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 The problem of generating a train schedule for a single-track railway system is addressed in this 
paper. A three stage scheduling is proposed to reduce the total train tardiness. We derived an 
appropriate job-shop scheduling algorithm called DR-algorithm. In the first stage, by determining 
appropriate weights of the dispatching rules, a pre-schedule is constructed. In the second stage, 
on the basis of the pre-schedule, the departure times of the trains are modified to reduce the 
number of conflicts in using railway sections by different trains. In the third stage, a train speed 
control helps the scheduler to change the trains’ speeds in order to reduce the train tardiness and 
to reach other objectives. The factual train schedule is based on the modified train speeds and on 
the modified departure times of the trains. The experimental running of the DR-algorithm on the 
benchmark instances showed this algorithm can solve train scheduling problems in a close to 
optimal way. In particular, the total train tardiness was reduced about 20% due to controlling 
train speeds and the departure times of the trains. 

© 2014 Growing Science Ltd.  All rights reserved 
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1. Introduction  
 

Railway traffic has been essentially increased in the last decades (see Lusby et al., 2011 for a survey). 
The usage of the railroad systems grows for the passenger and freight transportation. Safety and low 
cost of the railway transportation attract people to use trains more, which causes railway authorities to 
make a maximal usage of the existing railways. The train speeds and the number of trains moving on a 
railway system are increasing. As a consequence, a delay of a train arises from time to time. A train 
delay creates a lot of problems for the railway company including dissatisfaction of passengers about 
the quality of services and a financial damage associated with excessive train delays. The railway 
companies are forced to pay penalties to passengers for their delays. To make the usage of a railway 
system more affective, several approaches for solving the train scheduling problems have been 
proposed in the last decade. Zhou and Zhong (2007) introduced a resource-constrained project 
scheduling used for a single-track timetabling problem. Railway segments and stations were considered 
as limited resources. Such a problem is solved by a branch and bound (B&B) algorithm that segment 
and station capacity constraints were used as a lower bound. The authors considered a lower bound for 
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a less train delay. An upper bound was constructed via a beam search heuristic. A B&B algorithm was 
also used for a mixed integer non-linear mathematical programming reported by Kraay et al. (1991) 
with presenting the computational results for a 102 mile stretch of track interlinking 13 sidings with 22 
trains in common. A train pacing problem has been considered, where a speed profile for each train has 
to be determined. Jovanovic and Harker (1991) proposed mixed integer programming, which is similar 
to a flow-shop scheduling problem. Two types of the variables were used in the proposed algorithm. 
The binary variables were used for ordering pairs of trains. The other variables were the continuous 
variables used for selecting the departure times of the trains. The proposed algorithm could solve the 
problem with 24 railway segments and with 100 trains. Szpigel (1973) was the first who identified the 
similarities between a job-shop scheduling problem and a train scheduling problem in the case of a 
single-track railway. The former was solved by Szpigel (1973) using a B&B algorithm, the initial linear 
programming excluding order constraints. Branching was required if the current solution contains trains 
which were in a conflict (i.e., when trains turn out to be on the same railroad section at the same time). 
The objective was to minimize the weighted sum of the train transit times. The computational results 
for 5 single-track sections and 10 trains have been reported.  
 
The same problem was considered by Carey and Lockwood (1995) via binary mixed integer 
programming similarly to that considered by Jovanovic and Harker (1991). Temporal constraints were 
identical to those used by Szpigel (1973). The objective was to minimize the deviation from the ideal 
arrival times and the ideal departure times for all the trains to be scheduled. Mladenovic and 
Cangalovic (2007) used job-shop scheduling problem as a way to solve the train scheduling problem 
where a route was interpreted as follows. The route is a sequence of facilities the train must cross from 
the originating station to the destination. Assuming that the train trips are jobs to be scheduled, which 
require the elements of infrastructure as restricted resources, it was made by the mapping of the initial 
problem into a special case of a job-shop scheduling problem. In order to solve the job-shop scheduling 
problem, a constraint programming approach has been developed. A support to fast finding a good 
schedule was offered by an original separation and a bound-and-search heuristic. To improve the time 
performance, a surrogate objective function was used which had a smaller domain than the actual 
objective function. 
 
