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 Job shop has been considered as one of the most challenging scheduling problems and there are 
literally tremendous efforts on reducing the complexity of solution procedure for solving job shop 
problem. This paper presents a heuristic method to minimize makespan for different jobs in a job 
shop scheduling. The proposed model is based on a constructive procedure to obtain good quality 
schedules, very quickly. The performance of the proposed model of this paper is examined on 
standard benchmarks from the literature in order to evaluate its performance. Computational 
results show that, despite its simplicity, the proposed heuristic is computationally efficient and 
practical approach for the problem. 
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1. Introduction  
 

The job shop scheduling problem (JSP) is one of the most popular scheduling problems in the world 
(Jain & Meeran, 1998). It has attracted many researchers due to its wide applicability and inherent 
difficulty (Carlier & Pinson, 1989; Kolonko, 1999; Nowicki & Smutnicki, 1996; Yamada & Nakano, 
1996; Ho et al., 2007). In the n×m classical JSP, set of n jobs must be processed on a group of m 
machines, where the processing of each job i consists of Ji operations performed on these machines. 
Each job has a pre-specified processing order on the machines, which is fixed and known in advance, 
i.e., each operation needs to be executed on a given machine. Moreover, the processing times of all 
operations are also fixed and known in advance. Each machine is continuously available from time zero 
and can process at most one operation at a time. The operations are processed on all machines without 
interruption (Baker, 1974; Pinedo, 2002). A common objective function is to minimize the makespan, 
which is the time needed to complete all the jobs. 
 
In this paper, we present a heuristic method based on a constructive procedure to solve the JSP with the 
objective of minimizing makespan (section 3). The primary objective is to produce reasonable and 
applicable schedules, very quickly. It can also be used to improve the quality of the initial feasible 
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solution of metaheuristics applied to solve the problem, since the choice of a good initial solution is an 
important aspect of the performance of the algorithms in terms of computation time and solution 
quality (Dell'Amico & Trubian, 1993; Matsuo et al., 1988; Van Laarhoven et al., 1992). In order to 
evaluate the performance of the proposed heuristic, The proposed mode has examined on several well-
known benchmarks and the results of the computational experiments are presented (section 4). The 
results show that our novel method can obtain good solutions in very short time. Concluding remarks 
are given in the last section. 
 

Other assumptions considered in this paper are as follows: 
 
(1) Jobs are independent of each other. 
(2) Machines are independent of each other. 
(3) Setup and transportation times are negligible. 
(4) All jobs have equal priorities. 
(5) All jobs are available at time zero. 
 
The notations used throughout the paper are as follows: 
 
n: number of jobs, 
m: number of machines, 
i,z: index of jobs; i,z=1,…,n,  
j: index of operations;  j=1,…, m,  
k,y: index of machines; k,y=1,…,m, 
tij: processing time of operation j of job i, 
t′iy: processing time of job i on machine y, that is the processing time of an operation of job i 
which is processed on machine y,  
cij: completion time of operation j of job i. 
 

 
2. Literature review 

 
The JSP has been proven to be NP-hard (Garey et al., 1976). Therefore, only small size instances of the 
JSP can be solved optimally with good computational time using exact solution methods (Carlier & 
Pinson, 1989; Lenstra, 1976). When the problem size increases, the computational time of exact 
algorithms grows exponentially. Heuristic algorithms have generally acceptable time and memory 
requirements to obtain a near-optimal or optimal solution. During the past few decades, most 
researches on the JSP have been concentrated on developing heuristic algorithms (Jain & Meeran, 
1998; Blazewicz et al., 1996; Vaessens et al., 1996).  
 
