great deal of academic 
attention. Thus, there exists a wide-spread literature in this area, which is briefly reviewed as follows. 
In the context of the discussed problem, the first model was proposed by Cohen (1977). In this paper, 
demand was price-dependent and the deterioration rate is assumed to be constant. This paper was 
extended in Kang and Kim (1983) by considering a finite replenishment rate. Abad (2003) conducted 
one of the noble researches in the field of pricing. In the proposed economic production quantity 
model, demand was defined as a general function of selling price. This model is studied by Yang 
(2004) for economic order quantity problem. Teng et al. (2007) extended Abad’s model by 
incorporating shortage cost and cost of lost reputation. For the first time, Wee (1997) proposed a time-
dependent deterioration rate which followed Weibull distribution. The proposed model was extended in 
Wee (1999) by adding discount option for purchasing cost and modeling shortage in the form of partial 
backlog. Papachristos and Skouri (2003) extended the model of Wee (1999) by considering demand as 
a general, convex, and descending function of price, modeling shortage in form of time-dependent 
backlog, and modifying the revenue function. Mukhopadhyay et al. (2004, 2005) are other worth 
mentioning research instances with similar structures. Tsao and Sheen (2008) presented one of the rare 
studies on effect of advertisement on demand. Demand was considered as a linear function of price, 
exponential function of time and quadratic function of the cost of the advertisement. Shah et al. (2013) 
incorporated advertisement into the demand model as well. In their paper advertisement is modeled as 
the frequency of advertisement in each replenishment cycle.  
 
Begum et al. (2009) developed an instantaneous replenishment policy for deteriorating items with 
price-dependent demand. They applied a three-parameter Weibull distribution to present time-
dependency of inventory deterioration rate. Begum et al. (2012) conducted another study on the 
previous model by neglecting shortage and assuming demand as a non-linear function of price. Cai et 
al. (2013) proposed one of the very few researches on dynamic pricing which modeled price as a 
function of time. Optimal policy was obtained by considering the feedback of the price on demand per 
time unit. To validate the proposed structure, a numerical simulation was employed. Wang et al. (2013) 
also considered price as a function of time and modeled a non-instantaneous deterioration pattern. In 
this context, Geetha and Uthayakumar (2010), Valliathal and Uthayakumar (2011), Maihami and Abadi 
(2012), Ghoreishi et al. (2013) and Soni and Patel (2012, 2013) studied non-instantaneous deterioration 



M. Rabbani et al.  / International Journal of Industrial Engineering Computations 5 (2014) 
 

623  

as well. Dye et al. (2007) Considered an economic order quantity model where demand and 
deterioration rate were continuous functions of price and time, respectively. Shortage was possible and 
completely backlogged.  In Dye (2007), some extensions have been made by assuming partial backlog 
rate as an exponential function and a reverse function of remained time. Abad (2008) studied a model 
with similar structure and considered partial backlog rate as a general descending function of the 
remained time to the next review of the inventory system. Soni and Joshi (2013) proposed a framework 
for pricing and inventory control of deteriorating items under bi-level trade credit in fuzzy settings. 
 
Considering time-dependent deterioration rate as well as price and time dependent demand rate 
simultaneously, forms a more complicated variation of pricing problems, which has not been 
investigated sufficiently. Hsu et al. (2007) modeled the deterioration rate as a general function of time. 
A seasonal pattern was assumed for demand, which was time and price-dependent. Uncertain delivery 
time, backlogging and limited budget are some of the assumptions in the proposed model. Hsieh and 
Dye (2010) presented an inventory control model for deteriorating items under inflation. The model 
was solved by descending cash flow method. In addition, demand rate was dependent to time and price 
and shortage was partially backlogged. Shah and Raykandaliya (2010) considered demand as a 
decreasing function of price and time and assumed Weibull distribution for deterioration rate. Tripathy 
and Pradhan (2011) proposed a similar model but considered a three-parameter Weibull distribution for 
deterioration rate. Dye  (2012) modeled demand as a general decreasing function of time and price. 
Purchasing price and product deterioration rate were defined as general functions of time. Finite time 
horizon and partial time-dependent backlog were considered in the structure of the proposed model. 
Delayed payment provided by both supplier and retailer is incorporated in the model as well. Avinadav 
et al. (2013) also provided a mathematical model with price and time-dependent demand for perishable 
items. 
 

