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1. Introduction

In the recent inventory control system, modern enterprises realize the importance of managing
inventory efficiently to run the system profitably. A renowned Just-in-time (JIT) philosophy
emphasizes on the advantages and benefits associated with reducing the lead time. Lead time is a topic
of interest in most of the inventory systems. Generally, it is assumed that lead time is prescribed
(Deterministic and Stochastic) and which therefore is not subject to control. Tersine (1982) suggested
that order preparation, order transit supplier lead time, delivery time and setup time (i.e. preparation
time for availability of items) usually constitute the total lead time of the system. The lead-time can be
decomposed into several crashing periods for making the present system more effective. In many
practical situations, lead time can be reduced at an added crashing cost; in other words it is controllable.
By shortening the lead time, we can lower the safety stock, reduce the loss caused by stock out;
improve the service level to the customer and increase the competitive ability in business. Many
researchers Liao and Shyu (1991), Moon and Choi (1998), Hariga and Ben-Daya (1999) have
investigated continuous review inventory models with lead time as a decision variable.
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It is generally observed that while shortage occurs, demand can be captured partially. Some customers
may prefer their demands to be backordered i.e., some customers whose needs are not urgent can wait
for their demands to be satisfied, while others who cannot wait have to fill their demand from another
source which is lost sale case. However, certain factors motivate the customer for the backorders out of
which price discount from the supplier is the crucial one. To some extent, sufficient price discounts to
the customers help the supplier to secure more backorders through negotiation. The supplier could fetch
a large number of back order rate with higher price discount. Pan and Hsiao (2001) presented
continuous inventory model with backorder discounts and variable lead-time. In this paper, the
backorder discount has been also taken as a one of the decision variables. Further, the backorder rate
depends on the length of the protection interval (period during which shortages can occur) also. This
fact point out that when shortages occur, if longer the length of protection interval is, then, larger the
amount of shortages is and obviously, this results in smaller the proportion of customers who can wait
their orders to be fulfilled and results in smaller backorder rate. The consideration is ‘unsatisfied
demand during the shortages can lead to optimal backorder ratio by controlling the price discount and
the length of protection interval’ which ultimately helps the supplier to minimize his total inventory
cost.

In a recent study, Pan and Hsiao (2005) expanded the continuous inventory model by considering the
case where lead-time crashing cost is taken as the function of reduced lead-time and ordered quantities.
In contrast to the continuous review inventory model, we seek to investigate a periodic review model
with back order discounts to accommodate more practical feature of the tangible Inventory systems.
The applications of periodic review inventory model can often be found in managing inventory cases
such as smaller retailer stores, drugs stores and grocery stores by Taylor (1996). Earlier, Chuang et al.
(2004) presented a periodic review inventory model with variable lead-time and reduction of setup cost.
Jaggi and Arneja (2010) considered a periodic inventory model with unstable lead-time and setup cost
with backorder rate depending on backorder discount only. The main objective of this study is to
uncover the benefits associated with reduction of lead time and offering backorder discount where
backorder rate is dependent on length of protection interval. Two cases have been discussed for
protection interval demand

1. Distribution is known
2. Demand distribution is unknown

In this study, an inventory model has been formulated which allows review period, lead time and
backorder discount to be optimized with known service level. The lead-time is also controllable and has
shown that the significant saving could be obtained by offering suitable backorder discount.

2. Notations and assumptions

To develop the proposed model, we have used the following notation and assumptions:

1 Notations

2.
D : Average demand per year

K : Fixed ordering cost per inventory cycle

h : Inventory holding cost per unit per year

R : Target Level

yij : Fraction of the demand back ordered during stock out period suchas 0 <g <1

By : Upper bound of the backorder rate

T : Marginal Profit (i.e. cost of lost demand) per unit

V4 : Back order price discount offered by the supplier per unit

X

L : Length of lead-Time
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: Protection interval demand which has a p. d. f. f, with finite mean D(T + L) and standard

deviation o7 + L (>0) for the protection interval (T + L) where o denotes the standard
deviation of the demand per unit.
: The class of p. d. f. f, of the protection interval demand with finite mean D(7+L) and

standard deviation ovT +L

: Fixed shortages cost, $ per unit short

: Safety factor

: Length of a review period

: Mathematical Expectation

: Maximum value of x and O i.e., xt = max{x,O}
: Expected annual cost

: Least upper bound of expected annual cost.

