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 The aim of this study is to correlate work piece material hardness with surface roughness in 
prediction studies. The proposed model is for prediction of surface roughness of tool steel 
materials of hardness 55 HRC to 62 HRC (±2 HRC). The machining experiments are performed 
under various cutting conditions using work piece of different hardness. The surface roughness of 
these specimens is measured. The result showed that the influence of work piece material 
hardness on surface finish is significant for cutting speed and feed in CNC end milling operation. 
It is also observed that the surface roughness prediction accuracy of Adaptive neuro fuzzy 
inference system using triangular membership function is better than Gaussian, bell shape 
membership function and regression analysis. Surface roughness prediction accuracy with 
material hardness as input parameter is 97.61%. 
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1. Introduction  
 

Machining is one the major operation in manufacturing process in an industry to get finished goods. 
The quality of product is depends on the surface finish. To achieve optimum surface roughness with the 
constraint cost, time and available facility, the variables affecting surface finish need to studied. The 
machining variable speed, feed and depth of cut are the most influential machining parameters in 
milling operation. The other variables such as Work piece material properties, tool wear, vibration, 
cutting fluid properties, are also affecting the surface finish. The machining with end milling process is 
one the most widely used manufacturing process in an industry. The work reported for modelling of 
end milling process is mostly on machining parameters speed, feed and depth cut. It is also observed 
that conventional and advanced techniques and intelligent techniques are used for predicting the surface 
roughness. The adaptive network-based fuzzy inference system (ANFIS) is a successful approach for 
dealing with the nonlinear mapping (Jang et al., 2004).  
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By using a hybrid learning algorithm which combines the gradient method and the least squares 
estimate to identify parameters, the ANFIS can construct an input–output mapping based on both 
human knowledge (in the form of fuzzy if–then rules) and the stipulated input–output data pairs (Jang 
et al., 2004). Therefore, Lo (2003) used the ANFIS with the hybrid learning algorithm to model the 
relationship between the surface roughness and the milling parameters (i.e., spindle speed, feed rate and 
depth of cut) in the end milling process. Down milling process of Alumic-79 using ANFIS to predict 
the effect of surface variables on the surface roughness (Dweiri et al. 2003).The papers are presented 
on modelling of end milling considering speed, feed and depth of cut as an input machining parameter 
and output parameter as surface roughness and tool wear. The work is also reported with and without 
step over ratio and speed feed and depth of cut as an input cutting parameter (Topal, 2009).  
 
An adaptive network-based fuzzy inference system (ANFIS) with the genetic learning algorithm was 
used to predict the work piece surface roughness for the end milling process. The hybrid Taguchi-
genetic learning algorithm (HTGLA) was applied in the ANFIS to determine the most suitable 
membership functions and to simultaneously find the optimal premise and consequent parameters by 
directly minimizing the root-mean-squared-error performance criterion (Ho et al., 2009). A neural-
fuzzy scheme is applied to perform the prediction of flank wear from cutting force signals. In this the 
construction of an ANFIS system that seeks to provide a linguistic model for the estimation of tool 
wear from the knowledge embedded in the neural network was discussed (Z Uros, C Franc & K Edi 
2009). In order to improve the prediction accuracy in end milling process, an improved approach is 
proposed to model surface roughness with adaptive network-based fuzzy inference system (ANFIS) 
and leave-one-out cross-validation (LOO-CV) approach (Dong & Wang, 2010). This approach focuses 
on both architecture and parameter optimization. LOO-CV, which is an effective measure to evaluate 
the generalization capability of mode, is employed to find the most suitable membership function and 
the optimal rule base of ANFIS model for the issue of surface roughness prediction 96.38%. 
Rajasekaran et al. (2011) researched the influence of machining parameters combination so as to obtain 
a good surface finish in turning and to predict the surface roughness values using fuzzy modelling. An 
empirical model using fuzzy logic and regression analysis is studied (Kovac et al., 2012).The values of 
surface roughness predicted by these models are then compared. The results showed that the proposed 
system can significantly increase the accuracy of the product profile when compared with the 
regression analysis. The input variables used to model surface roughness was speed, feed, depth of cut 
and flank width. The results indicate that the fuzzy logic modelling technique can be effectively used 
for the prediction of surface roughness in dry machining. 
 