There are variety of algorithms to schedule jobs in a job-shop scheduling problem like the shifting 
bottleneck algorithm (Adams et al., 1998) that tries to find the most bottleneck machine in each 
irritation. Operations on that specific machine are scheduled as a single machine problem. The 
procedure is continued for all remaining machines in M or it is stoped when there is no machine with 
lateness for operations. A tabu search algorithm is a local search one used for job-shop scheduling; 
Glover (1989). A tabu search algorithm adopts a local search approach with a ’memory’ implemented 
as a ’tabu-list’ of moves which have been made in the recent history of the search, and which are 
forbidden (tabu) for a certain number of iterations which follow. Simulated annealing is a local search 
meta-heuristic for the optimization problems. Simulated annealing tries to escape local optima by hill-
climbing techniques. At each step, the simulated annealing algorithm changes the current solution by a 
random solution and used for scheduling by Van Laarhoven (1992). Shafia et al. (2010) tried to reduce 
the tardiness of operations (equivalent to trains latecy) by developing a robust job-shop scheduler, 
which has the capability of handling the perturbation that exists among almost all input parameters. The 
aim of developed algorithm was, by small alteration in the input parameters reduces the latency. A 
simulated annealing algorithm has been proposed to find near optimal solutions in a reasonable time. 
Ghoseiri et al. (2004) developed a multi-objective optimization model for the train scheduling problem. 
They considered both single and multiple track railway systems. Their objective is defined as lowering 
the fuel consumption cost and minimizing total passenger time. First, they solved the problem by a 
Pareto algorithm, then they tried to use a multi-objective optimization to tune the results. There are 
some other reports about multi-objective optimization like Naderi-Beni et al. (2012) that tries to reduce 
two objectives of weighted mean tardiness and makespan. This model can be suitable to distinguish 
between passenger trains that tardiness is the main critaria in scheduling and fright trains that the 
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makespan is most important factor. Dorfman and Medanic (2004) used a discrete-event model to 
schedule the traffic on a railway network. They claimed that it was an efficient technique with respect 
to the time needed to travel criteria. Burdett and Kozan (2010) made a relationship between flexible 
job-shop (with parallel machines) and train scheduling. They used a disjunctive graph to model the 
train scheduling problem. Pacciarelli and Pranzo (2001) used an extension of the disjunctive graph 
model. A tabu search algorithm was used to solve multi-track railway scheduling problem. A greedy 
heuristic was proposed by Cai and Goh (1994) for the train scheduling in a single-track railway. There 
is a limitation in their algorithm because they assumed that all trains moved in the same direction must 
have the same speed and terminating siding. 
 
2. Problem setting 
 
The problem of a timetable generation has to be solved at a tactical level of the railway planning 
process; Lusby et al. (2011). In a job-shop approach to train scheduling, trains and railroad sections are 
synonymous with jobs and machines, respectively. So, in the following setting of the optimization 
problem, job-shop terms are given in parenthesis after railway terms (or vice versa). 

Let a set of railroad sections (machines) ,,,{= 21 M }m  and a set of trains (jobs) 

},,,{= 21 nJ    be given before scheduling. For each train Ji  , it is given an ordered set (a route) 

of the railroad sections (machines), which have to be visited by train i . To be more precise, a 

sequence of the job operations on the corresponding machines is given as follows:  

 
).,,,(=

)(2)(
2

1)(
1

iin

iin
i

i
i

ii oooQ
   (1) 

Hereafter, an operation )(ij
ijo  is regarded as the movement of a train Ji   across a railroad section 

,,,{==)( 21  Mij k  }m . Preemption of any operation )(ij
ijo  is not allowed. Like in a classical 

job-shop problem, Tanaev et al. (1994), any machine Mk   can be used to process a job Ji   at 

most once according to the given route (1), i.e., any two different operations )(ir
iro  and )(is

iso , sr  , of 

the same job (train) Ji   have to be processed by the different machines (are movements across the 

different railroad sections). Due to this condition, an operation )(ir
iro  may be identified with the 

corresponding machine Mir k  =)( , which has to process operation )(ir
iro . Let a positive number 

ijp  denote the time required for train Ji   to pass through the railroad section Mij )( . In the other 

words, number ijp  denotes the processing time of operation )(ij
ijo  of the job (train) Ji   processed on 

machine )(ij . 

 
Let a non-negative number ir  denote the earliest departure time of the train (the release time of the job) 

Ji   from the original station in the given route (1). Let a positive number id  denote the official 

arrival time of the train (or due date for the completion time of the job) Ji   to the terminal station in 

the route (1). A non-negative weight iw  is associated with the train (job) Ji   reflecting its 

importance. Let iC  denote the completion time of the job (the arrival time of the train) Ji  . The 

main objective under consideration is to find a train (job) schedule minimizing the following sum 

}{0,max=
1=

iiiii

n

i

dCTtardinessweightedtheofTw   (2) 

for all trains (jobs) Ji  . According to the three-field notations used for machine-scheduling 

problems (see Graham et al., 1979), the above scheduling problem is denoted as iii TwrJ || . The 

minimal expected completion time for each job (train) can be calculated as ij
in

jiin pc  1=
= . Different 
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jobs (trains) may need the same machine (railroad section) at the same time and so they must wait until 

the machine (railroad section) be free, therefore the completion (arrival) time iC  of jobs (trains) may 

be different from (larger than) the minimal expected completion time 
iinc . In train scheduling, we 

consider the due date id  equals to the minimal expected completion time 
iinc , i.e., 

iini cd = . The 

tardiness iT  is calculated as the difference between minimum completion time 
iinc  and the real 

completion time iC  of the trains: 
iinii cCT = . Along with criterion (2), we consider criterion iiCw  

of minimizing the weighted sum of the job completion times  

ii

n

i

Cw
1=

 (3) 

and criterion maxC  of minimizing the makespan 

}.:{max=max
1=

JCC iii

n

i
  (4) 

 

Note that criterion (2) is mainly used for the passenger transportation, while criteria (3) and (4) are 

more important for the freight transportation. For a railway company, all three problems iii TwrJ || , 

iii CwrJ || , and max|| CrJ i  are useful to be solved at a tactical level of the railway planning; see 

