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 Optimization of a multi-response dynamic system aims at finding out a setting combination of 
input controllable factors that would result in optimum values for all response variables at all 
signal levels. In real life situation, often the multiple responses are found to be correlated. The 
main advantage of PCA-based approaches is that it takes into account the correlation among the 
multiple responses. Two PCA-based approaches that are commonly used for optimization of 
multiple responses in dynamic system are PCA-based technique for order preference by similarity 
to ideal solution (TOPSIS) and PCA-based multiple criteria evaluation of the grey relational 
model (MCE-GRM). This paper presents a new PCA-based approach, called PCA-based utility 
theory (UT) approach, for optimization of multiple dynamic responses and compares its 
optimization performance with other existing PCA-based approaches. The results show that the 
proposed PCA-based UT method is superior to the other PCA-based approaches. 
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1. Introduction  
 

 
The usefulness of Taguchi method (Taguchi, 1990) in optimizing the parameter design in static as well 
as dynamic system has been well established. In a static system, the response variable representing the 
output quality characteristic of the system has a fixed target value. A dynamic system differs from a 
static system in that it contains signal factor and the target value depends on the level of the signal 
factor set by the system operator. For example, signal factor may be the steering angle in the steering 
mechanism of an automobile or the speed control setting of a fan. In other words, a dynamic system has 
multiple target values of the response variables depending on the setting of signal variable of the 
system. 
 
Optimization of multiple responses in static system has drawn maximum attention of the researchers 
(Derringer & Suich, 1980; Khuri & Conlon, 1981;  Pignatiello, 1993; Su & Tong, 1997; Wu & 
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Hamada, 2000; Tong & Hsieh, 2001; Wu, 2005; Liao, 2006; Kim & Lee, 2006; Tong et al., 2007; 
Jeong & Kim, 2009; Pal & Gauri, 2010a, 2010b). Product/process design with a dynamic system offers 
the flexibility needed to satisfy customer requirements and can enhance a manufacturer’s 
competitiveness. In recent time, therefore, many researchers have been motivated to study the robust 
design problem concerning the dynamic systems. Miller and Wu (1996) have observed that Taguchi’s 
dynamic signal-to-noise ratio (SNR) is appropriate for certain measurement systems but not for 
multiple target systems. Wasserman (1996) has observed that the factor-level combination of a 
dynamic system using Taguchi’s SNR might not be optimal. McCaskey and Tsui (1997) have found 
that Taguchi’s procedure for dynamic system is appropriate only under a multiplicative model. Lunani 
et al. (1997) have noted that using SNR as a quality performance measure might produce inaccuracies 
due to a biased dispersion effect, thus making it impossible to minimize quality loss. Tsui (1999) 
investigated the direct application of the response model (RM) approach for the dynamic robust design 
problem. Joseph and Wu (2002) formulated the robust parameter design of dynamic system as a 
mathematical programming problem. Chen (2003) developed a stochastic optimization modeling 
procedure that incorporated a sequential quadratic programming technique to determine the optimal 
factor-level combination in a dynamic system. Lesperance and Park (2003) have proposed the use of a 
joint generalized linear model (GLM) so that model assumptions can be investigated using residual 
analysis. Su et al. (2005) have proposed a hybrid procedure combining neural networks and scatter 
search to optimize the continuous parameter design problem. Bae and Tsui (2006) have generalized 
Tsui’s (1999) RM approach based on a GLM and reported that the GLM-RM approach can provide 
more reliable results. It may be noted that all these research articles are focused on optimization of a 
single-response dynamic system. 
 
Industry has increasingly emphasized developing procedures capable of simultaneously optimizing the 
dynamic multi-response problems in light of the increasing complexity of modern product design. To 
cope with the need of the modern industries, several studies (Tong et al., 2002; Hsieh et al., 2005; Wu, 
2009; Chang, 2006; Chang, 2008; Tong et al., 2008; Chang and Chen, 2011, Tong et al., 2004; Wang, 
2007) have recommended procedures for optimizing multiple responses in a dynamic system. The 
various approaches for solving multi-response optimization problems in dynamic system can broadly 
be classified into three categories, e.g. (1) Response surface methodology and desirability function 
(RSM-DF) based approaches (Tong et al., 2002; Hsieh et al., 2005; Wu, 2009) (2) Artificial 
intelligence (AI) based approaches (Chang, 2006; Chang, 2008; Tong et al., 2008; Chang and Chen, 
2011 ) and (3) Principal component analysis (PCA) based approaches (Tong et al., 2004; Wang, 2007). 
The basic advantage of using desirability function as performance metric is that it is a simple unitless 
measure and can allow the user to weigh the responses according to their importance. A disadvantage 
with this metric is that it does not consider the expected variability and thus the obtained solution may 
not yield an ideal result. The AI based approaches uses the techniques of artificial neural network 
(ANN) and genetic algorithm (GA) to solve multi-response optimization problems. The advantage of 
AI-based technique is that it does not require any specific relationship between quality characteristics 
and signal factor. The main disadvantage with AI-based approaches is that the information it contains is 
implicit and virtually inaccessible to the user. So the engineers cannot obtain efficient engineering 
information during the period of the optimization process.  
 