Assumptions

The inventory level is reviewed every 7 units of time. A sufficient quantity is ordered up to the
target level R , and the ordering quantity is arrived after L units of time.

The length of the lead-time L does not exceed an inventory cycle time 7 so that there is never
more than a single order outstanding in any cycle.

The target level R = Expected demand during the protection interval + safety stock (SS) i.e.
R=D(T+1L) +Aa\/m where 4 is the safety factor and satisﬁesP[x > R] =q, g represent the

allowable stock out probability which means service level is defined during the protection
interval and is given.
The lead-time L consists of n mutually independent components. The i component has a

minimum durationa; and normal durationb; , and a crashing cost per unit time ¢; . Arranging c¢;
such that ¢; <c¢, <c¢3 <...<¢, for the convenience. Since it is clear that the reduction of lead-time

should be first on component 1 because it has the minimum unit crashing cost, and then
component 2, and so on.

n
Let Ly= jé

1b : and L, be the length of lead time with components 1,2,...,i crashed to their

minimum duration, then L; can be expressed asz; =, - ﬁ (bj=a;)ss i=1,...,n and the lead time
J=1
crashing cost per cycle C(L) is given as ¢(1) = ¢ (L | —L)+ lil cjbj=a;)- (Ouyang et al., 1996).
- A

Assuming that a fraction S(0 <p<1) of the demand during the stock out period can be
backordered so the remaining fraction '~# is lost. The backorder rate B is variable and is in

proportion to the price discount % offered by the supplier per unit and the protection interval.
5 - T ﬁozr X
Thus © (7 + Lyz, where 0<f, <1 and 0<z, < 7, here our model is different from the

previous models. (Pan & Hsiao, 2005).

3. Mathematical Model

We have assumed that the protection interval demand X has a p. d. f. f,, with finite mean D(T'+L) and

standard deviation o+/T +L with the target level R = D(T + L)+ 45/(T + L) where A is already defined.
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As Ouyang and Chaung (1999) proposed the periodic review model where the expected net inventory
at the beginning of the period is R— DL +(1- B)E(X R,
Therefore, the expected net inventory at the end of the period is R— DL - DT +(1- B)E(X - R

+
which gives the expected holding cost per year approximately h [R -DL- -5 ° (I=)E(X = R) }

TR BEX = R)" +(S+7y)(1- BYE(X ~R)"
T

Now, the expected stock out cost per year is where

E(X-R)" is the expected demand shortage at the end of cycle i.e., E(X -R)" - c)jo(x —R) fydx.
R

Y.
When the lead time L is reduced to Z; then, Annual lead time crashing cost - =1
T

Now the objective is to minimize the total expected annual cost ( £4¢ ) which is the sum of
= Ordering cost + Stockout cost + Holding cost + Lead-time crashing cost
K T BE(X-R) +(S+7y)1- HEX -R)"

EAC(T, 7y, L)y= — + +h|:RDLDT+(1ﬂ)E(XR)+:| +j:1£’j (1)
T T 2 T

i

Also, we have assumed that the backorder rate # depends on the backorder price discount 7, and
T ﬂoﬂx

—~ - and R=D(T+L)+A4c+(T +L), where A is safety factor.
(T+L)7z0

protection interval(rzy. Thus g =

The Eq. (1) can be written as

2
T,Bozzx . ST,BOﬂx T,Bozzx]

i E(XX-R)" +S+ 7y —
K+ Xe; =5 LML);;O "o (T+Lyzy (T+L)
EAC(T, 7y, L) =— /= " &
r r (2)