The modelling work is not reported using material hardness as an input parameter in prediction of 
surface roughness. The published work focus on material with specific hardness and material 
properties, therefore the prediction model for each material will not be identical. In the proposed paper 
hardened tool steel of different hardness is used as an input parameter along with speed, feed and depth 
of cut for experimentation and prediction work. Tool steel material is used in High-duty cutting tools 
(dies and punches), blanking and punching tools, wood working tools, shear blades for cutting light 
gauge material, thread rolling tools, tools for drawing, deep drawing and cold extrusion, pressing tools 
for the ceramics and pharmaceutical industries, cold rolls (working rolls) for multiple roll stands, 
measuring instruments and gauges, small moulds for the plastics industry where excellent wear 
resistance is required. For purpose of the proposed work the range of hardness considered for 
machining of die steel materials within the range of 55 HRC to 62 HRC with ±2 HRC variation. 
 
The hardened work piece material selection for specific application is vital in industry. The main 
objective of using hardened die steel materials is to reduce as much as possible manufacturing time and 
cost  so that surface roughness be at its lower value and with the aim of reducing finishing operation 
such as grinding, electrical discharge machining or manual polishing (Altan et al., 2001). The 
machining technology should not be considered just process with high cutting speed and high feed rate. 
The optimum use of work piece property, machining parameters, cutting tool properties and cutting 
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phenomena results in to good surface roughness (Benardos, 2003). The selection of machining 
parameters, cutting tool properties and cutting phenomena depends on material property such as 
hardness. Therefore optimum selection of hardness of work piece material to achieve the desired 
surface roughness is necessary.  
 
The effect of work piece material hardness along with speed, feed and depth of cut on response variable 
surface roughness is proposed in this paper. The effect of work piece hardness using Böhler K340 
ISODUR die steel material of variable hardness is studied. The proposed prediction model will help 
practitioners in selection optimum work piece material hardness to get desired surface roughness. 

 
2. Experimental setup 
 
The experimental setup was set for the three machining parameter spindle speed (m/min), feed 
(mm/rev) and depth of cut (mm). The machining centre for End milling process was vertical milling 
centre (MAKINO S56) Fanuc Professional – 5 controlled. Tool insert R 0.8 with Al Ti Si N coated 
carbide two flute End mill Cutter Helix angle 45°, 25 mm diameter. The material used for 
experimentation was Böhler K340 ISODUR of hardness 55 HRC, 58HRC, 60HRC and 62 HRC. The 
material chemical composition was C, 1.10 %; Si, 0.90 %; Mn, 0.40%; Cr, 8.30 %; Mo, 2.10 %; V, 
0.50 %. The work piece size 100 mm × 80 mm × 40 mm was used to generate the data of 144 sets. Four 
work pieces of hardness 55 - 62HRC were prepared and used for experimentation. The surface 
roughness (Ra) was measured with surfcom - 130A, ZEISS make surface roughness tester. The surface 
roughness parameter was selected according to UNE-EN-ISO 4287:1999 standard and center line 
average (CLA). The range of input machining parameter for the investigation was, spindle speed (S) 75 
– 150 m/ min, Feed (F) 0.02 – 0.06 (mm/rev), depth of cut (D) 2 - 6 (mm) and work piece material 
hardness (H) 55 – 62 (HRC). The surface roughness data is collected for work piece material one by 
one of four different hardness keeping same values of speed, feed and depth of cut in each setup. 
 
3. Regression  
 
Since multiple regression is used to determine the correlation between a criterion variable and a 
combination of predictor variables, the statistical multiple regression method is applied. It can be used 
to analyze data from any of the major quantitative research designs such as causal-comparative, 
correctional, and experimental. This method is also able to handle interval, ordinal, or categorical data 
and provide estimates both of the magnitude and statistical significance of the relationships between 
variables Therefore, multiple regression analysis will be useful to predict the criterion variable finish 
surface roughness via predictor variables such as feed rate, spindle speed, depth of cut and work piece 
material hardness (M. S. Lou et al.). After the experimentation on hardened tool steel material with 
hardness ranging from 55 – 62 HRC 144 datasets are collected. Out of this data set 108 data sets are 
used for training and randomly selected 36 datasets (1/4 of total datasets) for testing prediction 
accuracy. An empirical expression was established based on the regression analysis for predicting 
surface roughness of dry end milling. 
 
Ra = 0.000185S��.���		F�.���	D��.���		H�.��	 , (1) 
 
where, Ra—surface roughness (mean centerline average) [μm], S—cutting speed in m/min, F— feed 
per mm/rev, D—depth of cut in mm and H—Work piece material hardness HRC. 
 