In real life situation, often the multiple responses are found to be correlated. The main advantage of 
PCA-based approaches is that it takes into account correlation among the multiple responses. Tong et 
al. (2004) have proposed a PCA-based technique for order preference by similarity to ideal solution 
(TOPSIS) method, whereas Wang (2007) has proposed a PCA-based multiple criteria evaluation of the 
grey relational model (MCE-GRM) for optimization of multiple responses in a dynamic system. The 
PCA-based approaches are easily understandable and can be implemented using Excel sheet. So this 
approach has gained quite popularity among the practitioners. This paper presents a new PCA-based 
approach for optimization of multiple dynamic responses, called PCA-based utility theory (UT) 
approach and compares its optimization performance with other existing PCA-based approaches. The 
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results show that the proposed PCA-based UT method is very promising for optimization of multi-
response dynamic systems.  
 
This article is organized as follows: the second section outlines briefly the dynamic system and the 
generic approach for application of PCA-based methods for optimizing multi-response dynamic 
systems. The third section describes the utility concept and the proposed PCA-based UT method for 
optimizing multiple dynamic responses. In the next section, analyses of two experimental data sets 
taken from literature are presented. We conclude in the final section. 
  

2. Dynamic system and the PCA-based approaches for multi-response optimization 

For dynamic system, ideal quality is based on the ideal relationship between the signal and response, 
and quality loss is caused by deviations from the ideal relationship. So, significant quality improvement 
can be achieved by first defining a system’s ideal function, then using designed experiments to search 
for an optimal design which minimizes deviations from this ideal function. A dynamic system generally 
assumes that a linear form exists between the response and the signal factor. The ideal function can be 
expressed as follows: 

  MY , (1) 

where Y denotes the response of a dynamic system, M represents the signal factor, β is the slope and ε 
denotes the random error. Here, ε is assumed to follow a normal distribution with a mean of zero and 
variance of σ2. The deviation from the ideal function is represented by the variability of the dynamic 
system (σ2). The objective is to determine the best combination of input controllable variables so that 
the system achieves the respective target value at each signal factor level with minimum variability 
around the target value. 

Let, kly denotes the value of the response variable Y at the combination of kth level of signal factor ( kM

) (k = 1,2,…,s) and lth level of noise factor (
lN ) (l = 1,2,…,n). Then, the slope β and variability σ2 of a 

single response dynamic system can be respectively obtained using the following equations (Taguchi, 
1990): 
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Taguchi used SNR (η) and system sensitivity (SS) as the performance measures in a dynamic system to 
assess the robustness of a process (Tong et al, 2004; Wang, 2007). The SNR and SS values for jth 
response variable corresponding to ith trial, ij and ijSS , can be obtained using the following equations: 
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where ij and 2
ij  are the estimates of the slope and variance of the ideal function for jth (j = 1,2,…, p) 

response variable corresponding to ith (i = 1,2,…, m) trial. The PCA-based approaches for optimizing 
multi-response dynamic system broadly use the following three steps:  
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Step 1: Converting SNR values of the multiple responses into an overall SNR index (SNRI) and 
converting SS values of the multiple responses into an overall SS index (SSI) taking into account the 
correlation among the SRN values and SS values respectively. 

Step 2: Determining the significant/influencing factors with respect to SNRI and SSI values. Then, 
obtaining the optimal factor-level combination that optimizes SNRI value, and identifying the 
adjustment factor (i.e. the factor that has a large effect on the SSI but no effect on SNRI). 

Step 3: Changing the level of the adjustment factor (if available) in the chosen optimal factor-level 
combination in such a way that the expected output values of the response variables becomes closer to 
their target values. 

The two PCA-based methods (Tong et al., 2004; Wang, 2007) mainly differ with respect to the first 
step, i.e., methodology used for converting the SNR and SS values of the multiple responses into SNRI 
and SSI values respectively. In both the methods, PCA is carried out first separately on normalized 
SNR values and normalized SS values. In PCA-based TOPSIS method (Tong et al., 2004), TOPSIS 
analysis is used to obtain SNRI and SSI values. These SNRI and SSI values are called as overall 
performance index (OPI) for SNR (OPI-SNR) and OPI for SS (OPI-SS) respectively. On the other 
hand, in PCA-based MCE-GRM method (Wang, 2007), multiple criteria evaluation of grey relational 
model is used to obtain the SNRI and SSI values. The SNRI and SSI values, obtained in MCE-GRM 
approach, are called as overall relative closeness to ideal solution (RCIS) for SNR (RCIS-SNR) and 
RCIS for SS (RCIS-SS) respectively. The remaining two steps are the same for both the two methods.  

