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 In this paper, a period review inventory model with controllable lead time has been considered 
where shortages are partially backlogged. The backorder rate is dependent on the backorder 
discount and the length of the protection interval, which is sum of the review period and the lead 
time. Two cases have been discussed for protection interval demand which are (a) Demand 
distribution is known (Normal Distribution) (b) Demand distribution is unknown (Minimax 
distribution). Further, algorithms have been developed which jointly optimize the backorder 
discount, the review period and the lead time for each case. Numerical examples are also 
presented to illustrate the results. 
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1. Introduction  
 

In the recent inventory control system, modern enterprises realize the importance of managing 
inventory efficiently to run the system profitably. A renowned Just-in-time (JIT) philosophy 
emphasizes on the advantages and benefits associated with reducing the lead time. Lead time is a topic 
of interest in most of the inventory systems. Generally, it is assumed that lead time is prescribed 
(Deterministic and Stochastic) and which therefore is not subject to control. Tersine (1982) suggested 
that order preparation, order transit supplier lead time, delivery time and setup time (i.e. preparation 
time for availability of items) usually constitute the total lead time of the system.  The lead-time can be 
decomposed into several crashing periods for making the present system more effective. In many 
practical situations, lead time can be reduced at an added crashing cost; in other words it is controllable. 
By shortening the lead time, we can lower the safety stock, reduce the loss caused by stock out; 
improve the service level to the customer and increase the competitive ability in business. Many 
researchers Liao and Shyu (1991), Moon and Choi (1998), Hariga and Ben-Daya (1999) have 
investigated continuous review inventory models with lead time as a decision variable.  
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It is generally observed that while shortage occurs, demand can be captured partially. Some customers 
may prefer their demands to be backordered i.e., some customers whose needs are not urgent can wait 
for their demands to be satisfied, while others who cannot wait have to fill their demand from another 
source which is lost sale case. However, certain factors motivate the customer for the backorders out of 
which price discount from the supplier is the crucial one. To some extent, sufficient price discounts to 
the customers help the supplier to secure more backorders through negotiation. The supplier could fetch 
a large number of back order rate with higher price discount. Pan and Hsiao (2001) presented 
continuous inventory model with backorder discounts and variable lead-time. In this paper, the 
backorder discount has been also taken as a one of the decision variables. Further, the backorder rate 
depends on the length of the protection interval (period during which shortages can occur) also. This 
fact point out  that when shortages occur, if  longer the length of protection interval is, then, larger the 
amount of shortages is and obviously, this results in smaller the proportion of customers who can wait 
their orders to be fulfilled and results in smaller backorder rate. The consideration is ‘unsatisfied 
demand during the shortages can lead to optimal backorder ratio by controlling the price discount and 
the length of protection interval’ which ultimately helps the supplier to minimize his total inventory 
cost. 
 
In a recent study, Pan and Hsiao (2005) expanded the continuous inventory model by considering the 
case where lead-time crashing cost is taken as the function of reduced lead-time and ordered quantities. 
In contrast to the continuous review inventory model, we seek to investigate a periodic review model 
with back order discounts to accommodate more practical feature of the tangible Inventory systems. 
The applications of periodic review inventory model can often be found in managing inventory cases 
such as smaller retailer stores, drugs stores and grocery stores by Taylor (1996). Earlier, Chuang et al. 
(2004) presented a periodic review inventory model with variable lead-time and reduction of setup cost.  
Jaggi and Arneja (2010) considered a periodic inventory model with unstable lead-time and setup cost 
with backorder rate depending on backorder discount only. The main objective of this study is to 
uncover the benefits associated with reduction of lead time and offering backorder discount where 
backorder rate is dependent on length of protection interval. Two cases have been discussed for 
protection interval demand  
 

1. Distribution is known  
2. Demand distribution is unknown  

 
In this study, an inventory model has been formulated which allows review period, lead time and 
backorder discount to be optimized with known service level. The lead-time is also controllable and has 
shown that the significant saving could be obtained by offering suitable backorder discount.  