T
+h|:DT+AG T+L +[1—ﬂ0”xJE(X—R)+:|
2 (T + L)z,

Here two cases arise for distribution of lead time demand i.e.

a. Normal distribution

b. Unknown distribution

3.1 Lead time demand with normal distribution

In this section, we have assumed that the probability distribution of protection interval demand X has a
normal distribution with mean D(T + L) and standard deviation o7 + L
So, the expected shortages occurring at the end of the cycle is given by

EX-R)" :ojj:(x—R)fxdx =oVT+L y(4)>0

Where y(4) = p(4)— A[1-®(4)],p and D are the standard normal p. d. f. and c. d. £, respectively.
Therefore, Eq. (2) is reduced to

2
i Ty STz Tp\
i 07X _ 0"x “FoTx
K+ glcj oT+L)¥Y(4) 7(T+L)7[0 +S+7IO (T+L)7r0 (T_,_LJ |:
— +h

EAC(T, 7y, L) = fT + br

TS\
- tdo T+L+[1— P

(T+L)7r0

]om‘{'(A) (3)

T
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It can be checked that for fixed 7 andr,, EAC(T,x,,L)is a concave function of L e(Ll.,Ll._l) because

62 EAC(T, 7, L) . -
e . So, for fixed (7,7, L), the minimum total expected annual cost will occur at the end
oL

points of the interval(Li,Ll._l) . On the other hand, for a given value of L e(Ll.,Ll._l) it can be shown
that EAC(T,z,,L) is convex in (7, z,).Thus for fixed L e (Li,Ll._l), the minimum value of EAC(T,x,,L)

will occur at the point (7,7,) that satisfy “F4CT-7x.L) _, and OEACT, 7, D) _  Now, EACT.my.L) _ 0=

or ony oT
[ 3 1 1] ¢ -
-5 5 = 1
. B2 (T+0) 2 2 2 | 1
i 1Ay (L) +(s+m) _(@+D” T+L) D Ao, "5 oWAT+L) 2
K+ Y c. 2 . 0 72 T —+—T+L) “+—
= 0 2 2 2
_ T2 +ow(A) +h 3 (4)
3 3 2
—= —= T 7 .oV(A(T+L
Shyee(T+0) 2 fyee(T+D) 2 Ao VAT +D)
+ + 2r
2”0 2 L 0 i
This can be written as
o, ( )_z 1 1] 1 N
; 1 By (T+L) 2 T+0)? (T+1) 2 D Ao = oWAT+L) 2
K+ 2 e FR— +(5+7) 2 e I 5)
S——+ow(4) =h 3
T _3 _3 T 7 0P (ANT + L) 2
SByry (T+0) 2 Bymy (T+1L)) 2 407X
B 21, - 2 ] 27
where
OEAC(T, 7y, L) :0:>7zx=(S+”0)+hT (6)
omy, 2

Since it is difficult to obtain the solution for 7 and 7z, explicitly as the evolution of Eq. (5) and Eq.
(6) need the value of each other. As a result, we must establish the following iterative algorithm to find
the optimal (7, z,.) .

Algorithm 3.1.1
Step 1 For each Z;,i=0,1,2,..,n, execute (a) — (b)
(a) Substitute the value of y (4;) into Eq. (5), using numerical search technique, evaluate7; .
If 7. > L; , then go to (b) otherwise let 7, =L;, go to (b).
(b) Substitute the value of 7, in Eq. (6) to obtain the value of 7y, Compare 7y, and 7, .
Ifz, <7m,, then z_is feasible. Go to step (2) otherwise
let 7y, =75 80 to step (2).
Step 2 For each (7., Ty, L;), Compute the corresponding expected annual cost
EAC (T, , 7y o L;), from Eq. (3) . Go to step 3.