Balas and Vazacopoulos (1998) developed a guided local search algorithm rooted in a specialized 
neighborhood tree for the JSP, which is considered as one of the most efficient neighborhood structures 
and algorithms for this problem. Pezzella and Merelli (2000) presented a heuristic algorithm based on a 
combination of tabu search (TS) method and shifting bottleneck (SB) procedure to solve the JSP. The 
SB was used to generate a good initial feasible solution, and a local re-optimization, based on the same 
procedure, was used to improve each current solution determined by the TS. Huang and Liao (2008) 
presented a hybrid approach combining ant colony optimization (ACO) algorithm with a TS algorithm 
to solve the JSP. In this hybrid algorithm, ACO was used to provide an appropriate initial schedule, and 
TS was applied to improve the solution quality. The proposed ACO algorithm employed a new 
decomposition method inspired by the SB procedure, and a mechanism of occasional re-optimizations 
of partial schedules.  
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Zhang et al. (2008) presented a hybrid TS-SA algorithm in which simulated annealing (SA) was used to 
find the promising elite solutions inside big valley (BV) and TS intensified search around these 
solutions. This hybridization can reduce the influence of the initial solution in the TS algorithm. Rego 
and Duarte (2009) presented a heuristic algorithm based on a filter-and-fan (F&F) procedure for the 
JSP, which uses the SB procedure as a constructive method to generate a starting solution and to 
enhance the best schedules produced and a dynamic and adaptive neighborhood search procedure. The 
F&F approach is a local search procedure that generates compound moves by an abbreviated form of 
tree search. Fıglalı et al. (2009) conducted a statistical experiment on the JSP. They presented an ACO-
based software system to solve the problem and the parameters of this system were investigated on 
various sizes and randomly generated job shop scheduling problems by using design of experiments. 
The effects and interactions of the parameters were interpreted with the outputs of the experiments.  
 
Luh and Chueh (2009) presented a multi-modal immune algorithm to solve the JSP emulating the 
features of a biological immune system. Operation-based antibody/schedule representation was adopted 
to guarantee feasible schedules. The exploration and exploitation of solutions within a search space 
were realized through the procedures, which resemble antibody molecule structure, antibody–antigen 
relationships in terms of specificity, clonal proliferation, germinal center, and the memory 
characteristics of adaptive immune responses.  
 
Lin et al. (2010) presented a hybrid algorithm called MPSO consisting of particle swarm optimization 
(PSO), a multiple-type individual enhancement (MIE) scheme based on SA technique, and random-key 
(RK) encoding scheme for solving the JSP. The MPSO adopts continuous space as the search space 
called RK space and uses the RK encoding scheme to transform a position in RK continuous space to a 
discrete space, since the search space in the JSP is a discrete space. In RK space, a position of a particle 
composed of n×m real numbers can represent the permutation of all operations of all jobs by the 
encoding scheme. Asadzadeh and Zamanifar (2010) proposed an agent-based parallel genetic algorithm 
for the JSP. The agent-based parallel approach was used to parallelize the genetic algorithm and to 
accelerate the creation of the initial population of genetic algorithm. Some other recent studies on the 
problem are: (Gao et al., 2011; Kammer et al., 2011; Lochtefeld & Ciarallo, 2011; Mati et al., 2011; 
Sels et al., 2011; Ponsich & Coello, 2013; Zhang et al., 2013). 

 
3. Proposed heuristic approach 

 
In this section, a heuristic method is presented to solve the problem. This approach is motivated by the 
idea of developing a constructive heuristic, which considers simultaneously many factors influencing 
the solution quality and intelligently balances their effects, in the process of schedule generation, and 
the observation that it could lead to good results in some preliminary computational experiments on a 
wide range of complicated scheduling problems. This algorithm has a simple structure, is easy to 
implement, and requires very little computational effort; which makes it preferable over other more 
complex and time-consuming approaches, even if its results for benchmark instances are so weakly 
dominated the lower bounds in the literature. Some notations that will be used in the algorithm are 
defined as follows: 

sji: total processing time of job i (i.e.,, sji =


m

j
ijt

1

), 

sky: total processing time on machine y which is calculated as follows: sky=



n

i
iyt

1

, 

M: a large number. 
An outline of the proposed heuristic algorithm is given in Fig. 1. 
 
 



  

       

276

 

 
until  all operations of all jobs are scheduled, repeat  
{ 

 Find i, j (such that: 1. j=1 or (j-1)th operation of job i is already  scheduled, and 2. jth operation of 
job i is unscheduled) that minimizes TC. 

 
 Schedule jth operation of job i on the last position of current partial sequence on machine k (the 

machine capable of processing operation j of job i). 
} 

 

 

Fig. 1. General outline of the proposed heuristic algorithm 

 
The pseudocode of the proposed heuristic is shown in Fig. 2. In this algorithm, each unscheduled 
operation (i, j) (operation j of job i) to be scheduled on machine y is evaluated by the following 
criterion, and the unscheduled operation with minimum TC is selected for scheduling. 