3. Utility Concept and the Proposed PCA-based utility theory (UT) approach 
 
3.1 Utility concept  
 
Utility can be defined as the usefulness of a product or process in reference to the expectations of the 
users. The overall usefulness of a product/process can be represented by a unified index, termed as 
utility which is the sum of individual utilities of various quality characteristics of the product/process. 
The methodological basis for utility approach is to transform the estimated value of each quality 
characteristic into a common index.  
 
If Xj is the measure of effectiveness of jth attribute (response variable) and there are p attributes 
evaluating the outcome space, then the joint utility function (Derek, 1982) can be expressed as: 
 

 )( ),...,( ),() ,..., ,( 221121 ppp XUXUXUfXXXU  , (6) 
 

where Uj(Xj) is the utility of jth response variable. The overall utility function is the sum of individual 
utilities if the attributes are independent, and is given as follows: 
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The attributes may be assigned weights depending upon the relative importance or priorities of the 
characteristics. The overall utility function after assigning weights to the attributes can be expressed as: 
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where Wj is the weight assigned to jth attribute. The sum of the weights for all the attributes must be 
equal to 1.  
 
A preference scale for each response variable is constructed for determining its utility value. Two 
arbitrary numerical values (preference numbers) 0 and 9 are assigned to the just acceptable and the best 
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value of the response variable respectively. The preference number (Pj) for jth response variable can be 
expressed on a logarithmic scale as follows (Kumar et al., 2000): 
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where Xj  = value of jth response variable, jX  = just acceptable value of jth response variable and Aj = 

constant for jth response variable. The value of Aj can be found by the condition that if jX  = B
jX (where

B
jX is the optimal or best value for jth response), then Pj = 9. Therefore, 
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The overall utility (U) can be calculated as follows: 
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Let us now consider the application of utility theory for optimizing a multi-response dynamic system. 
The computed SNR values for p response variables corresponding to m experimental trials can be 
expressed in the following series: 
 

mi XXXXX ,...,,...,,, 321 , 

 
where  

 
 pk XXXX 1112111 ,...,,...,,X , 

 ipikiii XXXX ,...,,...,, 21X , 

 mpmkmmm XXXX ,...,,...,, 21X . 

 
Here, iX  representing the observed experimental results in ith trial may be called as the ith comparative 

sequence. 
 
Suppose the ideal SNR value of each response variable is known. Then,  pk XXXX 0002010 ,...,,...,,X  

may be called as the reference sequence, where X0j represents the ideal SNR value of jth (j = 1,2,…, p) 
response variable. It may be noted that 0X and iX  both include p elements, and X0j and Xij represent the 

numeric value of jth (j = 1,2,…, p) element in the reference sequence and ith comparative sequence 
respectively. So, the amount of deviations in SNR from their ideal values can be estimated for different 
response variables for the m trials.  These differences may be considered as quality losses for SNR for 
the response variables, which can be appropriately converted to preference numbers and overall utility 
values for SNR (UV-SNR), using Eqs. (9-11). Then, the process setting that would optimize the UV-
SNR can be selected examining the level averages of the control factors on the UV-SNR.  
 
Similarly, based on the ideal sequence and comparative sequences for the SS values, quality losses for 
SS for different response variables can be estimated, which can be appropriately converted to overall 
utility values for SS (UV-SS). Then, the factors which have significant impact on UV-SS can be 
identified examining the factor effects on UV-SS and the existence of adjustment factor(s) in the 
dynamic system can be detected. The level of the adjustment factor may be changed so that the actual 
output value becomes closer to the target value. 
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This approach should work well if the response variables are independent. However, in reality often the 
multiple responses are correlated. This problem can be overcome by defining the reference and 
comparative sequences with respect to the principal component scores (PCS) instead of the original 
response variables. This is because the principal components will be independent even when the 
original response variables are correlated.  
 
Based on the above logic, PCA-based UT approach is proposed for optimization of multiple responses 
in a dynamic system.  
 
3.2. Proposed PCA-based UT Approach 
 
The computational requirements in the proposed PCA-based UT method can be expressed in the 
following ten steps: 
 
Step 1: Calculate SNR and SS values corresponding to different trials for each response variable using 

Eq. 4 and Eq. 5 respectively. 
Step 2: Normalize the SNR and SS values for each response variable using the following equations: 

,
( )

ij j

ij

j

N
sd

 





  (12) 

,
( )

ij j

ij

j

SS SS
NSS

sd SS


  (13) 

where ijN and ijNSS are normalized SNR and SS values respectively  for jth (j = 1,2,…,p) response 

variable in ith trial, j and jSS are average SNR and SS values respectively for jth (j = 1,2,…,p) response 

variable, and )( jsd  and )( jSSsd are standard deviation of SNR and SS values respectively for jth (j = 

1,2,…,p) response variable. 
 
Step 3: Find out reference sequences for the SNR values as well as SS values. 
 