Lusby et al. (2011). We remind that a regular criterion means to minimize a real-valued function 
),,,( 21 nCCCF   that is non-decreasing for all the arguments nCCC ,,, 21  . It is clear that the above 

three criteria ii

n

iii TwTw  1=
= , ii

n

iii CwCw  1=
= , and }:{max= JCC iimax   are regular. A feasible 

schedule is called semi-active if no operation i

n

i

ij
ij Qo  1=

)(   can be started earlier without increasing 

the starting time of another operation or altering the operation sequence processed on any machine 
from set M . For a regular criterion, at least one optimal schedule is semi-active (see Graham et al., 
1979; or Tanaev, et al., 1994). Priority dispatching rules have been studied in the literature for several 
decades since they are widely used for different scheduling problems like the job-shop scheduling 
problem arising in the real world (see Haupt, 1989; Muth & Thompson, 1963; Panwalkar & Iskander, 
1977; Tanaev et al., 1994). However, the conclusion of many years of research is that no priority 
dispatching rule performs better than the other ones tested for a rather wide class of scheduling 
problems. So, several researchers developed tools to discover effective priority dispatching rules 
automatically (see Abdolzadeh & Rashidi, 2010; Dorndorf & Pesch, 1995; Gabel & Riedmiller, 2007; 
Geiger et al., 2006; Li & Shi, 1994). 
 
In this paper, we develop a weighted mixed priority dispatching rule scheduler (we call it DR-

algorithm) for solving the classical job-shop scheduling problems iii TwrJ || , iii CwrJ || , and 

max|| CrJ i . The rest of the paper is organized as follows. We use a mixed graph to model the job-shop 

scheduling problem (Section 3). A three-stage strategy is proposed to reduce the total job tardiness (the 
total train delay time). In the first stage, the jobs (trains) are pre-scheduled using the DR-algorithm 
(Sections 4 and 5). In the next stage, the tardiness of each job (train) is measured. The algorithm tries to 
modify the departure time of the trains (the due date of the job completion) due to information obtained 
at the pre-scheduling stage in order to decrease the total train (job) tardiness (Subsection 6.1). In the 
third stage, a process controlling policy is used to improve the quality of scheduling and to make the 
final train schedule (Subsection 6.2). An illustrative example is given in Subsection 6.3. Computational 
results are discussed in Section 7. In Section 8, concluding remarks and perspectives are given. In what 
follows, we use the survey (Lusby et al., 2011) and the monographs (Tanaev et al., 1994; Thulasiraman 
& Swamy, 1992) for terminology on train timetabling, scheduling theory and graph theory, 
respectively. 
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3. A mixed graph model for the job-shop scheduling problem 
 

We use a mixed graph ),,(= EAQG  to model the scheduling problems iii TwrJ || , iii CwrJ ||  and 

max|| CrJ i  under consideration. Mixed graph G  allows us to present a problem data and to describe 

algorithms for solving the job-shop problem (Tanaev et al., 1994). In such a mixed graph ),,(= EAQG

, the vertex set }{=
1= i

n

i
QQ   },*{o  is a union of two dummy operations ( o  and *) and the set of all 

operations to be processed on machines M . The dummy operation o  determines the starting time 0=t  
of a schedule to be constructed. The dummy operation * determines the completion time of the last 
operation in a schedule. The positive weight ijp  (the operation processing time) is prescribed to the 

vertex (to the operation) )(ij
ijo  , where Ji  , },{1,2, inj  . Arc set A  of the mixed graph G  

defines the precedence constraints implied by the ordered sets iQ , Ji  , i.e., inclusion ,( 1)(
1



ij

ijo  

Ao ij
ij ))(  holds for each index },{2,3, inj   and for each index },{1,2, ini  . Arc set A  defines 

also the preceding of the dummy operation o  to the first operation 1)(
1

i
io  for each job Ji  , i.e., 

inclusion Aoo ij
i ),( )(
1
  holds for each job (train) Ji  . The non-negative weight ir  (the job release 

time) is prescribed to the arc Aoo i
i ),( 1)(
1
 , where Ji  . Edge set km

k
EE  1=

=  of the mixed graph G  

defines the machine constraints. At any time, each machine Mk   can process at most one operation 

from the set kQ  of all operations Qo k
i 


1 , which have to be processed on the machine Mk  . If both 

operations )(ij
ijo  and )(uv

uvo  belong to the set kQ , i.e., the equalities )(==)( uvij k   hold, then edge 

],[=],[ )()( k
uv

k
ij

uv
uv

ij
ij oooo

  has to belong to the set kE . Thus, each vertex-induced subgraph 

),,(= kkk EQG   of the mixed graph ),,(= EAQG  is a complete graph. Let )(G  denote a set of all 

directed graphs ),,(=  rr AAQG  generated by the mixed graph ),,(= EAQG  via orienting all edges 

E . In the directed graph )(),,(= GAAQG rr  , each edge Eoo uv
uv

ij
ij ],[ )()(   is replaced either by 

arc r
uv

uv
ij

ij Aoo ),( )()(   (i.e., operation )(ij
ijo  has to be processed before operation )(uv

uvo  on machine 

Muvij k  =)(=)( ) or by arc r
ij

ij
uv

uv Aoo ),( )()(   (i.e., operation )(uv
uvo  has to be processed before 

operation )(ij
ijo on machine Muvij k  =)(=)( ). Thus, each schedule existing for the problem 

iii TwrJ ||  determines a circuit-free directed graph belonging to the set )(G ; here ||2|=)(| EG .  
 