2. Notations and assumptions 

To develop the proposed model, we have used the following notation and assumptions: 
 
2.1       Notations 

D  : Average demand per year 
K  : Fixed ordering cost per inventory cycle 
h  : Inventory holding cost per unit per year 
R  : Target Level 
  : Fraction of the demand back ordered during stock out period such as 0 ≤   ≤ 1 

0  : Upper bound of the backorder rate 

0  : Marginal Profit (i.e. cost of lost demand) per unit 

x  : Back order price discount offered by the supplier per unit 

L  : Length of lead-Time 
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X  : Protection interval demand which has a p. d. f. xf  with finite mean ( )D T L  and standard 

deviation T L   (>0) for the protection interval ( LT  ) where   denotes the standard 
deviation of the demand per unit. 

  : The class of p. d. f. xf  of the protection interval demand with finite mean ( )D T L  and 

standard deviation T L   
S  : Fixed shortages cost, $ per unit short 
A   : Safety factor 
T  : Length of a review period 

(.)E  : Mathematical Expectation  

X
   : Maximum value of  x and 0 i.e., X

   =  0,max x   

EAC  : Expected annual cost 
W

EAC  : Least upper bound of expected annual cost. 

2.2 Assumptions 

1. The inventory level is reviewed every T  units of time. A sufficient quantity is ordered up to the 
target level R , and the ordering quantity is arrived after L  units of time. 

2. The length of the lead-time L  does not exceed an inventory cycle time T so that there is never 
more than a single order outstanding in any cycle.  

3. The target level R  = Expected demand during the protection interval + safety stock (SS) i.e. 

( ) ( )R D T L A T L     where A  is the safety factor and satisfies  P x R q  , q  represent the 

allowable stock out probability which means service level is defined during the protection 
interval and is given.  

 4. The lead-time L  consists of n mutually independent components. The ith component has a 

minimum duration ai  and normal duration bi , and a crashing cost per unit time ci . Arranging ci

such that ...1 2 3c c c cn     for the convenience. Since it is clear that the reduction of lead-time 

should be first on component 1 because it has the minimum unit crashing cost, and then 
component 2, and so on.  

5. Let 0 1

n
L b jj
 


 and iL  be the length of lead time with components 1,2,…,i crashed to their 

minimum duration, then iL  can be expressed as ( )0 1

i
L L b ai j jj
  


, , i= 1,…,n and the lead time 

crashing cost per cycle ( )C L  is given as 
1

( ) ( ) ( )1 1

i
C L c L L c b ai j j ji j


    

. (Ouyang et al., 1996). 

6. Assuming that a fraction  (0 ≤  ≤1) of the demand during the stock out period can be 

backordered so the remaining fraction 1   is lost. The backorder rate β is variable and is in 

proportion to the price discount x   offered by the supplier per unit and the protection interval.  

Thus 
0

( ) 0

T x

T L

 





   where 0 10   and 0 0x   ,  here our model is different from the 

previous models. (Pan & Hsiao, 2005). 

3. Mathematical Model 

We have assumed that the protection interval demand X has a p. d. f. fx   with finite mean ( )D T L  and 

standard deviation T L   with the target level ( ) ( )R D T L A T L      where A is already defined. 
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As Ouyang and Chaung (1999) proposed the periodic review model where the expected net inventory 

at the beginning of the period is (1 ) ( )R DL E X R


    .  

Therefore, the expected net inventory at the end of the period is (1 ) ( )R DL DT E X R


      

which gives the expected holding cost per year approximately .(1 ) ( )
2

DT
h R DL E X R


    

 
  

 

Now, the expected stock out cost per year is 
( ) ( )(1 ) ( )0E X R S E X Rx

T

   
 

    
where 

( )E X R


  is the expected demand shortage at the end of cycle i.e., ( )E X R


  ( )x R f dxx
R


  . 

When the lead time L  is reduced to Li  then, Annual lead time crashing cost  1

i

c jj

T





 

Now the objective is to minimize the total expected annual cost ( EAC ) which is the sum of  
= Ordering cost + Stockout cost + Holding cost + Lead-time crashing cost  

( , , )EAC T Lx    
K

T

( ) ( )(1 ) ( )0E X R S E X Rx

T

   
 

    
 (1 ) ( )

2

DT
h R DL E X R


     
 
  

1

i

c jj

T




    
     

(1)                                 

           

Also, we have assumed that the backorder rate   depends on the backorder price discount x  
and 

protection interval ( )T L . Thus 0

( ) 0

T x

T L

 






 and ( ) ( )R D T L A T L    , where A is safety factor. 