Higher SNR as well as SS values imply better quality. So the elements in reference sequence for SNR 
will be the largest normalized SNR values for the response variables. Similarly, the elements in 
reference sequence for SS will be the largest normalized SS values for the response variables. 
 
Step 4: Conduct PCA separately on the normalized SNR values and SS values, and obtain the 
eigenvalues, eigenvectors and proportion of variation explained by different principal components of 
normalized SNR and SS values. 
 
Step 5: Compute principal component score (PCS), i.e. the values of each principal component of SNRs 
for different comparative sequences (trials) and for the reference sequence. Also PCS values of each 
principal component of SSs for different comparative sequences (trials) and for the reference sequence. 
 
The PCS value of lth principal component of SNRs corresponding to ith comparative sequence of SNR (

SNR
ilPCS ) can be obtained  using Eq. (14) and the value of lth principal component of the reference 

sequence can be estimated using Eq. (15) given below: 
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where, 1la , 2la , …, lpa are eigen vector of the lth principal component of SNRs. 
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On the other hand, the PCS value of lth principal component of SS corresponding to ith comparative 

sequence of SS ( SS
ilPCS ) can be obtained using Eq. (16) and the PCS value of lth principal component of 

the reference sequence can be estimated using Eq. (17) given below: 
 

iplpilil
SS
il NSSbNSSbNSSbPCS  ...2211   (i = 1,2,…,m and   l = 1,2,…,p) (16) 

maxmax
22

max
110 ... plpll

SS
l NSSbNSSbNSSbPCS    (l = 1,2,…,p) (17) 

 
where, 1lb , 2lb , …, lpb are eigen vector of the lth principal component of SSs. 

 
Step 6: Compute the quality losses in different trials with respect to different principal components. 
 

The absolute difference between SNR
ilPCS  and SNR

lPCS0 values can be considered as the quality loss of 

SNR for lth principal component in ith trial.  Similarly, the absolute difference between SS
ilPCS  and 

SS
lPCS0 values can be considered as the quality loss of SS for lth principal component in ith trial. 

Therefore, the quality losses of SNR and SS for lth principal component in ith trial ( SNR
ilL and SS

ilL ) can be 

estimated using Eq. (18) and Eq. (19) respectively. 
 

SNR
l

SNR
il

SNR
il PCSPCSL 0  (18) 

SS
l

SS
il

SS
il PCSPCSL 0    (19) 

 
Step 7: Apply UT for estimating the overall utility values for different trials. 
 
Using Eq. (9) and Eq. (10), the estimated quality losses of SNR for different principal components can 
be appropriately converted to preference numbers. Then, the overall utility values of SNR (UV-SNR) 
for different trials can be estimated using En. (11). Similarly, the overall utility values of SS (UV-SS) 
for different trials can be estimated using Eqs. (9-11). It is suggested here to consider the proportion of 
variation expressed by different principal components as their weights. 
 
Step 8: Perform ANOVA (analysis of variance) on UV-SNR values and UV-SS values for 
identification of the most influencing control factors on UV-SNR and UV-SS respectively. 
 
Step 9: Use arithmetic average to calculate the factor effects on UV-SNR and UV-SS values.  
 
Step 10: Determine the optimal factor level combination by higher-the-better factor effects on UV-SNR 
value. 
 
Step 11: Identify the adjustment factor (a factor significantly affecting UV-SS value but insignificantly 
affecting UV-SNR value), if any. Then change the level of the adjustment factor in the optimal solution 
in such a way that the actual output value becomes closer to the target value. Implement the adjusted 
optimal solution. 
 
4. Analysis, Results and Discussion 

For the purpose of illustration of the proposed PCA-based UT approach and comparison of its 
optimization performance with the other available PCA-based approaches, two sets of the past 
experimental data are taken into consideration. These two data sets are analyzed using the proposed 
PCA-based UT method, PCA-based TOPSIS method and PCA-based MCE-GRM methods as two 
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separate case studies. According to Taguchi, higher SNR implies better quality. Therefore, it is decided 
to consider the expected total SNR of the response variables at the optimal process condition as the 
performance metric for comparison of the optimization performance of these three PCA-based 
approaches. 

4.1 Case study 1 

Hsieh et al. (2005) introduced a problem of the control of two responses relating to optically pure 
compound performance using eight chemical factors: type of cap, shaking rate, glucose concentration, 
yeast addition, concentration of enzyme inhibitor, pH of reaction solution, buffer concentration, and 
yeast preculture time (denoted as A, B, C, D, E, F, G, and H respectively). The two optimized 
responses are S-CHBE (YS), where a larger response is desired, and R-CHBE (YR), where a smaller 
response is desired. Response S-CHBE (YS) is more important than R-CHBE (YR). When carefully 
controlled, the S-CHBE forming enzymes are more active than R-CHBE and ultimately produce a 
higher optical purity. Since altering the substrate concentration would affect both the responses YS and 
YR, the substrate concentration was considered as a signal factor (M) in the experiment. Additionally, 
the freshness of the yeast was considered as a noise factor (N). The L18 orthogonal array was employed 
in that experiment. Six observations were made for both YS and YR under each experimental 
combination. According to the ideal function as given in Eq. (1), the regression models for YS and YR on 
the signal factor M for each experimental run were established and then, SNR and SS for each response 
were computed using Eq. (4) and Eq. (5) respectively. These computed values are displayed in Table 1. 
The same experimental data are reanalyzed here using the proposed PCA-based UT approach and the 
other PCA-based procedures as case study 1. 