A mixed graph approach for solving the problem iii TwrJ ||  is based on the following claims; 

Tanaev et al. (1994). A circuit-free directed graph )(),,(= GAAQG rr   determines a semi-active 

schedule )( rGS  for the problem iii TwrJ ||  and viceversa. There exists a one-to-one correspondence 

between the set of all the semi-active schedules and the set )(G  of all the circuit-free directed graphs 

),,(=  rr AAQG  generated by the mixed graph G  via orienting edges of set E . Using a circuit-free 

directed graph )(GGr  , the corresponding semi-active schedule )( rGS  can be constructed via the 

critical path method in )|(| 2QO  time. Thus, in terms of the mixed graph model ),,(= EAQG , the most 

difficult question while solving the problems iii TwrJ ||  is to choose a circuit-free directed graph 

)(),,(= GAAQG rr   that has a minimal value of the objective function (2) among those in all 

the circuit-free directed graphs )(GGh  . To find an answer to this question is NP-hard problem. The 

circuit-free directed graph )(),,(= GAAQG rr   with the minimal value of the corresponding 

objective function (2) (or the objective function (3) or (4), respectively) is called optimal directed graph 
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for the problem iii TwrJ ||  (for the problem iii CwrJ ||  or the problem max|| CrJ i ). 
 

4. Evaluating of the dispatching rules 
 
To evaluate the efficiency of the different dispatching rules, an optimal scheduler (like a B&B 

algorithm) for the problem max|| CrJ i , is used to solve instances with the restricted sizes mn  in order 

to obtain an exact solution (or an approximate solution) to the problem max|| CrJ i  in a resonable CPU-

time. The information about orientations of the conflict edges is stored in Table 1 (edge 

Eoo ab
ab

rp
rp ],[ )()(   is called conflict if each of its orientation causes increasing of the completion time of 

either operation )(rp
rpo  or operation ))(ab

abo . The last column in Table 1 indicates that the optimal 

decision made by a scheduler to resolve a conflict edge Eoo ab
ab

rp
rp ],[ )()(   in the mixed graph 

),,(= EAQG  while the optimal (or the best constructed) digraph ),,(=  ss AAQG  was obtained. If 

an arc ),( )()( ab
ab

rp
rp oo   with ar <  was added to the digraph )(GGs   to resolve the conflict edge 

Eoo ab
ab

rp
rp ],[ )()(  , then the last column in Table 1 was filled with number 1. On the other hand, if the 

symmetric arc ),( )()( rp
rp

ab
ab oo   was added to the digraph )(GGs  , then the last column in Table 1 was 

filled with number 1 . For each conflict edge ],[ )()( ab
ab

rp
rp oo   treated while branching in a B&B 

algorithm, the characteristics corresponding to the priority dispatching rules },,{1,2,, ztX t   for the 

operations )(rp
rpo  and )(ab

abo  processed on the same machine Mabrp k  =)(=)(  are calculated 

and stored in the corresponding cells of the row in Table 1.  
 
Table 1 
Conflict resolutions in the optimal digraphs )(GGr  )  

Conflict edges 1X  2X    zX  Optimal arcs 

],[ )()( ab
ab

rp
rp oo 

 
1

,abrpx  
2

,abrpx    z
abrpx ,  11 oreither  

            

],[ )()( cd
cd

kl
kl oo   1

,cdklx  2
,cdklx    z

cdklx ,  11 oreither  

            

],[ )()( ef
ef

uv
uv oo   1

,efuvx  2
,efuvx    z

efuvx ,  11 oreither  

 

The characteristic t
abrpx ,  of the conflict edge ],[ )()( ab

ab
rp

rp oo   corresponding to the priority dispatching 

rule tX  is defined as the relative difference of the priorities t
rp  and t

ab  of the operations )(rp
rpo  and 

.)(ab
abo  As a priority dispatching rule tX , let us consider the shortest completion time rule (SCT-rule) 

for operation )(rp
rpo  and operation )(ab

abo  which are connected by the conflict edge Eoo ab
ab

rp
rp ],[ )()(  . 

Let completion times of the operation )(rp
rpo  and operation )(ab

abo  in the directed subgraph ),,( AQ  of 

the mixed graph ),,(= EAQG  be equal to 80 and 60, respectively. One can calculate the value of the 

characteristic t
abrpx ,  as follows: 0.25.=

80

6080
=

},{max
=,



abrp

abrpt
abrpx




 The sign of the value t

abrpx ,  

shows which of the operations )(rp
rpo  or )(ab

abo  has a priority to be processed first on the corresponding 

machine k  with respect to SCT-rule tX . The absolute value of t
abrpx ,  shows how much this 

superiority of the operation with the larger priority is? In particular, the positive sign of the value t
abrpx ,  
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indicates that operation )(ab
abo  has to be processed before operation )(rp

rpo  respecting to SCT-rule. The 

absolute value of 0.25=,
t

abrpx  belonging to the segment 1,1][  shows how much this superiority of the 

operation )(ab
abo  is respecting to the SCT-rule. After generating Table 1, the scheduler calculates 

worthiness of the dispatching rules included in the database by assigning weights to them. The weight 

tw  indicates the efficiency of the priority dispatching rule tX  in optimal scheduling for the problem 

maxi CrJ || . To be more precise, the weight iw  for the dispatching rule is equal to the percentage of 

successful decisions made on the basis of the priority dispatching rule tX . A successful decision 
happens when a dispatching rule implies the same orientation of the conflict edge in the set E  as the 

B&B algorithm made when an optimal directed graph rG  was constructed for the problem max|| CrJ i . 