The Eq. (1) can be written as  

( , , )EAC T Lx
1

i
K c jj

T

 




2
0 0 0( ) 0( ) ( ) ( )0 0

T ST Tx x x
E X R S

T L T L T L

T

     


 


    

  


 
 
                                                 

01 ( )
2 ( ) 0

TDT x
h A T L E X R

T L

 





     



  
   
   

 

       
 

     
(2) 

                     
Here two cases arise for distribution of lead time demand i.e.  

a. Normal distribution  

b. Unknown distribution  

3.1 Lead time demand with normal distribution  

In this section, we have assumed that the probability distribution of protection interval demand X has a 

normal distribution with mean ( )D T L and standard deviation T L   

So, the expected shortages occurring at the end of the cycle is given by  

( )E X R


  ( )x R f dxx
R


    T L  ( ) 0A   

Where  ( ) ( ) 1 ( ) ,A A A A       and  are the standard normal p. d. f. and   c. d. f., respectively. 

Therefore, Eq. (2) is reduced to  
2

0 0 0) ( ) 0( ) ( ) ( )0 01 0( , , ) 1 ( )
2 ( )

0

T ST Tx x xi T L A SK c T L T L T Lj T xDTj
EAC T L h A T L T L Ax T T T L

     
 

   
  



 
                           

            

 
 

  (3) 
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It can be checked that for fixed T  and x , ( , , )EAC T Lx is a concave function of  , 1L L Li i   because 

2
( , , )

0.
2

EAC T Lx

L





So, for fixed ( , , )T Lx , the minimum total expected annual cost will occur at the end 

points of the interval  , 1L Li i  . On the other hand, for a given value of  , 1L L Li i  , it can be shown 

that ( , , )EAC T Lx  is convex in ( , )T x .Thus for fixed  , 1L L Li i  , the minimum value of ( , , )EAC T Lx  

will occur at the point ( , )T x  that satisfy  ( , , )
0

EAC T Lx

T





 and ( , , )

0
EAC T Lx

x









. Now, ( , , )

0
EAC T Lx

T


 


 

 
 

   

1 13 12 2 22 11 ( ) ( ) 20 ( )( )2( )0 22 2 2 2 201
( ) 32

3 3 2( )( )
0) )2 20 0

2 02 2
0

T Lx T L T Li D A A T LS
T LK c TTjj

A h
T

T A T LxS T L T Lx x

 
 





  
   




                                   
               

 

                  

              
 
 
(4)                    
 

This can be written as  

 
 

   

1 13
2 2 221 ( ) ( )0

0 2( ) 2 201
( )

2
3 3
2 2) )0 0

2 20

T L T L T Lxi S
K c TTjj

A
T

S T L T Lx x

 





   




  

  
 




 
 

 

  
  

  
  
  

 
 
 
 

 

1
1 2( )( )2( )

2 2 2
3
2( )( )0

2 0

D A A T L
T L

h

T A T Lx

 

  




  

  




 


 
 
 
 
 
 
 
 

 

                     
 
(5) 

where  
( )( , , ) 00

2

S hTEAC T Lx
x

x






 
  


   (6) 

    

Since it is difficult to obtain the solution for T  and x    explicitly as the evolution of Eq. (5) and Eq. 

(6) need the value of each other. As a result, we must establish the following iterative algorithm to find 

the optimal ( , )T x .   

Algorithm 3.1.1 

 Step 1  For each Li , 0,1,2,...,i n , execute (a) – (b) 

(a) Substitute the value of ( )Ai into Eq. (5), using numerical search technique, evaluateTi . 

If Ti  ≥ Li  , then go to (b) otherwise let Ti  = Li , go to (b). 

(b) Substitute the value of Ti , in Eq. (6) to obtain the value of xi


.
 Compare xi

 and 0 . 

 If
ix  ≤ 0 ,   then 

ix  is feasible. Go to step (2) otherwise  

let xi
  = 0 , go to step (2). 

Step 2 For each ( Ti  , xi
 , Li ), Compute the corresponding expected annual cost   

EAC  (Ti  , xi
 , Li ),  from Eq. (3) . Go to  step 3. 