Higher SNR as well as SS values imply better quality and so the elements in reference sequence for 
SNR as well as SS should be the largest normalized SNR and SS values for the response variables. 
Thus, the reference sequence for SNR and SS values are {2.141, 2.091} and {1.826, 2.032} 
respectively. Now, the SNR and SS values of the response variables for the 18 trials are subjected to 
PCA in STATISTICA software separately. The eigenvalues, proportion of variation explained by 
different principal components and eigenvectors corresponding to different principal components 
arising from PCA of SNR and SS values are shown in Tables 2 and 3 respectively. Then applying step 
5 described in section 3.2, PCSs for different comparative sequences (i.e. trials) and the reference 
sequence are computed, and using step 6, the quality losses of each principal component are estimated 
for different trials. Utility theory is now applied to the dataset of quality losses. Applying Eq. (9) and 
Eq. (10), the quality losses for each principal component of SNR corresponding to different trials are 
converted to preference numbers between 0 and 9. The average preference number for a trial is taken as 
the measure of overall utility value for SNR (UV-SNR) for that trial. Similarly, overall utility values 
for SS (UV-SS) for different trials are obtained. On the other hand, overall OPI-SNR and OPI-SS are 
computed from the same data set applying PCA-based TOPSIS method, and RCIS-SNR and RCIS-SS 
are computed using PCA-based MCE-GRM method. The computed UV-SNR, UV-SS, OPI-SNR, OPI-
SS, RCIS-SNR and RCIS-SS values for different trials are shown in Table 4. 

The ANOVA is carried out separately on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-
SS values. In these analyses, the F-values for various factors are first computed using the error variance 
and then, the sum of squares of the factors having F-values less than equal to 1 are pooled with the 
estimated error variance. The F-values for the remaining factors are finally estimated using the pooled 
error variance. Table 5 shows the results of these ANOVA. It can be noted from Table 5 that factors B, 
D and E significantly affect the SNRI values (i.e. UV-SNR, OPI-SNR and RCIS-SNR) obtained by all 
the three PCA-based approaches. However, the factors affecting the SSI (i.e. UV-SS, OPI-SS and 
RCIS-SS) are different in the three PCA-based approaches. Factor H has significant effect on UV-SS, 
factors A, D, E and H have significant effects on OPI-SS and factors A and D have significant effects 
on RCIS-SS values. It may be recalled that a factor that has significant effect on SSI but no effect on 
SNRI may be considered as an adjustment factor. This implies that H is the adjustment factor according 
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to the proposed PCA-based UT approach whereas A and H are adjustment factors according to PCA-
based TOPSIS method and A is the adjustment factor according to the PCA-based MCE-GRM method. 

The level averages on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values are 
displayed in Table 6. Higher UV-SNR, OPI-SNR and RCIS-SNR value imply better quality and 
therefore, examining Table 6, the optimal solutions based on the proposed PCA-based UT method, 
PCA-based TOPSIS and PCA-based MCE-GRM method are chosen as A1B3C1D3E2F2G3H2, 

A1B3C2D3E2F1G3H1 and A1B3C3D1E3F3G3H1, respectively. 

As mentioned earlier, the ultimate interest of the process engineer is to maximize the total SNR value. 
So the SNR values of the individual response variables at different optimal process conditions derived 
by these methods are predicted using additive model. Table 7 displays the predicted SNR values for the 
response variables at the different optimal conditions. Examining the results in Table 7, it is found that 
the optimal condition derived by application of the proposed PCA-based UT method results in higher 
total SNR, which implies better optimization performance. 

 

Table 1  
Experimental layout and estimates of β, σ2, SNR and SS for the responses (case study 1)  