Therefore, the weight tw  of the priority dispatching rule tX  is defined as follows:  
 

 .
1

=
Tabletoincludededgesconflicttheofnumber

Xtodueedgesconflicttheofnsorientatiosuccessfulofnumber
w

t

t  

 

It should be noted that there are a lot of priority dispatching rules which are used in a variety of 

heuristic algorithms for scheduling jobs JJi   in the job-shop; see Haupt (1989), Muth and Thompson 

(1963), Panwalkar and Iskander (1977) among others. 
 
5. DR-algorithm  
 
To solve the train scheduling problem, we need an algorithm that schedule operations Q  sequentially, 

e.g., operation 1),(
1,



ji

jio  must be considered after operation .)(ij
ijo  This property of the desired algorithm 

will allow us to control a situation for each train in each railroad section. Note that some famous 
scheduling algorithms like a shifting bottleneck one (Adams et al., 1998) need a lot of CPU-time in the 
case when number m  of the machines (railroad sections) is considerably large than number n  of the 

jobs (trains). Moreover, each time it is desirable to know: Is there any train Ji   which is waiting for 

the railroad section Mk   occupied by another train Jj   or not? If such a train j  exists, one can 

reduce a waiting time of the train i  by increasing the speed of the train j  crossing the railroad section 

Mk  . So, despite of the existence of many heuristic algorithms for the job-shop scheduling 

problems, we developed a new sequential algorithm named DR-algorithm to solve the problem 

iii TwrJ || , which is more appropriate for the train scheduling. The DR-algorithm generates a 

sequence of the operations Qo ij
ij )(  processed on different machines of the set M  in the order such 

that they are requested for processing the jobs Ji  . During the first iteration, the DR-algorithm finds 

the first request (i.e., operation ,1)(
,1

i
io ) of a job Ji  . The operation ,1)(

,1
i

io  is compared with all other 

operations processed on the same machine Mi k  =,1)( . In the scheduling process for each conflict 

edge Eoo gh
gh

ij
ij ],[ )()(   of the mixed graph ),,(= EAQG , which was met by the scheduler, the 

characteristic vector ),,,( ,
2

,
1

,
z

ghijghijghij xxx   is calculated. The priority value ghijpv ,  is calculated as 

follows:  

 ).(= ,
1=

,
t

ghijt

z

t
ghij xwpv   

If the priority value ghijpv ,  is positive and gi < , then the arc from vertex )(ij
ijo  to vertex )( gh

gho  is added 

to the resulting digraph rG . If the value ghijpv ,  is negative, then the symmetric ),( )()( ij
ij

gh
gh oo   is added 
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to the digraph rG . For example, at the first iteration of the algorithm, the DR-algorithm compares 

operation ,1)(
,1

i
io  with all operations )( jk

jko  of the other jobs Jj   on the same machine 

Mi d  =1)(  processing operations )( jk
jko , Jj  . If the priority value ghijpv ,  is positive, then an 

arc starting from the vertex 1)(
1

i
io  and ending  to the vertex )( jk

jko  has to be added to the desired digraph

rG . Otherwise, the symmetric arc ),( 1)(
1

)( i
i

jk
jk oo   with ij >  is added to the digraph rG . 

After sequencing operations 1)(
1

i
io  for all jobs Ji  , the DR-algorithm considers operation 2)(

2
i

io  for 

each job Ji  , then operations 3)(
3

i
io  for each job Ji  , and so on until operation 

)( iin

iino


 for each job 

Ji   being considered. 
 

6. Train tardiness reduction via controllable scheduling 
 

A three stage scheduling algorithm was used to reduce the total job tardiness (or delay time of the 
trains). In the first stage, the trains J are pre-scheduled by the DR-algorithm. In the second stage, the 
tardiness of each train is measured and the algorithm tries to modify the departure time of the trains to 
decrease the total tardiness on the basis of information obtained at the pre-scheduling stage. In the third 
stage, the special module is used to improve the quality of the preliminary schedule and to construct the 
final schedule (see Fig 1).  

 
Fig. 1. Three stage scheduling 

 

6.1. Modifying the departure times of the trains 
 

The idea behind modifying a train departure time is that due to changing the departure time td
 of the 

train Jt   by departure time td   belonging to the permitted interval,   td , one can reduce 

the number of conflicts between trains tending to use the same railroad section at the same time. In this 
stage of train scheduling, the tardiness jT  (see Eq. (2)) for each train Jj   is calculated. The average 

tardiness veA  of the n  trains is calculated as 
n

T
A

j

n

j

ve

 1=
=  and set J of all the trains is divided into 

three subsets as follows: 
 

 vej AT < : If tardiness jT  of the train j  is smaller than the average value veA , it shows that the 

other trains of the set J  wait more (in average) for the train j  than train j  waits for other trains 

from the set J . Therefore, if the train j  will start earlier, it may release the railroad sections 

earlier and this could reduce the tardiness of other trains.  

 vej AT > : If tardiness jT  of the train j  is larger than the average value veA , it shows that train 

j  waits for other trains more than other trains wait for the train j . In such a situation, if the train 

j  will departs later, it may have less conflicts with other trains for the railroad sections.  