Step 3 Find min  EAC (T}, 7z, , L;)-
= 1

i=0,1,2,...,n

% %
Let £4C(T , 7., L )= Jpn EAC (T, 7y L),
1= 1

slyLgeees
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Hence (T ST L ) is the optimal solution and the optimal target level iS R =pr +7)+ T +L.
Theoretically, for given K, D, h, 5,7, , o and eachL; (i=0, 1, 2, ... n), from Eq. (5) and Eq. (6), we
can obtain optimal values of T and 7,., then the corresponding total expected annual cost can be found.

Thus, the minimum total expected annual cost could be obtained when the lead—time demand is
normally distributed.

3.2 Lead time demand with unknown distribution

If the lead time demand does not follow normal distribution or the probability distribution is unknown
with first two moments, then the solution can be obtained by minimax approach. Since the probability

distribution of X is unknown, we cannot find the exact value of E(X - R)*

distribution free procedure to solve o mif ,_, max EAC(T, 7y, L) | we need the following proposition
WX

- Now we use a minimax

to shorten the problem.

Proposition 3.2.1

For any €€

EX-R <! ‘/a (T +L)+(R-D(T+ L)) <lm/(T+L)(x/1+A2—A)

2(~(R-D(T+1L)) =2 (7
(Chuang et al.(2004))
Moreover, the upper bound (7) is tight. Then the Eq. (2) can be reduced to
Tﬁo”}%
+S+ 70
cr><1/T+L)><7><(\/1+A —4) T+ L)z
é STﬁoﬁx Tﬁoﬁx
K+ c -

EACW(T,ﬂx,L) _ j=1 J . (T+L)7r0 (T+1L)

T T

{DT { TByrx j 1 \/72
+h| — 4+ AoNT+L +| 11— ———"— |[xoNT+ L —x(N1+ 4~ — A) (8)
2 (T+ L)z, 2

where £4c” (r,z .1 is the least upper bound of EAC(T, z,,L) As notified in the preceding section, it

can be shown that EACW(T,frx,L) is a concave function of Le(Ll.,Ll._l) for fixed 7 and 7,
[Appendix A].Therefore, the minimum upper bound of the expected total annual cost will occur at the
end point of the interval Le(Li’Li—l) for fixed value of (7,7, ). Moreover, it can be shown that

Eac” (T, 7, L) is convex function of 7 and r, for fixed L [Appendix B]. Therefore, the first order

conditions are necessary and sufficient conditions for optimality. Using the first condition of
derivatives, we get

3 1 1] _ .

2 - 5 - N

i 1M+(s+”0) T+l _@+D) b oae oviaren?
(K + glcj) 2 70 T 2T ?‘Fi(T L) f .
17£+aw(A) _a . ( )

T 3 B E
SPymy (T+L1)) 2 fyry (T+1)) 2 Tyt (AT + 1)
__ 27[0 - 2 | L 27[0 |

and
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_ (S+7mp)+hT (10)
2

Since it is difficult to obtain the exact value of service factor A which depends upon the required

service level on the basis of allowable stock out probability q, because the p. d. f. f,(x) is unknown. So,

Tx

the following proposition has been used to find accurate value of A. Therefore, the algorithm to find the
optimal review period, lead-time and backorder discount can be established by using the proposition
given below:

Proposition 3.2.2

Let X represents the protection interval demand that has p. d. f. f,.(x) with finite mean D(T + L) and

2
.. L
standard deviation o+/T + L then for any real number ¢ > 0, p[X > c] < % . If we take R
6“L+(c—DL)
2
. T+L C . . 1
instead of ¢, then p[X >R]<— T+1) 5> Which implies p[.X > R] < —— ,q = p[X > R] < ——
o“(T+L)+(R-DL) 1+ 4 1+4

1 1
Hence, 4= Therefore 4 e {0, fq—l} (Chuang et al. (2004))

1+ 4
Algorithm 3.2.3
Step 1 For each g, divide the interval {0, /1—1} into N equal subintervals. Let4, =0, 4 = ,l—l
q q
Ay — 4
_ N 70 _
A =4+ ,1=12,..,N-1

N
Step 2 ForeachZ; (i1=0,1,2,..,n) perform step (3) and (4).
Step 3 For given 4 € {AO’AI""’AN} , 1=0,1,2,..,N, using numerical search technique, evaluate 7, from

Eq. (9) simultaneously.
If 7. > 1, then go to step (4) otherwise

Setr; = L;, and go to step (4).