Experimental layout Estimates from regression models  
SNR SS 

Normalized 
SNR 

Normalized  
SS 

Trial 

Factors and their levels β σ2 

A B C D E F G H 
SY 

RY 2

SY 
2

RY YS YR YS YR YS YR YS YR 

1 1 1 1 1 1 1 1 1 0.4535 0.1042 0.1708 0.0177 0.81 -2.12 -6.87 -19.64 -1.312 0.779 0.876 0.055 
2 1 1 2 2 2 2 2 2 0.4224 0.1218 0.0468 0.0110 5.81 1.30 -7.49 -18.29 1.057 1.281 0.280 0.668 
3 1 1 3 3 3 3 3 3 0.4077 0.1123 0.0701 0.0111 3.75 0.55 -7.79 -18.99 0.081 1.172 -0.017 0.349 
4 1 2 1 1 2 2 3 3 0.4608 0.1083 0.1156 0.0103 2.64 0.56 -6.73 -19.31 -0.444 1.173 1.010 0.206 
5 1 2 2 2 3 3 1 1 0.4547 0.0972 0.1376 0.0033 1.77 4.57 -6.85 -20.25 -0.857 1.762 0.898 -0.219 
6 1 2 3 3 1 1 2 2 0.3757 0.1402 0.0532 0.0163 4.24 0.81 -8.50 -17.07 0.312 1.210 -0.702 1.221 
7 1 3 1 2 1 3 2 3 0.3963 0.1269 0.0633 0.0648 3.95 -6.05 -8.04 -17.93 0.174 0.202 -0.255 0.829 
8 1 3 2 3 2 1 3 1 0.3946 0.1061 0.0241 0.0068 8.10 2.19 -8.08 -19.49 2.141 1.412 -0.291 0.126 
9 1 3 3 1 3 2 1 2 0.5079 0.0736 0.1013 0.0013 4.06 6.20 -5.88 -22.66 0.227 2.001 1.826 -1.312 

10 2 1 1 3 3 2 2 1 0.4046 0.1061 0.0665 0.0044 3.91 4.08 -7.86 -19.49 0.158 1.690 -0.081 0.126 
11 2 1 2 1 1 3 3 2 0.3995 0.0682 0.1717 0.0257 -0.32 -7.42 -7.97 -23.32 -1.844 0.000 -0.187 -1.612 
12 2 1 3 2 2 1 1 3 0.3613 0.108 0.0966 0.0239 1.31 -3.12 -8.84 -19.33 -1.075 0.633 -1.030 0.195 
13 2 2 1 2 3 1 3 2 0.4377 0.1027 0.076 0.0022 4.02 6.81 -7.18 -19.77 0.207 2.091 0.578 -0.002 
14 2 2 2 3 1 2 1 3 0.3147 0.1723 0.0650 0.0513 1.83 -2.38 -10.04 -15.27 -0.828 0.742 -2.188 2.032 
15 2 2 3 1 2 3 2 1 0.4688 0.0809 0.1213 0.0027 2.58 3.85 -6.58 -21.84 -0.472 1.655 1.154 -0.941 
16 2 3 1 3 2 3 1 2 0.3468 0.1129 0.0263 0.0133 6.60 -0.18 -9.20 -18.95 1.431 1.063 -1.373 0.370 
17 2 3 2 1 3 1 2 3 0.3679 0.0595 0.0562 0.0020 3.82 2.48 -8.69 -24.51 0.113 1.455 -0.878 -2.148 
18 2 3 3 2 1 2 3 1 0.4274 0.1043 0.0509 0.0098 5.55 0.45 -7.38 -19.63 0.933 1.157 0.379 0.058 

Maximum 2.141 2.091 1.826 2.032 

 
 

Table 2  
Results of PCA on SNR values of the responses (case study 1) 

Principal component Eigen value Proportion of explained variation Eigenvector 
First 1.381 0.69 0.707 0.707 

Second 0.619 0.31 0.707 -0.707 

 

Table 3  
Results of PCA on SS values of the responses (case study 1) 

Principal component Eigen value Proportion of explained variation Eigenvector 
First 1.429 0.71 0.707 0.707 

Second 0.571 0.29 -0.707 0.707 
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Table 4  
UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values (case study 1)  
Trial 
no. 

Proposed PCA-based UT method  PCA-based TOPSIS method  PCA-based MCE-GRM method  
UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS 

1 0.863 3.155 0.300 0.708 0.677 1.866 
2 5.102 4.268 0.787 0.565 1.766 1.592 
3 2.692 3.835 0.604 0.554 1.192 1.364 
4 1.933 3.441 0.515 0.709 0.977 2.013 
5 1.707 2.774 0.541 0.740 0.815 1.829 
6 3.107 2.477 0.649 0.387 1.307 1.163 
7 4.076 2.947 0.458 0.477 1.225 1.317 
8 7.297 3.308 0.984 0.535 2.899 1.206 
9 3.446 2.051 0.713 0.945 1.369 2.560 
10 3.065 8.016 0.685 0.565 1.294 1.303 
11 0.271 1.096 0.177 0.690 0.472 1.071 
12 1.074 1.895 0.318 0.420 0.731 0.928 
13 3.498 3.017 0.712 0.672 1.362 1.649 
14 1.362 1.446 0.376 0.197 0.813 0.699 
15 2.115 2.057 0.584 0.845 0.986 1.935 
16 5.234 1.540 0.809 0.354 2.034 0.833 
17 2.851 0.633 0.652 0.627 1.241 0.686 
18 4.753 3.160 0.745 0.638 1.658 1.537 

 
Table 5  
Results of ANOVA on UV-SRN and UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 1) 

Source UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS 
SS DF F SS DF F SS DF F SS DF F SS DF F SS DF F 