Coming up to a conclusion, there exist number of research gaps: Firstly in the area of dynamic pricing, 
there are few studies formulating price as a function of time by defining discount variable, while this 
study has formulated the selling price as a time-dependent function by defining discount fraction 
variable as well as initial price. Secondly, in spite of the high significance of advertisement in 
stimulating demand, there are few related research works linking demand to the advertisement factor. 
In this study, the advertisement factor is modeled as the frequency of advertisement in each 
replenishment cycle. 

3. Notations and assumptions 

Notations 
 Parameters 

The constant purchasing cost per unit c 
The holding cost per unit per time unit  h  
The ordering cost per order k  
Cost of each advertisement G  
The deterioration rate ( )t  
 Variable 
The frequency of advertisement in each cycle (decision variable) A  
The dynamic price of product per unit at any time t (decision variable) ( )p t  
The replenishment cycle of the product (decision variable) T  
The inventory level at time t  ( )I t  
The order quantity Q  
The total ordering cost OC  
The total inventory holding cost HC  
The total purchasing cost PC  
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The total advertisement cost AC  
The total disposing cost DC  
The total profit per time unit of the inventory system ( ( ), , )TP p t A T  

Assumptions 
 

1. The replenishment rate and planning horizon are infinite. 
2. The lead time is zero and shortage is not allowed. 
3. The inventory system involves single deteriorating item. 
4. The dynamic price of the product at time t is modeled as: 0( ) exp( )p t p t  where 0p  is the 

initial price and   is discount variable for each time unit passing after the start of 
deterioration. In this paper we have considered  0.2,0.5,0.8  naming low, medium and high 
discount rates. 

5. The demand rate is a function of the selling price and frequency of advertisement, which is 
formulated as ( ( ), ) ( ( ))(1 )D p t A MB p t A    where MB is the potential demand where price 
is equal to zero, 0  is the price sensitivity factor and 0 1  is the shape parameter of the 
advertisement. 

6. The deterioration rate ( )t  at any time 0t    follows Weibull distribution given by 1t   . 
Where 0 1   is the scale parameter and 0   is the shape parameter. In this paper we have 
assumed 2  . 
 

4. The mathematical formulation 
 
The inventory system evolves as follows: Q  units arrive at the inventory system at the beginning of 
each cycle. Then inventory level declines due to demand and deterioration during time interval [0, ]T . 
Based on this description, during time interval [0, ]T the inventory status is represented by the 
following differential equation: 
 

(1) 
2( ) ( ( ), ) ( ) ( ) 0dI t D p t A t I t t T
dt

    

With boundary condition ( ) 0I T  solving Eq. (1) yields: 

(2) 2 2

( ) ( ( ), ) 0
T

t u

t

I t e D p u A e du t T    

Therefore the order quantity is equal to: 

(3) 
2

0

(0) ( ( ), )
T

uQ I D p u A e du   

The total profit of the inventory system involves the following components: 

1. SR: The sales revenue 

(4) 
0

( ) ( ( ), )
T

SR p t D p t A dt  

2. OC: The ordering cost 
(5) OC k 

3. HC: The inventory holding cost 
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(6) 
2 2

0 0

( ) ( ( ), )
T T T

t u

t

HC h I t dt h e D p u A e du dt     

4. PC: The purchasing cost 

(7) 
2

0

( ( ( ), ) )
T

uPC cQ c D p u A e du   

5. AC: The advertisement cost 
(8) AC G A 

Therefore, the total profit per time unit ( ( ( ), , )TP p t A T ) is given by: 

(9) 
1( ( ), , ) ( )TP p t A T SR OC HC PC AC
T

     