New empirical model Eq. (1) is developed for prediction of surface roughness using speed, feed, depth 
of cut and work piece hardness. It is observed that the proposed equation establishes relation among 
input variables and response variable. The average deviation observed in measured value and 
regression predicted value is 9.68 % at confidence level of 95%. This regression prediction model 
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values are used for comparison with ANFIS prediction model values to verify the accuracy of 
prediction models. 
 
4. Adaptive Neuro Fuzzy Inference system 
 
Significant deviation is observed in the scatter diagram (Fig. 5) between measured value and 
Regression predicted value of response variable surface roughness for the same set of input parameters. 
Therefore adaptive neuro fuzzy inference system is used to establish the better relation between 
variable input parameters and output parameter. 
 
Adaptive Neuro Fuzzy Inference System (ANFIS) is a fuzzy inference system implemented in the 
frame work of adaptive networks. Using a given input/output data set, the ANFIS method constructs a 
fuzzy inference system (FIS) whose membership function parameters are tuned (adjusted) using a back 
propagation gradient descent and a least-squares type of method. This allows fuzzy systems to learn 
from the data they are modelling. FIS structure is a network-type structure, which maps inputs through 
input membership functions and associated parameters, and then through output membership functions 
and associated parameters to outputs. ANFIS applies two techniques in updating parameters. For 
premise parameters that define membership functions, ANFIS employs gradient descent to fine-tune 
them. For consequent parameters that define the coefficients of each output equations, ANFIS uses the 
least-squares method to identify them. This approach is thus called hybrid learning method since it 
combines the gradient descent method and the least-squares method.  
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Fig.1. Adaptive Neuro-Fuzzy Inference System (Jang, 2004) 

 
ANFIS modelling process starts by obtaining a data set (input–output data pairs) and dividing it into 
training and testing data sets. The training data set is used to find the initial premise parameters for the 
membership functions by equally spacing each of the membership functions. A threshold value for the 
error between the actual and desired output is determined. The consequent parameters are found using 
the least-squares method. Then an error for each data pair is found. If this error is larger than the 
threshold value, update the premise parameters using the gradient decent method. The process is 
terminated when the error becomes less than the threshold value. Then the testing data set is used to 
compare the model with actual system. A lower threshold value is used if the model does not represent 
the system Jang (1993).  
 
The adaptive network in the proposed fuzzy inference system was feed forward type. The membership 
function was Sugeno type triangular shape membership function. There are three input membership 
function for each input and 27 learning rules. The learning weight was set to 1 with linear input / output 
values and for the defuzzification that is to produce crisp output of the consequent part weighted 
average scheme was used. For simplicity, we assume the fuzzy inference system under consideration 
has two inputs x and y and one output	z. For the first order Sugeno fuzzy model a typical rule with two 
fuzzy if-then rules can be expressed as: 
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Rule 1: If (x is	A�) and (y is	B�) then(	z� = 	p�x + 	q�y + 	r�), 
 
Rule 2: If (x is	A�) and (y is	B�) then(	z� = 	p�x +	q�y +	r�), 
 
where x and y are the inputs, A� and B� are the fuzzy sets , z�	(i = 1,2) are the output within the fuzzy 
region specified by the fuzzy rules, p�, q� and r� are the design parameters that are determined during 
the training process. 
 
5. Results and discussion 

 
The experimental data 144 set was collected out of which 108 datasets were utilized as a training data 
and the remaining 36 data sets as a testing data. The fuzzy inference system was trained up to 100 
epochs. To verify the accuracy of prediction other 36 sets were used as a testing data. The training was 
conducted using Sugeno type fuzzy inference system with 27 rule, three membership function of each 
input parameter, hybrid of least square – gradient descent learning algorithm and linear output. The 
membership is categorized in low, medium and high for each input parameter. The analysis of 
experimental data was conducted on Mat Lab 7.6.0 workstation. The data input to the ANFIS 
workbench of Mat lab 7.6.0 was in the form of four columns. The first three columns were treated as 
input and the last column as output data for the training Fuzzy inference system (FIS).  
 
Fig. 2 - 4 show the scatter diagrams of measured values and predicted values of the surface roughness 
of 36 sets of testing data when triangular, Gaussian, bell shape membership functions are used in 
ANFIS. Fig. 2 shows that the predicted values of surface roughness with triangular membership 
function (MF) follow a 450 line very closely as compare to Gaussian (fig. 3) and bell shape 
membership function (fig. 4). The scatter diagram is also found closely follow the measured data (450 
line) with ANFIS triangular membership than regression analysis values (Fig. 5). Predicted values and 
measured values of the surface roughness of 36 sets of testing data after training by ANFIS with 
triangular, Gaussian and bell shape membership functions are shown in fig.6. Within experimental 
testing data set and fuzzy prediction with triangular membership function data very little deviation is 
observed. The response variable surface roughness exhibits better linearity with respect to input 
parameters, therefore the prediction accuracy of ANFIS with the triangular membership function is 
higher than that when Gaussian and bell shape membership function is used. 
 