Step 4 By using T, Calculate the value of z; using the Eq. (10). Compare 7, and 7 .
If z; <z.Then z; is feasible. Go to next step. Otherwise set
m; = np - Go to step (5).

Step 5 Foreach (7; ,z, , L;), Compute the corresponding expected annual cost EACW(TI. s e s L)
1 1

Step6 Find  min Al (1. =, 1),
1
Ale{AO,Al,...,AN}
Let EACW(T, 7 s L., )= min EACW(T- s 7y s Li ),
L4, Tx A7 TiLA 4 44 l A
IE{AO’ = N}
Step 7 Find E4C” (702 1y = min  EAC" (1 L)
R A7 T Vi,

Then (7, z,,1) is the required optimal solution.
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Numerical Example

In order to illustrate the solution algorithms, we have considered an inventory system with the
following data having data: D=600 units per year, K= $ 200 per order, S= $ 50 per short out, o =7
units per week, o = $ 150 per unit, h= $ 20 per unit per year, q = 0.2 where Ap= 0 and Ax= 2, N=200.
We have started with fixed service level A = 0.8 (i.e. 4, =0.845 and w(4,) =0.1120) by checking the
table for Silver and Peterson (1985) (p.p. 699-708). The lead-time has three components, which have
been shown in Table 1.

Table 1
Lead time data

Lead time componenti  Normal duration (days) b;i Minimum duration (days) a; Unit Crashing cost per day, c;

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

We have solved the cases for different upper bounds of the backorder ration = 0, 0.5, 0.8, 1. Now,
B =0, represent complete lost sales; -1, represent complete backorder case and o< p<1 represent

partially backorder case. Then applying the algorithm 1, crashing has been carried out for lead-time for
different backorder ratio and illustrated in Table 2. It is observed that by reducing the lead time the total
expected cost decreases.

Table 2
Crashing (Normal) of lead time when the protection interval demand is known
L T yiy R EAC
8 13.94 77.68 253.70 3390.87
5, =0 6 13.79 77.65 228.82 3340.90
4 13.78 77.65 205.63 3323.85
3 14.19 77.73 198.79 3411.17
8 13.86 77.67 252.78 3370.26
£,=05 6 13.68 77.63 227.54 3317.74
4 13.61 77.62 203.63 3296.93
13.95 77.68 196.06 3381.66
8 13.81 77.66 252.23 3357.93
B, =08 6 13.61 77.62 226.79 3303.94
4 13.51 77.60 202.48 3280.99
3 13.82 77.66 194.49 3364.32
8 13.78 77.65 251.88 3349.74
5, =1 6 13.57 77.61 226.29 3294.77
4 13.44 77.58 201.72 3270.45
3 13.73 77.64 193.48 335291
Table 3
Optimal Solutions when demand has Normal Distribution
i L T T, R EAC
0 4 13.78 77.65 205.63 3323.85
0.5 4 13.61 77.62 203.63 3296.93
0.8 4 13.51 77.60 202.48 3280.99
1 4 13.44 77.58 201.72 3270.45

Table 3 provides the solution with crashing of lead time with normal distribution. Here we observed
that the total annual expected cost decreases as the backorder ratio increases since supplier can fetch a
large number of backorders by offering the price discount with no loss although with less cost. The
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optimal inventory results with relevant savings where lead-time have been crashed given in table 4. In
table 5, algorithm 2 has been applied for crashing of lead-time for different backorder ratio when
demand during the protection interval is unknown.