O. Gholami and Y. N. Sotskov / International Journal of Industrial Engineering Computations 5 (2014) 
 

289  

   vejve ATA : The tardiness of the train j  belongs to the feasible range of the average 

tardiness veA . No change for the departure time ir  is needed. The value   shows the range of the 

tardiness connivance. Finding a proper value for the   value depends on the concrete train 

scheduling problem and so the value of   is defined by the user. 
 

The above procedure is used to modify the start times of the trains (the release times of the jobs) J . 

Maximal possible change   of the departure time (   td ) must be assigned by the user. In our 

computational experiments, the value   was equal to 10%  of veA . 
 

6.2. Train speed control 
 

In the third stage, DR-algorithm reschedules the trains J  on the railroad sections M . After resolving 

conflict edges Eoo ab
ab

rp
rp ],[ )()(  , a speed control module is applied. The speed control module 

compares completion time ijc  of the operation )(ij
ijo  on machine )(= ijd   with the minimal release 

times klr  of other operations )(kl
klo  with Mkl d  =)( . Three situations have to be considered: 

 

 If klij rc  , then there is no a competition between two trains i  and k  to use the railroad section 

)(=)(= klijd  . Therefore, the scheduling process is continued without changing the speed of 

train i .  

 If both inequalities klij rc >  and %>  ijklij prc  hold, then increasing the speed of train i  may 

decrease the tardiness of train k . Therefore, the scheduler increases the speed of train i  by % . 

As a result, train i  will release the railroad section )(=)(= klijd   earlier. Let   be equal to 

10% , then 10%)(=  ijijij ppp .  

 If both inequalities klij rc >  and % ijklij prc  hold, then increasing the speed of the train i  is 

desirable, however this increasing may be no more than % . So, the time used by train i  to cross 

the railroad section Mklij d  =)(=)(  will be decreased by the value klij rc   and so 

)(= klijijij rcpp  .  
 

This procedure allows the scheduler to increase the speed of trains with a feasible %  in order to 
reduce the train tardiness (if any). Of course, there is a limitation on such a speed increase depending 
on the train types, railway, environmental situation, etc. 
 
6.3. Example 
 
The following example allow us to demonstrate the main idea of the proposed scheduling algorithm. 
We assume that three trains J=},,{ 321   have to be scheduled on three railroad sections 

M=},,{ 321  . The operation set km

k
QQ  1=

=  (where 3=m ) includes the following three subsets: 

},,{= 1
3,3

1
2,2

1
1,1

1 oooQ , },,,{= 2
3,1

2
2,3

2
1,2

2 oooQ  and },,{= 3
3,2

3
2,1

3
1,3

3 oooQ  (see Fig 2). The departure (release) 

times for trains (jobs) Ji   are given as 22=1r , 3=2r , and 14=3r . At the first stage, pre-scheduling 

was executed. The total tardiness for all three trains after pre-scheduling is equal to 43 

43)=20230==(
3

1=
 ii

T , the total completion time is equal to 426 426)=147140139=(
3

1=
 ii

C

, and the makespan is equal to 147 147)=47}{139,140,1max=max( 3
1= ii C  (see Fig 3). 
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Fig. 2. Mixed graph ),,(= EAQG  for three trains 

that must pass three railroads sections 

Fig. 3. Directed graph )(GGr   constructed by 

DR-algorithm at the first stage 
 

 

At the second stage, after comparing the train delays with average delay time, the new departure 
(release) times were assigned to the trains Ji   as follows: 15=1r , 10=2r , and 7=3r  (see Fig 4). 

The total tardiness for all trains now is equal to 34 34)=2590==(
3

1=
 ii

T , the total completion 

time is equal to 405 405)=140133132=(
3

1=
 ii

C , the makespan is equal to 140 

140)=40}{132,133,1max=max( 3
1= ii C . 

Fig. 4. The modified departure (release) times 
for trains (jobs) calculated at the second stage 

Fig. 5. Directed graph sG  obtained from the mixed 

graph G  due to rescheduling based on the modified 
train speeds and departure times (in the third stage) 
 

At the third stage, the train speeds are modified (as it is explained in Subsection 6.2), and the jobs 

(trains) J  are rescheduled again via resolving conflict edges Eoo ab
ab

rp
rp ],[ )()(   provided that train 

speeds are modified. By comparing Fig 2 with Fig 5, it can be seen that three processing time are 
changed and the summation of reduction is equal to eleven time unit. As a result due to reducing the 
given processing times ijp  by at most 10%, the total tardiness is reduced to 22 time units 

22)=1390=(
3

1=
 ii

T , the total completion time is reduced to 387 time unites

387)=133126128=(
3

1=
 ii

C , and the makespan is reduced to 133 

133)=33}{128,126,1max=max( 3
1= ii C  time units (see Fig 5).  