A 2.00 1 3.95 0.65 1 - 0.013 1 - 0.020 1 16.31 0.148 1 3.52 1.013 1 19.0
B 22.6 2 22.3 7.04 2 5.2 0.191 2 10.5 0.000 2 - 1.990 2 23.5 0.148 2 1.40 
C 0.23 2 - 6.76 2 5.0 0.001 2 - 0.016 2 6.53 0.048 2 - 0.535 2 5.02 
D 11.6 2 11.5 5.85 2 4.3 0.113 2 6.22 0.311 2 122.1 1.214 2 14.3 1.086 2 10.1
E 5.97 2 5.90 1.11 2 - 0.173 2 9.48 0.087 2 34.47 0.902 2 10.6 0.251 2 2.36 
F 1.13 2 - 7.14 2 5.2 0.036 2 2.01 0.009 2 3.73 0.204 2 2.41 0.412 2 3.87 
G 4.98 2 4.92 4.90 2 3.6 0.058 2 3.19 0.017 2 6.73 0.386 2 4.57 0.069 2 - 
H 4.39 2 4.34 9.38 2 6.9 0.094 2 5.16 0.092 2 36.34 0.508 2 6.02 0.624 2 5.86 

Error 1.67 2  1.62 2  0.030 2  0.004 2  0.120 2  0.144 2  
(P. error) 3.04 6  3.38 5  0.045 5  0.005 4  0.169 4  0.213 4  

Total 54.6 17  44.4 17  0.712 17  0.560 17  5.525 17  4.285 17  
*Statistically significant at 5% level 

Table 6  
Level averages on UT-SNR, UT-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 1) 

Factor 
UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

A 3.358 2.692 3.139 2.540  1.359 1.177 - 0.617 0.562 - 0.624 0.556 - 1.657 1.182 - 
B 2.178 2.287 4.609 3.711 2.535 2.273 1.022 1.043 1.738 0.479 0.563 0.727 0.584 0.592 0.596 1.354 1.548 1.357 
C 3.111 3.098 2.864 3.686 2.254 2.579 1.261 1.334 1.207 0.580 0.586 0.602 0.581 0.559 0.631 1.497 1.181 1.581 
D 1.913 3.368 3.793 2.072 3.010 3.437 0.954 1.259 1.590 0.490 0.594 0.685 0.754 0.585 0.432 1.689 1.475 1.095 
E 2.405 3.793 2.876 2.380 2.751 3.388 1.025 1.565 1.212 0.451 0.666 0.651 0.516 0.571 0.684 1.275 1.418 1.565 
F 3.115 3.277 2.683 2.414 3.730 2.375 1.370 1.313 1.121 0.602 0.637 0.529 0.558 0.603 0.610 1.250 1.617 1.392 
G 2.281 3.386 3.407 2.144 3.400 2.976 1.073 1.303 1.427 0.509 0.636 0.623 0.561 0.578 0.633 1.452 1.333 1.473 
H 3.300 3.443 2.331 3.745 2.408 2.366 1.388 1.385 1.030 0.640 0.641 0.487 0.672 0.602 0.497 1.613 1.478 1.168 

 

Table 7  
Predicted SNR values at the optimal conditions derived by the proposed and other PCA-based methods 

Optimization method Optimal condition 
Predicted SNR  

Total SNR 
YS YR 

Proposed PCA-based UT method A1B3C1D3E2F2G3H2 9.089 dB 2.453 dB 11.542 dB 
PCA-based TOPSIS method A1B3C2D3E2F1G3H1 8.403 dB 2.449 dB 10.852 dB 
PCA-based MCE-GRM method A1B3C3D1E3F3G3H1 4.394 dB 4.920 dB 9.315 dB 
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4.2 Case study 2 

Chang (2006) simulated an example of a dynamic system with multiple responses for illustrating 
application of their proposed neural network-based desirability function approach for optimizing 
multiple dynamic responses. That example involved three response variables, i.e. Y1, Y2 and Y3. Chang 
(2006) obtained the hypothetical experimental data based on Monte Carlo simulation.  Six control 
factors, i.e. A, B, C, D, E and F were allocated to L18 orthogonal array. The signal factor had three 
levels, e.g. M1, M2 and M3, and the corresponding values were 10, 20 and 30 respectively. Two levels 
of noise factor (N1 and N2) were also in the system. Twelve observations were simulated for Y1, Y2 and 
Y3 under each experimental combination. The simulated experimental data are available in Chang 
(2006). The same experimental data are reanalyzed here using the proposed PCA-based UT approach 
and the other PCA-based procedures as case study 2. According to the ideal function as given in Eq. 
(1), the regression models for Y1, Y2 and Y3 on the signal factor M for each experimental run were 
established and then, SNR and SS for each response were computed using Eq. (4) and Eq. (5) 
respectively. These computed values are displayed in Table 8.  