Table 4
Savings (%) Obtained by crashing of lead time with normally distributed demand
B, Total Cost without crashing Total Cost with crashing Savings (%)
0 3390.87 3323.85 1.97
0.5 3370.26 3296.93 2.17
0.8 3357.93 3280.99 2.29
1 3349.74 3270.45 2.36

Note: saving % = [EAC(T, ., L) - EAC(T" ,x",L || EAC(T, z, L) x100%

Table 5
Crashing of lead time when the protection interval demand is unknown (Minimax)
L T g R EAC
8 16.15 78.11 279.24 3934.22
;Bo =0 6 15.80 78.04 252.03 3836.07
4 15.53 77.99 225.88 3758.37
3 15.76 78.03 216.90 3802.65
8 15.95 78.07 276.87 3891.07
B, =05 6 15.52 77.98 248.83 3787.61
0 4 15.12 77.91 221.11 3702.00
3 15.21 77.93 210.62 3740.84
8 15.83 78.04 275.50 3865.45
B, =0.8 6 15.36 77.95 247.00 3759.03
0 4 14.89 77.86 218.45 3669.23
3 14.91 77.87 207.16 3705.50
8 15.75 78.03 274.61 3848.48
IB =1 6 15.26 77.93 245.83 3740.16
0 4 14.74 77.84 216.75 3647.77
3 14.72 77.83 204.98 3682.57

Furthermore, Table 6 listed the optimal result for controllable lead-time with unknown distribution.

Table 6
Optimal Solutions when demand has unknown Distribution
B L T yis R EAC
0 4 15.53 77.99 225.88 3758.37
0.5 4 15.12 77.91 221.11 3702.00
0.8 4 14.89 77.86 218.45 3669.23
1 4 14.74 77.84 216.75 3647.77
Table 7
Savings (%) Obtained by crashing of lead time with unknown distribution of demand
B, Total Cost without crashing Total Cost with crashing Savings (%)
0 3934.22 3758.37 4.46
0.5 3891.07 3702.00 4.85
0.8 3865.45 3669.23 5.07

1 3848.48 3647.77 5.21
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4. Conclusion

In the proposed model, the effect of backorder discount and length of protection interval on backorder
rate with the reduction of lead time in periodic review model has been considered. Reduction in lead
time plays an important role to run the system profitably as it helps the supplier to reduce the overall
cost of the system by reducing the loss caused by shortages and improving the service level to the
customers. Further, longer length of the protection interval results as large amount of shortages and
obviously small proportion of customers who can wait their orders to be fulfilled which means smaller
backorder rate. Thus, the reduction of lead time and backorder discount are two significant factors
which help the supplier to increase his backorder rate and to earn more profit. This model jointly
optimizes the review period, lead time and backorder discount. Further, we consider both cases of
protection interval demand with known distribution and unknown distribution.

Acknowledgements

The first author would like to acknowledge the financial support provided by University Grants
Commission through University of Delhi for accomplish this research. (Vide Research Grant No.
DRCH/R&D/2013-14/4155). The second author would like to thank University Grant Commission
(UGC) for providing the fellowship to accomplish the research.

References

Annadurai, K., & Uthayakumar, R. (2010). Reducing lost sales rate in (T, R, L) inventory model with
controllable lead time. Applied Mathematical Model, 34, 3465-3477.

Ben-Daya, M., & Hariga, M. (1999). Some stochastic inventory models with deterministic variable lead
time. European Journal of Operational Research, 113, 42-51.

Chen, C.K., Chang, H.C., & Ouyang, L.Y. (2001). A continuous review inventory model with ordering
cost dependent on lead time. International Journal of Information and Management Science, 12(3),
1-13.

Cheng, T.L., Huang, C.K., & Chen, K.C. (2004). Inventory model involving lead-time and setup cost
as decision variables. Journal of Statistics and Management System, 7, 131-141.