5. Solution methodology 
 
Since the formulated equations are complex, the concavity of the total profit per time unit cannot be 
proved by using Hessian matrix. Therefore, the problem is solved applying the following search 
procedure which is similar to ones used in Wu et al. (2009) and Shah et al. (2013) as well. We first 
prove that for given values of  , 0p  and T there exist a unique optimal value of A. Then for fixed 
values of  , 0p  and A ,a unique optimal value of T is obtained and finally, for fixed , A and T , a 
unique optimal value of 0p is determined which maximizes the total profit per time unit. Since the 
discount fraction is defined as a discrete variable, the above mentioned procedure is applied for 
different values of  and finally the optimal solution is obtained by comparing the results. Firstly, for 
fixed , 0p  and T, the second order derivative of ( ( ), , )TP p t A T is obtained as follows: 
 

(10) 
2

2

( 1)(1 ) ( 1)TP A Expression
A T

   



 

where: 
(11) 1Expression Expression a Expression b Expression c   
(12) 

0 0
0

( ( )) ( )
T

t tExpression a MB p e p e dt     

(13) 2 2

0
0

( ) [( ( ))( ) ]
T T

t u u

t

Expression b h e MB p e e du dt      

(14) 2

0
0

( ( ))( )
T

t tExpression c c MB p e e dt    

Since 1   it is obvious that 
2

2 0TP
A





, therefore ( ( ), , )TP p t A T  is a concave function of A and the 

search to find the optimal frequency of advertisement is restricted to find a local optimum. Now some 
useful theoretical results are derived in order to find the optimal length of replenishment ( *T ) and the 
optimal initial price ( *

0p ) for two aforementioned possible cases. 
Lemma 1. For fixed A and 0p there exists a unique *T which maximizes ( ( ), , ).TP p t A T  
Proof. The first order partial derivative of ( ( ), , )TP p t A T with respect to Tis given by 

(15) 
2

( ' ' ') ( )TP SR HC PC T SR OC HC PC AC
T T

       



 

where: 
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(16) 
0 0' (1 ) ( )( ( ))T TSR p A e MB p e      

(17) 2 2

0
0

' (1 ) ( ( ))( )
T

T T tHC h A MB p e e e dt         

(18) 2

0' (1 ) ( ( ))( )T TPC c A MB p e e      

 
Motivated by Eq. (15) the auxiliary function ( )R T is defined as: 
 

(19) ( ) ( ) ( )R T SR HC PC T SR OC HC PC AC          

The first order derivative of ( )R T with respect to [ , )dT t   gives: 
(20) ( ) ( )dR T SR HC PC T

dT
     

  
where: 

(21) 
0 0" (1 ) ( 2 )T TSR p A e MB p e        

(22) 
2 2 2

0 0
0

0

2 ( ( )) ( )( ) ( )
" (1 )

( ( ))

T
T T T T t

T

Te MB p e p e e e dt
HC h A

MB p e

    




  



  



        
  

 

(23) 2 2

0 0" (1 ) 2 ( ( )) ( )( )T T T TPC c A Te MB p e p e e             

 
It is shown that ( )R T is a strictly decreasing function, moreover from Eq. (19) it follows that: 
 

(24) (0) 0R k AG   

(25) and lim ( )
T

R T


  

Applying the intermediate value theorem, there exist a unique value of T (say * [0, )T   ) where 

( ) 0R T  which means that *T  is the unique solution of ( ( ), , ) 0TP p t A T
T

 


. 

From Eq. (15) and Eq. (19) we have 
 

(26) 
2

( ( ), , ) ( )TP p t A T R T
T T





 

Since ( )R T  is strictly decreasing (i.e. ( ) ( ) 0dR T SR HC PC T
dT

      ) we have: 

(27) 
*

2

2

( ( ), , ) ( " " ") 0|
T T

TP p t A T SR HC PC
T T

  
 


 

 
Therefore, There exist a unique global maximum solution of ( ( ), , )TP p t A T . 
Lemma 2. For fixed A and T there exists a unique *

0p , which maximizes ( ( ), , )TP p t A T . 
 