 Step 3     Find min
0,1,2,...,i n

EAC  ( Ti ,
 xi
 , Li ). 

Let EAC ( *
T , *

x , *
L )= min

0,1,2,...,i n
 EAC  (Ti  , xi

 , Li ),  
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Hence ( *
T , *

x , *
L ) is the optimal solution and the optimal target level is * * * * *

( ) .R D T L A T L     

Theoretically, for given K, D, h, 0 , 0  ,   and each Li (i = 0, 1, 2, ... n), from Eq. (5) and Eq. (6), we 

can obtain optimal values of T and x , then the corresponding total expected annual cost can be found. 

Thus, the minimum total expected annual cost could be obtained when the lead–time demand is 
normally distributed.  

3.2 Lead time demand with unknown distribution 

If the lead time demand does not follow normal distribution or the probability distribution is unknown 
with first two moments, then the solution can be obtained by minimax approach. Since the probability 

distribution of X is unknown, we cannot find the exact value of ( )E X R


 .  Now we use a minimax 

distribution free procedure to solve min
0, 0, 0T Lx  

max
F

( , , )EAC T Lx , we need the following proposition 

to shorten the problem. 

Proposition 3.2.1  

For any  F   , 

 

2 21 ( ) ( ( ))
( )

2 ( )

T L R D T L
E X R

R D T L

    
 

  

 
 
 
   

≤ 
2

1  2
( ) 1T L A A   

 

                                                                                                           (Chuang et al.(2004))   
 

 

(7)
 

Moreover, the upper bound (7) is tight.  Then the Eq. (2) can be reduced to  

( , , )
W

EAC T Lx  1

i
K c jj

T

 




2
0

0( )1 2 0) ( 1 )
2

0 0

( ) ( )0

T x
S

T L
T L A A

ST Tx x

T L T L

T

 





   



 


     

 
 



 
 
 
 
 
                               

1 201 ( 1 )
2 ( ) 20

TDT x
h A T L T L A A

T L

 
 


         



  
   
   

 

 
 
 
 
 
 
           
  (8)    

where ( , , )
W

EAC T Lx  is the least upper bound of ( , , )EAC T Lx .
 As notified in the preceding section, it 

can be shown that ( , , )
W

EAC T Lx  is a concave function of  , 1L L Li i   for fixed T  and x  

[Appendix A].Therefore, the minimum upper bound of the expected total annual cost will occur at the 

end point of the interval  , 1L L Li i   for fixed value of ( T , x ). Moreover, it can be shown that  

( , , )
W

EAC T Lx  is convex function of T  and x for fixed L [Appendix B]. Therefore, the first order 

conditions are necessary and sufficient conditions for optimality. Using the first condition of 
derivatives, we get  

 
 

   

1 13 12 2 22 11 ( ) ( ) 20 ( )( )20 2 ( )( ) 2 20 2 2 21
( ) 32

3 3 2( )( )02 2) )0 0
2 02 20

T L T L T Lx D A A T Li S
T LK c TTjj

A h
T

T A T LxS T L T Lx x

 
 





  
   




        
   


 


   

  
 

                  
          

 

  
  

                               

 

     (9) 

 

and 
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x = 
( )0

2

S hT 
   

     (10) 

Since it is difficult to obtain the exact value of service factor A which depends upon the required 

service level on the basis of allowable stock out probability q, because the p. d. f. ( )f xx is unknown. So, 

the following proposition has been used to find accurate value of A. Therefore, the algorithm to find the 
optimal review period, lead-time and backorder discount can be established by using the proposition 
given below: 

Proposition 3.2.2  

Let X represents the protection interval demand that has p. d. f. ( )f xx  with finite mean ( )D T L  and 

standard deviation T L  then for any real number c > 0,  
2

2 2
( )

L
p X c

L c DL




 

 
. If we take R 

instead of c, then      ,  

2
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which implies 

T L
p X R p X R q p X R

T L R DL A A






      

                

 

Hence, 1
,
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1

q
A




Therefore 
1

0, 1A
q

 
 
 
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(Chuang et al. (2004))
 

Algorithm 3.2.3 

Step 1 For each q , divide the interval 
1

0, 1
q


 
 
 

into N equal subintervals.  Let 00A  , 
1

1AN q
   

            0
1

A ANA Al l N


  , 1, 2,..., 1l N   

Step 2 For each Li  ( 0,1,2,..., )i n , perform step (3) and (4). 