 

7. Computational results 
 

DR-algorithm was coded in Borland Delphi. For evaluating the efficiency of the developed algorithm, 
we compared it with the results of the six heuristic dispatching rules, which were also coded in Borland 
Delphi. These heuristic algorithms are based on the following priority dispatching rules: Shortest 
Release Time rule (Algorithm SReT), Shortest Start Time rule (Algorithm SStT), Longest Delay rule 
(Algorithm LDelay), Shortest Completion Time rule (Algorithm SCT), Earliest Due Date rule 
(Algorithm DueDate), and Smallest Number of Remaining Jobs rule (Algorithm SNJR). The DR-

algorithm was compared with these six heuristic algorithms for the makespan criterion maxC  (Table 2), 



O. Gholami and Y. N. Sotskov / International Journal of Industrial Engineering Computations 5 (2014) 
 

291  

for the total tardiness criterion iT (Table 3), and for the total completion time criterion iC (Table 4). 

In the experiments, we used 20 benchmark job-shop instances introduced by Lawrence (1984) (i.e. 
instances la01 – la20) to evaluate the seven developed heuristic algorithms. The minimal possible 
makespans for the instances la01 – la20 are known from Internet and they are given in the last column 
of Table 2. In column 1 of Tables 2 – 4, the names of the benchmark instances are given, in column 2 
the sizes mn  of the problems, in columns 3 - 7 the objective values obtained by the corresponding 
heuristic algorithms. 
 
Table 2 
A comparison of DR-algorithm and heuristic scheduling rules for the makespan criterion 
Job-shop    Size  SReT  SStT  LDelay  SCT  DueDate  SNJR  DR-algorithm  Optimal 
la01  10 × 5 728 1080 1867 803 1135 749 774 666 
la02  10 × 5 908 858 1724 849 1030 924 706 655 
la03  10 × 5 795 1080 1313 794 900 861 690 597 
la04  10 × 5 749 948 1839 833 1254 828 766 590 
la05  10 × 5 819 838 1510 939 782 643 593 593 
la06  15 × 5 1371 1175 2241 1500 1293 1047 926 926 
la07  15 × 5 1243 1153 2017 1114 1393 1037 973 890 
la08  15 × 5 1186 1175 1941 1126 1453 1079 935 863 
la09  15 × 5 1113 1182 2241 1342 1210 1010 951 951 
la10  15 × 5 1094 1197 1935 1610 1392 1074 958 958 
la11  20 × 5 1372 1567 2695 1518 1844 1282 1222 1222 
la12  20 × 5 1313 1364 2136 1732 1859 1231 1039 1039 
la13  20 × 5 1596 1427 2561 1772 2076 1189 1176 1150 
la14  20 × 5 1426 1439 2734 1493 1675 1292 1292 1292 
la15  20 × 5 1687 1816 2718 1776 2337 1569 1294 1207 
la16  10 × 10 1254 1323 3536 1183 1422 1191 1105 945 
la17  10 × 10 962 1396 2597 1086 1151 959 813 784 
la18  10 × 10 1218 1181 3846 1207 1374 1111 976 848 
la19  10 × 10 1167 1094 2983 1204 1335 1087 936 842 
la20  10 × 10 1273 1177 3699 1414 1422 1087 980 902 

 
In Tables 2 – 4, the best objective values obtained by the seven heuristic algorithms are presented in 
boldface. In Table 2, the optimal makespan values obtained by DR-algorithm are underlined. Other six 
heuristic algorithm did not obtain the minimal makespan values.  
    
Table 3 

A comparison of DR-algorithm with six heuristic algorithms based on despatching rules for the criterion iT   

Job-shop  Size SReT SStT LDelay SCT DueDate SNJR DR-algorithm 
la01  10 × 5 3237 3660 9924 3040 7314 3744 3769 
la02  10 × 5 4415 3731 8692 3752 6062 4261 3072 
la03  10 × 5 4070 4708 5937 3146 5588 4681 3860 
la04  10 × 5 3170 4064 9184 3472 8464 4633 4239 
la05  10 × 5 3669 3198 8365 4010 4497 3485 2837 
la06  15 × 5 10750 8805 19252 10010 13454 9769 7778 
la07  15 × 5 10398 9012 16184 7268 14441 9592 8814 
la08  15 × 5 9152 9198 15632 7109 15329 9960 8239 
la09  15 × 5 8520 8771 19043 9802 11526 8910 8274 
la10  15 × 5 8115 9517 16178 10006 13158 9528 8941 
la11  20 × 5 16711 17654 29100 16826 27715 16597 15681 
la12  20 × 5 13778 14943 24532 15652 28209 15363 14234 
la13  20 × 5 17905 14789 31431 17561 32150 16210 16428 
la14  20 × 5 15824 16846 31509 15163 24369 17287 17822 
la15  20 × 5 19486 21594 30930 19305 35743 18764 15132 
la16  10 × 10 4505 5212 18449 3364 7636 5001 4437 
la17  10 × 10 3177 5709 12219 4005 6117 4239 3004 
la18  10 × 10 4088 4511 18410 4290 7496 4531 3839 
la19  10 × 10 4489 3839 13718 3510 7321 4582 3164 
la20  10 × 10 4835 3594 18082 4504 8131 4502 3579 

 
From Table 2, it follows that the DR-algorithm is more effective for the objective of minimizing the 
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makespan ( maxC  criterion) than six heuristic algorithms based on the pure dispatching rules. DR-

algorithm obtained the smaller makespans for all solved instance la01 – la20 with only two exceptions 
(instances la01 and la04). Optimal makespan values were obtained by DR-algorithm for seven treated 

instances. For the total tardiness objective ( iT  criterion) the DR-algorithm has superiority comparing 

to other six heuristic algorithms. The DR-algorithm was eleven times in the first place among ather 
algorithms tested (see Table 3). In Table 4, the DR-algorithm is compared with six heuristic algorithms 

for minimizing the maximal job completion time (criterion iC ). The DR-algorithm is the best one for 

solving thirteen benchmark instances. 
 