Proof. The first order derivative of ( ( ), , )TP p t A T with respect to 0p gives 

(28) 1
2 2 2

0
0 0 0 0 0

(1 ) { 2 ( ) ( )( ) ( )( ) }
TT T T T

t t t u u t t

t

TP A MB e dt p e dt h e e e dudt c e e dt
p

             
    

     
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By solving 
0

0TP
p

 


, *
0p yields 

(29) 

* * * * *

2 2 2*
0

0 0 0 0

{ ( ) ( )( ) ( )( ) } / 2
T T T T T

t t u u t t t

t

p MB e dt h e e e dudt c e e dt e dt                    

At point *
0 0p p  

(30) 

*

*
0 00

2

2
0

2 (1 )|
T

t

p p

TP
p

A e dt h  







   

*
0 00

2

2 0|
p p

TP
p 




 . Thus *

0p  is the global optimum solution for fixed A and * [0, )T    . 

 
Remark. For fixed Aand the unique optimal solution for 0( , )T p which maximizes ( ( ), , )TP p t A T  
exists. The optimal solution can be obtained through some iterative numerical procedure. Based on the 
concavity of the objective function, the following algorithm which is similar to the one proposed by 
Wu et al. (2009) is developed to identify global optimal solution for 0( , , , )A p T . 

Algorithm 
 
Step 1: Set 1j  and 0.2  . 
Step 2: Set 0jA  . 
Step 3: Set 1k  and initialize the value of ,

0
k jp c . 

Step 4: Obtain the value of ,k jT  by solving ( ( ), , ) 0TP p t A T
T





. Substitute ,k jT into Equation (27)in 

order to calculate ,
0

k jp . Set 1, ,
0 0

k j k jp p  . 

Step 5: If 1, ,
0 0

k j k j Epsilonp p    (Epsilon is considered to be a very small value), then set 
** * ( 1, ) ( , )*

0 0( , ) ( , )j j k j k jp T p T and go to Step 6. Otherwise, 1k k  and go back to Step 4. 
Step 6:Calculate * *( ( ) , , )j j jTP p t A T , then * *

0( , )j jp T is the optimal solution and * *( ( ) , , )j j jTP p t A T  is 
the maximum value of the objective function for fixed jA and  . 
Step 7: Set 1j jA A   and repeat Step 3 to Step 6 to obtain * *'( ( ) , , )j j jTP p t A T  . 
Step 8:If * * * *'( ( ) , , ) ( ( ) , , )j j j j j jTP p t A T TP p t A T , then j jA A  and go back to Step 7. Otherwise go 
to Step 9. 
Step 9: Set * * * * *

0 0( , , ) ( , , )j j j j j jp A T p A T which is the optimal solution for fixed  . 
Step 10: Set 1j j  and 0.3   . If 0.8  go back to Step 2; otherwise go to Step 11. 
Step 11: Set * * * *( ( ) , , ) max{ ( ( ) , , ) }p p p j j j

j
TP p t A T TP p t A T  and 

* * * * * * * *
0 0( , , , ) ( , , , )p p p pp A T p A T  .  

Step 12: End 
 
6. Experimental results 
 

In this section, the developed algorithm is applied to solve the following problem in order to show 
validity of the proposed model and applicability of the developed algorithm. The values of the 
parameters of the problem are defined in Table 2. Identical parameters of model are taken from Shah et 
al. (2013) and adopted to our model. The expanded results of the executed procedure of the proposed 
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algorithm are represented in Table 3. In order to show the effect of related deterioration and 
advertisement parameters, Table 4 provides the computational results for different values of  and . 