Step 3 For given Al  , , ...,0 1A A AN , 0,1, 2,...,l N , using numerical search technique, evaluate iT  from 

Eq. (9) simultaneously.  

If Ti  ≥ Li , then go to step (4) otherwise 

Set Ti  = Li , and go to step (4). 

Step 4 By using T, Calculate the value of i using the Eq. (10). Compare i and 0 . 

If i  ≤ 0 . Then i  is feasible. Go to next step. Otherwise set  

i = 0 . Go to step (5). 

Step 5  For each ( Ti  , xi
 , Li ), Compute the corresponding expected annual cost   W

EAC ( Ti  , xi
  , Li  ).   

Step 6 Find min
,...,0, 1A A A ANl

 
 
 


 W
EAC  (Ti ,  xi

  , Li ), 

Let W
EAC (

,Ti Ai
, 

,x Ai i
 , 

,Li Ai
) =  min

,...,0, 1A A A ANl
 
 
 


 W
EAC ( Ti  , xi

 , Li  ), 

Step 7  Find W
EAC ' '

( ', , )T Lx  = min
0,1,2,...,i n

 W
EAC (

,Ti Ai
, 

,x Ai i
 , 

,Li Ai
) 

             Then ' '
( ', , )T Lx  is the required optimal solution. 
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Numerical Example 

In order to illustrate the solution algorithms, we have considered an inventory system with the 
following data having data: D=600 units per year, K= $ 200 per order, S= $ 50 per short out,   = 7 
units per week, π0 = $ 150 per unit, h= $ 20 per unit per year, q = 0.2 where A0= 0 and AN = 2, N=200. 
We have started with fixed service level A = 0.8 (i.e.

 iA  = 0.845 and ( )iA  =0.1120) by checking the 

table for Silver and Peterson (1985) (p.p. 699-708). The lead-time has three components, which have 
been shown in Table 1. 
 
Table 1   
Lead time data  
Lead time component i      Normal duration (days) bi    Minimum duration (days) ai    Unit Crashing cost per day, ci 
   1                            20        6         0.4 
   2                                  20        6         1.2   
   3                                  16       9         5.0 
 

We have solved the cases for different upper bounds of the backorder ration  = 0, 0.5, 0.8, 1. Now,

0 , represent complete lost sales; 1  , represent complete backorder case and 0 1    represent 

partially backorder case. Then applying the algorithm 1, crashing has been carried out for lead-time for 
different backorder ratio and illustrated in Table 2. It is observed that by reducing the lead time the total 
expected cost decreases.  
 
Table 2    
Crashing (Normal) of lead time when the protection interval demand is known  

 L T π R EAC 
 8 13.94 77.68 253.70 3390.87 

0 0   6 13.79 77.65 228.82 3340.90 
4 13.78 77.65 205.63 3323.85 

 3 14.19 77.73 198.79 3411.17 
 

0 0.5   
8 13.86 77.67 252.78 3370.26 
6 13.68 77.63 227.54 3317.74 
4 13.61 77.62 203.63 3296.93 

  13.95 77.68 196.06 3381.66 
 

0 0.8   
8 13.81 77.66 252.23 3357.93 
6 13.61 77.62 226.79 3303.94 
4 13.51 77.60 202.48 3280.99 

 3 13.82 77.66 194.49 3364.32 
 8 13.78 77.65 251.88 3349.74 

0 1   6 13.57 77.61 226.29 3294.77 
4 13.44 77.58 201.72 3270.45 

 3 13.73 77.64 193.48 3352.91 
 

Table 3    
Optimal Solutions when demand has Normal Distribution  

0  L  T  
x  R  EAC  

0 4 13.78 77.65 205.63 3323.85 

0.5 4 13.61 77.62 203.63 3296.93 

0.8 4 13.51 77.60 202.48 3280.99 

1 4 13.44 77.58 201.72 3270.45 
 

Table 3 provides the solution with crashing of lead time with normal distribution. Here we observed 
that the total annual expected cost decreases as the backorder ratio increases since supplier can fetch a 
large number of backorders by offering the price discount with no loss although with less cost. The 
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optimal inventory results with relevant savings where lead-time have been crashed given in table 4.  In 
table 5, algorithm 2 has been applied for crashing of lead-time for different backorder ratio when 
demand during the protection interval is unknown.  
 