Chuang, B.R., Ouyang, L.Y., & Chuang, K.W. (2004). A note on periodic review inventory model with
controllable setup cost and lead time. Computers and Operations Research, 31, 549-561.

Gallego , G., & Moon, 1. (1993). The distribution free newsboy problem review and extensions.
Journal of Operations Research Society, 44, 825-834.

Guru, S.K., & Chenniappan, P.K. (2007). Impact of back order discounts on length of protection
interval inventory model. Journal of Engineering and Applied Sciences, 2(8), 1268-1273.

Jaggi C.K., & Arneja, N. (2010). Periodic inventory model with unstable lead-time and setup cost with
backorder discount. International Journal of Applied Decision Sciences, 3(1), 53-73.

Liao, CJ., & Shyu, C.H. (1991). An Analytical determination of lead time with normal demand.
International Journal of Operations Management, 11, 72-78.

Lin, Y.J. (2008). Minimax distribution free procedure with backorder price discount. International
Journal of Production Economics, 111, 118-128

Montgomery, D.C., Bazaraa, M.S., & Keswani, A.l. (1973). Inventory models with a mixture of
backorders and lost sales. Naval Research Logistics, 20, 255-263.

Moon, I., & Choi, S. (1998). A note on lead time and distributional assumptions in continuous review
inventory Models. Computers and Operations Research, 25, 1007-1012.

Ouyang, L.Y., Chuang, B.R., & Lin, Y.J. (2005), Periodic review inventory models with controllable
lead time and lost sales rate reduction. Journal of Chin. Ins. Industrial Engineering, 22(5), 355-
368.



C. K. Jaggi et al. / International Journal of Industrial Engineering Computations 5 (2014) 245

Ouyang, L.Y., & Chaung, B.R. (1999). A minimax distribution free procedure for stochastic inventory
models with a random backorder rate. Journal of Operations Research Society of Japan, 42 (3),
342-351.

Ouyang, L.Y., Yeh, N.C., & Wu, K.S. (1996). Mixture inventory model with backorders and lost sales
for variable lead time. Journal of Operations Research Society, 47(6), 829-832.

Pan, C.H., & Hsiao, Y.C. (2001). Inventory model with backorder discounts and variable lead time.
International Journal of System Sciences, 32, 925-929.

Pan, C.H., & Hsiao, Y.C. (2005). Integrated inventory models with controllable lead time and
backorder discount considerations. International Journal of Production Economics, 93, 387-397.

Rao, U.S. (2003). Properties of the periodic review (R, T) inventory control policy for stationary.
Stochastic Demand. M & SOM 5, 37-53.

Silver, E.A., & Peterson, R. (1985). Decision systems for Inventory Management and Production
planning. Wiley, New York

Taylor, B.W. (1996). Introduction to Management Science. Prentice Hall, New Jersey.

Tersine R.J. (1982). Principals of Inventory and Materials Management. North Holland, New York.

Appendix A

Proof of EACW(T,ﬂx,L) is concave in L e (Ll.,Ll._l) for fixed T,7,.

_3 _1
TRyrR(T+L) 2 (S+x)T+L) 2
+ +
OEAC™ (T, 7y L) _ 27, 2
A i \
ST Bz T L_i
( fo x+TﬂoﬁxJ( +1)
- 7[0 2 -
E 1 3 (A1)
hAc(T+L) 2 | (T+D) 2 TP (T+L) 2 .
+ o(T+1) L TeD 2 Thyra T+ ho (A
2 2 27,
_ P ]
Thr2(T+L) 2 (S+myT+L) 2
o?eac” (71 - " - .
T | oxP(4) 0
o T STS >
3 b -3
—( 0 x+Tﬂ0ﬂxJ(T+L) 2
4 70
A =3 3 _5
_nao 2 2 37 T+1) 2
T(T+L) - (T+j) + ﬁoﬁx:( D o <o (A-2)
T,

0
Therefore EAC is concave in L e (Li’Li—l) for fixed (7, 7).
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