This is also evident from results shown Table 1 in which ANFIS triangular MF, Ra is compared with 
regression analysis Ra value. Therefore the prediction accuracy of ANFIS with triangular MF is higher 
as compare to Gaussian, Bell shape and regression prediction models. It is also observed that predicted 
surface roughness accuracy is 97.61% with triangular membership function with average deviation of 
2.39%. Where as in regression analysis the average deviation observed is 9.68 % at 95% confidence 
level. 
 
Fig. 7 shows the effect of variable hardness (HRC) and cutting speed (Rev/min.) on surface roughness 
Ra (µm).  The plot shows the effect of hardness of material at same cutting parameters. That is at 
cutting speed (S) 75 m/min, feed (F) 0.02 mm/rev, depth of cut (D) 2 mm, and variable hardness 55 – 
62 HRC surface roughness value increases from 0.23 µm to 0.34 µm. It is observed that if the cutting 
speed increased from 75 to 150, the deviation with respect to surface roughness values increases with 
increase in hardness. At hardness of 59 HRC the surface roughness value 0.3 µm is observed identical 
to variable cutting conditions. This reveals the effect of work piece material hardness in surface 
roughness prediction that high speed and high work piece material not necessarily achieve good quality 
of surface finish. Good quality of surface roughness can be achieved at lower speed and lower work 
piece material hardness. 
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Table 1   
Experimental, Predicted surface roughness and percentage error 