Table 4 

A comparison of DR-algorithm and six heuristic algorithms base on dispatching rules for the criterion iC  

Job-shop  Size SReT SStT LDelay SCT DueDate SNJR DR-algorithm 
la01  10 × 5 4760 5183 11447 4563 8837 5267 5292 
la02  10 × 5 5776 5092 10053 5113 7423 5622 4433 
la03  10 × 5 5737 6375 7604 4813 7255 6348 5527 
la04  10 × 5 4643 5537 10657 4945 9937 6106 5712 
la05  10 × 5 5158 4686 9854 5499 5986 3485 4974 
la06  15 × 5 13174 11229 21676 12434 15878 12193 10202 
la07  15 × 5 12721 11335 18507 9591 16764 11915 11137 
la08  15 × 5 11707 11753 18187 9664 17884 12515 10794 
la09  15 × 5 10963 11214 21486 12245 13969 11353 10717 
la10  15 × 5 10413 11815 18476 12304 13158 11826 11239 
la11  20 × 5 19994 20973 32383 20104 30998 19880 18964 
la12  20 × 5 16476 17641 27230 18350 30907 18061 16932 
la13  20 × 5 21547 18431 35073 21203 35792 19852 19070 
la14  20 × 5 19094 20116 34779 18433 27639 20557 21092 
la15  20 × 5 23069 25177 34513 22888 39326 22347 18715 
la16  10 × 10 8526 9233 22470 7358 11657 9022 8458 
la17  10 × 10 7015 9547 16057 7843 9955 8077 6842 
la18  10 × 10 8310 8733 23632 8512 11718 8753 8061 
la19  10 × 10 8751 8101 17980 7772 11583 8844 7426 
la20  10 × 10 9352 8111 22599 9021 12648 9019 8096 

 
For all three objective functions, which are considered in train scheduling, the developed DR-algorithm 
was better than six heuristic algorithms tested. In order to evaluate the DR-algorithm on reducing the 
total completion time, makespan and total tardiness objective in our three stage strategy, the different 
job-shop problems (with sizes from 33  to 1010 ) have been generated. The times ijp  to pass a 

railroad section Mij )(  by train Ji   are randomly generated in the segment [30,50] . The 

maximal possible reduction of the train speed was restricted by 10% of the original time ijp  (i.e., the 

maximal possible reduction is equal at most to 5 time units). 
   

 
Fig. 6. The total tardiness of the trains after each of three stages. 
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Fig. 6 presents the total tardiness of the trains obtained after the first stage, the second stage, and third 
stage 3 of the DR-algorithm. By an overview given in Fig 6, it is observable that the total tardiness in 
average has been reduced about 20% . 
In Table 5, the total completion time and makespan objective function for DR-algorithm are presented 

after each scheduling step (columns 2 – 4 for criterion iC  and columns 5 – 7 for criterion maxC ). 

Column 8 in Table 5 presents the number of modified operations )(ij
ijo , i.e., the number of railroad 

sections were a train speed was increased. Column 9 presents the total volume of changes of the 
processing times ijp  due to increasing the speeds of some trains. 

    
Table 5 
Running DR-algorithm with modified train speeds. 
Job-shop 

size iC  

stage 1  stage 2  stage 3 

maxC  

stage 1  stage 2  stage 3 

 Number of  
modified  

operations 

The total 

change of ijp  

3 3 510 495 475 209 204 196  2 8 
4 4 812 772 733 261 251 240  6 20 
5 5 1343 1308 1238 312 302 289  15 50 
6 6 1977 1953 1864 410 406 388  13 46 
7 7 2848 2782 2538 513 503 438  29 96 
8 8 3997 3894 3666 591 634 604  35 117 
9 9 4690 4677 4396 587 586 616  41 133 
10 10 5880 5510 5377 751 683 654  52 172 

 
8. Conclusion 
 
A three-stage strategy was used to reduce the delays in train scheduling. In the first stage, a pre-
scheduling algorithm executed to achieve some data about trains. At the second stage, the departure 
time of the trains are modified in order to decrease train delays. In the third stage, a controllable 
processing time module tries to reduce train delays as much as possible via increasing speeds of some 
trains. Computational results shows that this policy can be useful to reduce total tardiness, total 
completion time and makespan in the train scheduling. As a future research, it is desirable to consider 
priorities for usual trains and non-stop type of trains. For defining the right weights for the dispatching 
rules, we used some optimal solutions available for the benchmark problems la01 – la20 with the 
makespan objective function in order to assign appropriate weights to the dispatching rules. However, 

these weights may not be so useful for the criteria iT  and iC  as for the makespan criterion. 

Therefore, the computational results for these two objective functions (Tables 3 and 4) are not so 
impressive like those obtained for the makespan criterion (Table 2). Therefore, it will be useful to 

develop exact algorithms for the problems ii TrJ ||  and iii CwrJ || with objectives iT and iC . 
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