TC =


6

1

..
r

rrr Cxw   

such that,  
 

C1 = max (Cmaxy, ci,j-1 )+ tij ,C2 = max (0,( ci,j-1 -Cmaxy)), C3 = max (0,(Cmaxy- ci,j-1 )), C4 = tij 
C5 = sky, C6 = sji 
 

TC is weighted sum of some criteria which are established based on the factors affecting the objective 
function value. Minimization of TC in the process of schedule generation leads to improvement in 
solution quality. wr (r=1,2,…,6)  are constants and xr (r=1,2,…,6) are integer variables used to increase 
the flexibility and effectiveness of criterion TC and have a significant impact on the performance of the 
algorithm. The constant weights (wr) are preliminary estimated weights assigned to criteria according 
to their importance, and the coefficients xr are variables bounded in a given range and used to refine the 
TC. Cmaxy is the maximum completion time across all the operations scheduled on machine y; that is, 
Cmaxy is equal to the completion time of the operation situated just before operation j of job i on 
machine y. C1, C2 and C3 are applied to decrease Cmaxy, idle times, and flowtime of jobs, respectively; 
clearly, all these three objectives affect the main objective function, i.e. Cmax. For assigning operations 
to a machine, their processing time are also taken into account by C4. According to C5, the jobs with 
larger sji, are scheduled sooner. C6 is used for taking into account the total processing time of machines. 
 
Other notations used in the pseudocode of the proposed heuristic are as follows: 

 

TC*: denotes the best value of TC. After scheduling each operation, TC* is reset to M. 
L_xr (r=1,2,…,6): lower limit of xr. 
U_xr (r=1,2,…,6): upper limit of xr. 

 

As it can be seen in the pseudocode of the heuristic, the algorithm first sorts the jobs in decreasing 
order of their sji and then uses this order for evaluating their operations. Therefore, if two unscheduled 
operations belonging to two different jobs have the same value of TC, then according to this sorting of 
the jobs, the operation of job with greater sji is selected for scheduling sooner than the other operation. 
This sorting may lead to better solutions. xr

*(r=1,2,…,6) are the best values of variables xr (i.e. the 
values corresponding to the best solutions). Indeed, for various values of xr (r=1,2,…,6), the algorithm 
of Fig. 1 is run and a complete schedule is generated. Among all these schedules, the one with 
minimum makespan is reported as the final solution. The values of variables xr for this best solution are 
also reported and denoted by xr

* (see Table 2). As mentioned earlier, the evaluation of the operations 
for scheduling them is done using the criterion TC, i.e. the unscheduled operation with minimum TC is 
selected for scheduling. 
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Initialization: 
 Sort the jobs in increasing order of their sji and call the resulting set: i_sort. Let i_sortz be 

zth job of the list i_sort. 
 

Constructive Algorithm: 
for x1:=L_x1 to U_x1 do 
for x2:=L_x2 to U_x2 do 

 
for x6:=L_x6 to U_x6 do 
{ 
    % Beginning of a schedule generation 

 

until  all operations of all jobs are scheduled, repeat the following steps: 
 { 

Set TC*:=M 
 

for j:= 1 to m do 
{ 

for i’:=1 to n do 
{ 

Set i:= i_sort(n-i’+1), 
 

if (  1. j=1 or (j-1)th operation of job i is already  scheduled, and  
2. jth operation of job i is unscheduled) then 

    { 

     Set TC:=


6

1r

rrr C.x.w  

     if TC<TC* then 
     { 
      Set TC*:= TC 
      Set z:=i 

Set j’:=j 
     } 

} 
} 

} 
 

if TC*<M then schedule j’th operation of job z on the last position of the current 
partial sequence on machine k (i.e. the machine capable of processing j’th operation of 
job z) to finish at time czj’. 

 } 
 
    % End of a schedule generation 
 

If the objective value of the obtained sequence (Cmax) is less than the best objective value 
obtained so far (Cmax*), then set Cmax*:=Cmax and xr

*=xr (r=1,2,…, 6) corresponding to Cmax*. 
} 

 

 

Fig. 2. Pseudocode of the proposed heuristic method 
 

4. Computational results 
 

This section describes the computational experiments conducted in order to evaluate the performance 
of the proposed heuristic method. First, some preliminary experiments have been conducted for the 
parameter settings. Regarding the test on various values for the parameters of the algorithm and 
considering the computational results, we use the settings of Table 1 for benchmarking the presented 
algorithm. 
 