Table 4  
Savings (%) Obtained by crashing of lead time with normally distributed demand 

0  Total Cost without crashing Total Cost with crashing Savings (%) 

0 3390.87 3323.85 1.97 
0.5 3370.26 3296.93 2.17 
0.8 3357.93 3280.99 2.29 
1 3349.74 3270.45 2.36 

 

Note: saving % =   %100),,(/,,(),,( ***  LTEACLTEACLTEAC
xxx
  

Table 5  
Crashing of lead time when the protection interval demand is unknown (Minimax) 

 L T π R EAC 
 8 16.15 78.11 279.24 3934.22 

00   6 15.80 78.04 252.03 3836.07 
4 15.53 77.99 225.88 3758.37 

 3 15.76 78.03 216.90 3802.65 
 8 15.95 78.07 276.87 3891.07 

5.00 
 

6 15.52 77.98 248.83 3787.61 
4 15.12 77.91 221.11 3702.00 

 3 15.21 77.93 210.62 3740.84 
 8 15.83 78.04 275.50 3865.45 

8.00 
 

6 15.36 77.95 247.00 3759.03 
4 14.89 77.86 218.45 3669.23 

 3 14.91 77.87 207.16 3705.50 
 8 15.75 78.03 274.61 3848.48 

 0 1   6 15.26 77.93 245.83 3740.16 
4 14.74 77.84 216.75 3647.77 

 3 14.72 77.83 204.98 3682.57 

 

Furthermore, Table 6 listed the optimal result for controllable lead-time with unknown distribution. 
 

Table 6   
Optimal Solutions when demand has unknown Distribution 

0  L T π R EAC 
0 4 15.53 77.99 225.88 3758.37 

0.5 4 15.12 77.91 221.11 3702.00 
0.8 4 14.89 77.86 218.45 3669.23 
1 4 14.74 77.84 216.75 3647.77 

 
 
 
 

Table 7   
 Savings (%) Obtained by crashing of lead time with unknown distribution of demand 

0  Total Cost without crashing Total Cost with crashing Savings (%) 

0 3934.22 3758.37 4.46 
0.5 3891.07 3702.00 4.85 
0.8 3865.45 3669.23 5.07 
1 3848.48 3647.77 5.21 
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4. Conclusion  

In the proposed model, the effect of backorder discount and length of protection interval on backorder 
rate with the reduction of lead time in periodic review model has been considered. Reduction in lead 
time plays an important role to run the system profitably as it helps the supplier to reduce the overall 
cost of the system by reducing the loss caused by shortages and improving the service level to the 
customers. Further, longer length of the protection interval results as large amount of shortages and 
obviously small proportion of customers who can wait their orders to be fulfilled which means smaller 
backorder rate. Thus, the reduction of lead time and backorder discount are two significant factors 
which help the supplier to increase his backorder rate and to earn more profit. This model jointly 
optimizes the review period, lead time and backorder discount. Further, we consider both cases of 
protection interval demand with known distribution and unknown distribution. 
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Appendix A 

Proof of ( , , )
W

EAC T Lx is concave in  , 1L L Li i   for fixed ,T x .  
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Therefore EAC is concave in  , 1L L Li i   for fixed ( , )T x . 

 

Appendix B 

 



  

       

246

2 2

2

2 2

2

EAC EAC

TT x
H

EAC EAC

Tx x



 

 

 

 

  

 
 
 
 
 
  

 

2
0 ( )0

0( , , ) ( )

0 0

0

T Lx
S

K c TT Lj
EAC T L Ax

T S x x

T L T L

 



 

   




 

  
 

 
 

 
 
 
 
 
 
 

 

             01 ( )
2 ( )0

TDT x
h A T L A T L

T L

 
 


     



  
      

   

 

 
 
 
 
 
 

(B.1)

 

 

( , , )EAC T Lx

T






1
2

i
K c jj

T

 


  

   

   

1
2 2( )1 0 00

3 22 2
2( ) 0

0 0
3 3
2 22 ) 2 )0

S T L Sx

T T LT
T LA

S x x

T L T L

  



   



  
  




 

 

 
 