No 

Input Parameters Exp. Predicted Surface Roughness Ra and % Error 

Speed 
m/ 

min 

Feed 
mm/ 
rev 

Depth of cut 
mm 

Hardness 
HRC 

Ra Regression ANFIS,Triang MF ANFIS,Bellshape MF ANFISGuass MF 

µm Ra µm % Error Ra µm % Error Ra µm % Error Ra µm % Error 

1 75 0.04 2 55 1.10 0.87 21.17 1.03 6.36 1.41 28.18 1.150 4.55 

2 75 0.06 4 55 1.79 1.62 9.56 1.68 6.15 2.00 11.73 1.810 1.12 

3 100 0.02 6 55 0.20 0.22 10.11 0.20 1.50 0.19 7.50 0.197 1.50 

4 100 0.06 2 55 1.82 1.67 8.05 1.83 0.55 1.68 7.69 1.790 1.65 

5 125 0.02 4 55 0.18 0.22 23.67 0.18 2.22 0.19 3.89 0.179 0.56 

6 125 0.04 6 55 0.75 0.71 5.75 0.74 1.73 0.19 75.20 0.773 3.07 

7 150 0.02 2 55 0.16 0.23 46.22 0.16 0.63 0.04 74.50 0.144 10.00 

8 150 0.04 4 55 0.75 0.72 4.12 0.76 1.73 0.72 3.47 0.742 1.07 

9 150 0.06 6 55 1.18 1.39 17.54 1.19 0.85 0.51 57.20 1.010 14.41 

10 75 0.04 2 58 1.22 1.05 13.54 1.15 5.74 1.33 9.02 1.270 4.10 

11 75 0.06 4 58 1.97 1.97 0.03 1.86 5.58 1.91 3.05 1.970 0.00 

12 100 0.02 6 58 0.28 0.27 4.32 0.28 0.71 0.29 2.50 0.277 1.07 

13 100 0.06 2 58 2.06 2.04 1.17 2.07 0.49 1.99 3.40 2.030 1.46 

14 125 0.02 4 58 0.28 0.27 3.28 0.28 1.43 0.27 4.64 0.278 0.71 

15 125 0.04 6 58 0.95 0.86 9.48 0.94 1.26 0.98 3.16 0.973 2.42 

16 150 0.02 2 58 0.28 0.28 1.64 0.27 3.75 0.26 8.93 0.265 5.36 

17 150 0.04 4 58 0.99 0.87 11.64 0.98 0.81 1.09 10.10 0.993 0.30 

18 150 0.06 6 58 1.54 1.69 9.56 1.52 1.30 1.12 27.27 1.370 11.04 

19 75 0.04 2 60 1.28 1.20 6.61 1.21 5.47 1.48 15.63 1.330 3.91 

20 75 0.06 4 60 2.06 2.23 8.34 1.95 5.34 2.09 1.46 2.070 0.49 

21 100 0.02 6 60 0.32 0.30 5.12 0.32 0.31 0.32 0.94 0.316 1.25 

22 100 0.06 2 60 2.18 2.31 5.83 2.18 0.00 2.08 4.59 2.150 1.38 

23 125 0.02 4 60 0.33 0.31 7.00 0.33 1.21 0.32 1.82 0.328 0.61 

24 125 0.04 6 60 1.05 0.97 7.19 1.04 0.95 1.10 4.76 1.080 2.86 

25 150 0.02 2 60 0.34 0.32 5.14 0.33 4.12 0.27 20.59 0.322 5.29 

26 150 0.04 4 60 1.11 0.99 10.69 1.09 1.80 1.19 7.21 1.110 0.00 

27 150 0.06 6 60 1.72 1.91 11.17 1.68 2.33 1.18 31.40 1.530 11.05 

28 75 0.04 2 62 1.34 1.35 0.68 1.27 5.22 1.76 31.34 1.400 4.48 

29 75 0.06 4 62 2.15 2.52 17.16 2.04 5.12 2.40 11.63 2.160 0.47 

30 100 0.02 6 62 0.36 0.34 4.82 0.36 0.28 0.34 6.94 0.355 1.39 

31 100 0.06 2 62 2.30 2.60 13.21 2.30 0.00 2.14 6.96 2.260 1.74 

32 125 0.02 4 62 0.38 0.35 8.85 0.38 0.79 0.39 2.89 0.378 0.53 

33 125 0.04 6 62 1.15 1.10 4.36 1.14 0.87 1.24 7.83 1.180 2.61 

34 150 0.02 2 62 0.40 0.36 9.00 0.38 4.25 0.23 43.25 0.378 5.50 

35 150 0.04 4 62 1.23 1.12 9.03 1.20 2.44 1.26 2.44 1.230 0.00 

36 150 0.06 6 62 1.90 2.16 13.58 1.85 2.63 1.08 43.16 1.690 11.05 

Average Error 9.68 
 

2.39 
 

16.28 
 

3.30 

 
 
 

  
Fig. 2. Scatter diagram of measured value and 
fuzzy predicted (triangular membership function) 
surface roughness value 

Fig. 3.Scatter diagram of measured value and 
fuzzy predicted (Gaussian membership function) 
surface roughness value 
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Fig. 4. Scatter diagram of measured value and 
fuzzy predicted (Bell shape membership function) 
surface roughness value 
 

Fig. 5.Scatter diagram of Experimental value and 
Regression predicted surface roughness value  
 

  
Fig. 6. Correlation between Fuzzy predictions with 
triangular, bell shape, gauss membership function 
and experimental value of surface roughness 

Fig. 7.Measured surface roughness Ra, at variable 
cutting speed and material hardness 

 
6. Conclusions 
 
The small range work piece material (Böhler K340) of hardness 55 HRC to 62 HRC has been 
considered in proposed work, since die steel manufacturing industries prefer to keep hardness within 
this range. An ANFIS is used to analyse the effect of milling parameters speed, feed, depth of cut and 
work piece hardness in end milling process. Out of 144 data sets 36 sets of data are used as a testing 
data. The measured values of surface roughness are compared with ANFIS predicted values. Within 
ANFIS three membership functions: triangular, Gaussian and bell shape membership function are used 
for prediction of surface roughness. The surface roughness prediction accuracy by ANFIS with 
triangular membership function is 97.61%, with the error of 2.39%. The average error by ANFIS using 
gaussian and bell shape membership function is 3.3% and 16.28% respectively. 
 
From the analysis of regression, R2 is found to be 0.971.Therefore the experimental measurements (Ra 
values) are adequate to construct the prediction model for surface roughness. The ANFIS using 
“Sugeno” prediction model with triangular membership function also outperforms the regression 
analysis model in terms of prediction accuracy.  ANFIS prediction model results using triangular 
membership function are observed better with speed, feed, depth cut and hardness as another input 
parameter than earlier ANFIS prediction model with speed, feed and depth of cut as input parameters 
(Lo, 2003) in surface roughness prediction studies. The proposed methodology in the paper for 
modelling machining process using hardness of work piece material as input variable is a new approach 
in surface roughness modelling research. The surface finish of desired quality in less time and cost can 
also be achieved by proper selection work piece material hardness.  
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