Table 1  
Parameter settings for the heuristic 

Parameter Value Parameter Value Parameter Value 
w1 2 L_x1 1 U_x1 4 
w2 2 L_x2 0 U_x2 3 
w3 1 L_x3 −3 U_x3 0 
w4 1 L_x4 −1 U_x4 0 
w5 1 L_x5 −2 U_x5 0 
w6 1 L_x6 −1 U_x6 0 
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Table 2   
Computational results for benchmark instances 

Name 

Size 

BKS PaGA RPD 

Heuristic 

n m Cmax Time(s) x1 x2 x3 x4 x5 x6 RPD 

LA01  10 5 666 666 0 694 0.09 1 0 -2 0 -2 -1 4.204 
LA02  10 5 655 655 0 697 0.09 3 0 -1 0 -2 -1 6.412 
LA03  10 5 597 617 3.35 640 0.09 3 1 0 -1 -2 -1 7.203 
LA04  10 5 590 607 2.881 605 0.09 3 0 -3 -1 -2 -1 2.542 
LA05  10 5 593 593 0 593 0.00 2 0 -3 -1 -2 -1 0 
LA06  15 5 926 926 0 926 0.00 2 0 -3 -1 -2 -1 0 
LA07  15 5 890 890 0 897 0.20 1 2 0 -1 -1 -1 0.787 
LA08  15 5 863 863 0 869 0.20 2 3 -1 0 -1 -1 0.695 
LA09  15 5 951 951 0 951 0.02 2 0 -3 -1 -2 -1 0 
LA10  15 5 958 958 0 958 0.00 1 0 -3 -1 -2 -1 0 
LA11  20 5 1222 1222 0 1222 0.02 1 0 -3 -1 -2 -1 0 
LA12  20 5 1039 1039 0 1039 0.02 3 0 -3 -1 -2 -1 0 
LA13  20 5 1150 1150 0 1150 0.02 1 0 -3 -1 -2 -1 0 
LA14  20 5 1292 1292 0 1292 0.00 1 0 -3 -1 -2 -1 0 
LA15  20 5 1207 1207 0 1266 0.34 2 3 0 -1 -2 -1 4.888 
LA16  10 10 945 994 5.185 1027 0.27 4 3 -2 0 0 -1 8.677 
LA17  10 10 784 793 1.148 822 0.27 2 2 0 -1 0 -1 4.847 
LA18  10 10 848 860 1.415 871 0.27 4 2 0 -1 -2 -1 2.712 
LA19  10 10 842 873 3.682 883 0.27 3 2 0 -1 0 -1 4.869 
LA20  10 10 902 912 1.109 953 0.27 4 3 -2 -1 -1 -1 5.654 
LA21  15 10 1046 1146 9.56 1150 0.59 2 2 0 0 0 -1 9.943 
LA22  15 10 927 1007 8.63 999 0.59 3 2 -1 0 -2 -1 7.767 
LA23  15 10 1032 1033 0.097 1077 0.61 4 1 -2 -1 -2 0 4.36 
LA24  15 10 935 1012 8.235 1023 0.61 4 2 -1 0 -1 -1 9.412 
LA25  15 10 977 1067 9.212 1108 0.59 2 1 -1 -1 -1 -1 13.41 
LA26  20 10 1218 1323 8.621 1312 1.03 4 1 -3 -1 -2 -1 7.718 
LA27  20 10 1235 1359 10.04 1378 1.03 3 0 -1 -1 -2 -1 11.58 
LA28  20 10 1216 1369 12.58 1350 1.03 3 2 -3 -1 -1 -1 11.02 
LA29  20 10 1152 1322 14.76 1348 1.02 2 3 -1 0 -1 -1 17.01 
LA30  20 10 1355 1437 6.052 1473 1.05 4 2 -2 -1 -2 -1 8.708 
LA31  30 10 1784 1844 3.363 1844 2.28 1 0 -2 0 0 0 3.363 
LA32  30 10 1850 1907 3.081 1881 2.30 1 2 -3 -1 -1 -1 1.676 
FT06 6 6 55 55 0 55 0.02 2 0 -3 -1 -1 -1 0 
FT10 10 10 930 997 7.204 1028 0.27 3 3 0 0 0 -1 10.54 
FT20 20 5 1165 1196 2.661 1244 0.34 4 2 0 0 -2 -1 6.781 