 
 
 
 
 
 
 

 

                              

1 0
1 1
2 22( ) 2( )

( )
12 022( ) 3

22( ) 0

x

T L T LhD hA
h A

T x
T L

T L

 




 





 
   





 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

                  
      (B.2)   

 

2
EAC

T x




 
     

0 0 0( )
3 3 3
2 2 22 20 0

Sx
A

T L T L T L

   


 

  

  

 
 
 
             

                 

( ) ( )0 0
1 3
2 2( ) 2( )0 0

h A T h A

T L T L

   

 

 

 

 

 

 
 
 
 

(B.3)

 

2 0 0
( )00 0( )

00

Sx

hT AEAC T L T L
A

T Lx

T L

  

  


 


  

 
 




 
 
 
 
 
 

 

 

(B.4) 

2 2 ( ) 0
2

0

AEAC

T Lx

 







 

 

(B.5)

 



C. K. Jaggi et al. / International Journal of Industrial Engineering Computations 5 (2014) 
 

247  

2 2( )

2 3

k cEAC j

T T

 




2
3 2( ) ( )0 0 0

5 1 1
3 22 2 24 ( ) ( ) ( )0( )

( ) 3 ( )0 0 0
53
22 4( )4 ( ) 0

S Sx

T L T T L T T L
A

S Sx

T LT T L

   




   



 
 



  


 
 



 
 
 
 
 
 
 
  

            

 

10
3 3
2 2( ) 4( )0( )

3 3 024( ) 5
24( ) 0

x

T L T LhA
h A

T x
T L

T L

 




 





 
 





 
 
 
 
 
 
 
 

. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 (B.6)

 

Using  

0
EAC

T


 

  

2

2

k c j

T T

 


 
             

2
( ) ( )0 0 0

3 1 1
22 2 22( ) ( ) 2 ( )0( )

( )0 0
3
22( ) 0

2
12
22( )

1 0 0( )
1 1 3
2 2 22( ) ( ) 2( )0 0

S Sx

T L T T L T T L
A

Sx

T L

hD hA

T
T L

Tx x
h A

T L T L T L

   




  





   


 

  
 


  






 



  

  

  
  
  
  
  
  
  

   
 
 
 
 
  
  
  
  
  


 









 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

         
(B.7)

 

We get  

22 ( )0 0 0( )
2 3 2

2( ) 0

1 3
2 22( ) 4( )

SEAC hDx x
A

T
T T L

hA hA

T L T L

    




 

 
 




 

 

 
 
 
 
 

 

2 21 1 0 0( )
1 3 1 3
2 2 2 2( ) 4( ) ( ) ( )0 0

x x
h A

T T L T L T T L T L

   


 

   

   

 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 



  

       

248

2
3 3 ( ) 30 0 0 0( ) 0

5 5 5
2 2 24( ) 4( ) 4( )0 0 0

S Tx x x
A

T L T L T L

      


  


   

  

 
 
 
 
 

 

 
 

(B.8)

 

 
     

If  
2

( ) 00 0 0Sx x       , this  implies ( ) ( 0)0 0S and sx x         which holds.  

2

0
2

EAC

T


 


       i.e. 011H 

 Similarly  

2
3 2( )0 0

5 1
32 24 ( ) ( )0

2( ) ( ) ( )0 0( )
3 1 3

2 2 2( ) 4 ( )

3 ( )0 0
5
24( ) 0

3
24( )

310 0( )
53 3
22 2 4( )( ) 4( ) 00

Sx

T L T T L

k c S Sj
A

T
T T L T T L

Sx

T L

hA

T L

Tx x
h A

T LT L T L

  



 


  





   









 

  
  

 




 





  

 

 
 
 
 
 
 
 
 
 
 
 
  

 
 
 

 

   

2

( )0 0 0( ) 3 3
2 222 ( ) 0 00 0

0
1

( ) 0 3 1
2 22( ) ( )0 0

Sx
A

T L T LA

T L
T

h A

T L T L

   


  



 

 


 

 
  



 

 

 
 
 
 
 
 
 

   
   
            

   
    
    
    
      

 
 
 
 

 
 
    

 
 
 
 
 
 
 
 
 

(B.9) 

 
 

for  ( )0Sx    

Hence Proved.  
 

 