Table 2  
 The value of the parameters of the problem  

    c  h  G  k    MB  Parameter  
0.04 0.75 3 0.4 80 250 12 300 Value 

 
Table 3  
Illustration of solution procedure of the proposed algorithm 

TP  Q  T  p0  A    

9719.384 197.5145 0.5199 4.2221 0   
0.2 

  
  

10098.724 202.8615 0.5525 4.2485 1  
10217.574 208.7295 0.5705 4.2714 2  
10187.446 240.1519 0.6283 4.3108 3  
10864.274 190.1285 0.5798 4.7874 0    

  
0.5  

  

11359.493 212.0535 0.5979 4.8217 1  
11560.514 228.4295 0.6248 4.8522 2  
11636.628 242.5535 0.6305 4.8794 3  
11611.554 266.7615 0.6585 4.9294 4  
12593.551 197.4795 0.5766 5.5495 0    

  
0.8 

  

13233.156 216.4575 0.5865 5.5814 1  
13523.818 230.0738 0.5955 5.6103 2  
13666.859 241.3152 0.6039 5.6370 3  
13727.742 251.1525 0.6118 5.6620 4  
13736.595 260.0795 0.6392 5.6855 5  
13709.344 268.3591 0.6262 5.7078 6  

            
Table 4 
Computational results for different values of  and  

      A  p0 T  Q  TP  
 0.03  0.8 3  5.6011  0.6425  257.4321  13742.143  

0.3 0.04  0.8 5  5.9921  0.6642  270.3246  14417.142  
 0.05  0.8 9  6.3348  0.7121  286.5532  14705.132  
 0.03  0.8 3  5.4771  0.6374  242.5512  13579.439  

0.45 0.04  0.8 5  5.8012  0.6513  264.8742  14227.169  
 0.05  0.8 9  6.2189  0.7003  285.1327  14502.045  
 0.03  0.8 3  5.4581  0.6213  234.8765  13327.912  

0.6 0.04  0.8 5  5.6991  0.6426  252.4384  14013.762  
 0.05  0.8 9  6,0872  0.6821  277.1132  14313.261  
 0.03  0.8 3  5.4327 0.6107 220.3471 13181.654 

0.75 0.04  0.8 5  5.6855 0.6392 260.0795 13736.595 
 0.05  0.8 9  6.0431  0.6682  278.9554  14121.842  

Based on the computational results, following managerial insights are obtained about deterioration and 
advertisement factors which are analogous to Shah et al. (2013): 

1. For fixed  , increasing causes an increase in optimal replenishment cycle ( *T ), optimal order 
quantity ( *Q ), optimal advertisement frequency ( *A ), optimal initial price   ( *

0p ) and total 
profit per time unit of the inventory system ( TP ). Increasing the shape of advertisement ( ) 
increase *A and therefore, results in an increase in demand and the total profit of the system. 
The optimal discount fraction ( * ) is not sensitive to changes in .  

2. For fixed  , with an increase in the value of  , optimal advertisement frequency ( *A ) and 
optimal discount fraction ( * ) remain unchanged, while increasing  results ina decrease in 
the value of optimal order quantity ( *Q ) and total profit per time unit of the inventory system (
TP ). In comparison to the other variables, changes in the value of optimal initial price ( *

0p ) is 
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imperceptible. It can be concluded that, implementing better inventory preservation 
technologies lowers the effect of deterioration and enhances the total profit of the inventory 
system. 
 

7. Conclusion 
 
Coordination of inventory management and marketing policies play an important role in maximizing 
profit of firms. In this paper, we proposed an integrated model for dynamic pricing and inventory 
control of non-instantaneous deteriorating items. The selling price was defined as a time-dependent 
function of the initial price and discount rate, which is one of the noble features of the proposed model. 
In addition to price, the demand rate was a function of advertisement as a powerful marketing tool. In 
spite of the high significance of advertisement in stimulating demand, there exist few related research 
works linking demand to the advertisement factor. In this study, the advertisement factor was modeled 
as the frequency of advertisement in each cycle. An iterative algorithm was developed based on derived 
theoretical results. We illustrated through the experimental results the way the optimal solution was 
obtained. Computational results indicated that increasing the impact of the deterioration decreases total 
profit of the inventory system, which was due to the imposed costs on the system. Therefore, 
implementing better inventory preservation technologies can efficiently enhance the profit of the 
system by lowering the negative effect of the deterioration.  The proposed model can be extended by 
considering shortages, trade credit and time value of money. Considering non-instantaneous 
deterioration pattern is another future research direction.  
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