ORB01  10 10 1059 1149 8.499 1160 0.27 1 0 0 -1 0 0 9.537 
ORB02  10 10 888 929 4.617 929 0.27 2 2 0 -1 -1 -1 4.617 
ORB03  10 10 1005 1129 12.34 1106 0.28 1 0 0 -1 -1 0 10.05 
ORB04  10 10 1005 1062 5.672 1062 0.28 3 3 -1 -1 0 -1 5.672 
ORB05  10 10 887 936 5.524 977 0.27 3 2 -1 0 -1 -1 10.15 
ORB06  10 10 1010 1060 4.95 1102 0.27 3 2 0 -1 -2 0 9.109 
ORB07  10 10 397 416 4.786 442 0.27 2 1 -1 0 -1 -1 11.34 
ORB08  10 10 899 1010 12.35 991 0.28 3 0 0 -1 -2 -1 10.23 
ORB09  10 10 934 994 6.424 1051 0.28 2 1 -3 0 -2 -1 12.53 

Average 4.273 0.42 2.432 1.25 -1.45 -0.68 -1.34 -0.89 5.909 

 
The algorithm is coded in C language and run on a Pentium IV, 2.2 GHz and 2.0 GB RAM PC. Three 
sets of benchmark problem instances are considered: 32 instances denoted as (LA01−LA32) presented 
by Lawrence (1984), 3 instances (FT6, FT10, FT20) of Fisher and Thompson (1963), and 9 instances 
(ORB01−ORB9) of Applegate and Cook (1991). All the instances can be downloaded from OR-
Library web site (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). Table 2 shows a comparison of the 
makespan results of our algorithm with those of the recently published algorithm: the parallel agent-
based genetic algorithm (PaGA) proposed by Asadzadeh and Zamanifar (2010). The first four columns 
provide the problem name, its size in terms of the number of jobs (n) and machines (m), and the best 
known solution (BKS) for each instance. The results obtained by proposed algorithm are shown in the 
last nine columns. Cmax and Time(s) stand for the makespan and the computational time (in seconds), 
respectively. The best values of variables xr (i.e. xr

*), r=1,2,…,6; are also reported in Table 2. Average 
values of x3, x4, x5 and x6 are negative, that means they have adverse effect on Cmax. RPD is the relative 
percentage deviation to BKS and calculated as follows: 

100
a lgC max BKS

RPD
BKS


  , 

where Cmaxalg is the makespan obtained by the algorithm. PaGA and our algorithm have average RPD 
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values of 4.27 and 5.91, respectively. Herein, the heuristic is statistically compared with PaGA. A one-
way analysis of variance (ANOVA) (Montgomery, 2000) is performed to test the null hypothesis that 
the means of the two methods are equal. The results of this ANOVA are presented in Table 3. As can 
be seen, the difference between the methods is not meaningful at a significance level of 5%. However, 
the heuristic is very fast, and needs less than 0.5 sec. on average for all instances. 
 

Table 3   
Results of one-way ANOVA for the methods: PaGA and proposed heuristic 

Source DF SS MS F P 
Factor 1 58.9 58.9 3.01 0.086 
Error 86 1683.9 19.6   
Total 87 1742.8    

 
5. Conclusion 
 
This paper has investigated the job shop scheduling problem with the objective of minimizing the 
makespan. The main purpose was to produce reasonable schedules very quickly. A simple and easily 
extendable heuristic based on a constructive procedure has been presented. The algorithm has beed 
examined on benchmark instances from the literature in order to evaluate its performance. The 
computational results have shown that even the relatively straightforward implementation of the 
approach as presented here, could yield good quality solutions with very little computational effort. 
Since the proposed method is a heuristic, its results cannot be compared in a meaningful way with 
those of the methods evaluated as they are metaheuristic based algorithms. However, the computational 
times show the interest of the heuristic, since in a fraction of a second on average, it produces very 
good solutions. Although the solutions produced by this simple heuristic are weakly dominated the 
solutions of the metaheuristic methods evaluated, the procedure is useful in applications that deal with 
real time systems and that involve the generation of initial schedules for local search and metaheuristic 
algorithms. Further research needs to be conducted in applying other criteria in the TC in order to 
improve the solution quality and to adapt the approach to the flexible job shop scheduling problem. 
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