As higher SNR as well as SS values imply better quality, the largest normalized SNR and  SS values 
for the response variables are taken as the elements in the reference sequence for SNR and SS 
respectively, i.e. the reference sequence for SRN and SS are considered as {2.39, 2.12, 2.41} and 
{1.19, 1.46, 1.38} respectively. Now, the SNR and SS values of the response variables for the 18 trials 
are subjected to PCA in STATISTICA software separately. The eigenvalues, proportion of variation 
explained by different principal components and eigenvectors corresponding to different principal 
components arising from PCA of SNR and SS values are shown in Tables 9 and 10 respectively. Then 
applying steps 5-6 described in Section 3.2, PCSs for different comparative sequences (i.e. trials), PCSs 
for the reference sequence and the quality losses of each principal component are estimated for 
different trials. Utility theory (UT) is then applied to obtain the UV-SNR and US-SS values for 
different trials. On the other hand, overall OPI-SNR and OPI-SS are computed from the same data set 
applying PCA-based TOPSIS method, and RCIS-SNR and RCIS-SS are computed using PCA-based 
MCE-GRM method. The computed UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS 
values for different trials are shown in Table 11. 

The ANOVA is carried out separately on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-
SS values. Table 12 shows the results of these ANOVA. It can be noted from Table 12 that only factors 
F significantly affect UV-SNR and OPI-SNR whereas only factor E significantly affect RCIS-SNR. On 
the other hand, examining the ANOVA of SSI values (i.e. UV-SS, OPI-SS and RCIS-SS) it is found 
that, there is no adjustment factor according to the proposed PCA-based UT approach whereas B, C 
and E are the adjustment factors according to PCA-based TOPSIS method and B, C, D and E are the 
adjustment factor according to the PCA-based MCE-GRA method. 

The level averages on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values are 
displayed in Table 13. Higher UV-SNR, OPI-SNR and RCIS-SNR value imply better quality and 
therefore, examining Table 13, the optimal solutions based on the proposed PCA-based UT method, 
PCA-based TOPSIS and PCA-based MCE-GRA method are chosen as A3B1C3D3E3F3, A1B3C1D3E2F3 
and A3B3C3D3E2F3, respectively. 

As mentioned earlier, the ultimate interest of the process engineer is to maximize the total SNR value. 
So the SNR values of the individual response variables at different optimal process conditions derived 
by these methods are predicted using additive model (Taguchi, 1990). Table 14 displays the predicted 
SNR values for the response variables at the different optimal conditions. Examining the results in 
Table 14, it is found that the optimal condition derived by application of the proposed PCA-based UT 
method results in higher total SNR, which implies better optimization performance. 
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Table 8  
Experimental layout and estimates of β, σ2, SNR and SS for the responses (case study 2) 

Experimental layout Estimates from regression models  

SNR SS 

Normalized 
SNR 

Normalized 
SS 

T
rial

 Factors and their 
levels 

β 
σ2 

A B C D E F 
1Y 

2Y
 

3Y
 

2

1Y
 

2

2Y 
2

3Y
 

1Y
 

2Y
 

3Y
 

1Y
 

2Y
 

3Y 1Y
 

2Y
 

3Y
 

1Y
 

2Y
 

3Y
 

1 1 1 1 1 1 1 7.69 0.85 .19 605.4 5.54 0.87 -10.10 -8.83 -13.89 17.72 -1.39 -14.51 -0.83 -1.20 -0.42 0.71 0.89 0.36 
2 2 2 2 2 2 2 8.56 1.04 .18 461.7 2.92 0.92 -8.00 -4.33 -14.55 18.65 0.31 -14.89 -0.36 -0.14 -0.57 0.46 0.26 0.43 
3 3 3 3 3 3 3 8.13 1.06 .21 43.4 1.14 2.21 1.83 -0.05 -16.85 18.21 0.52 -13.40 1.85 0.86 -1.10 -1.79 -0.66 1.38 
4 1 1 2 2 3 3 7.96 0.74 .21 599.9 0.17 0.44 -9.77 5.10 -9.80 18.01 -2.63 -13.39 -0.76 2.07 0.53 0.71 -2.54 -0.39 
5 2 2 3 3 1 1 7.34 1.23 .18 590.7 2.74 0.21 -10.40 -2.59 -8.19 17.31 1.78 -14.90 -0.90 0.26 0.90 0.69 0.20 -1.17 
6 3 3 1 1 2 2 8.56 1.07 .17 297.1 2.85 0.89 -6.08 -3.96 -14.69 18.65 0.59 -15.21 0.07 -0.06 -0.60 0.04 0.24 0.38 
7 1 2 1 3 2 3 8.04 1.13 .20 92.8 0.37 0.50 -1.57 5.30 -10.87 18.10 1.04 -13.86 1.09 2.12 0.28 -1.07 -1.76 -0.24 
8 2 3 2 1 3 1 9.26 0.87 .20 994.7 4.13 1.57 -10.64 -7.39 -16.06 19.33 -1.23 -14.10 -0.95 -0.86 -0.91 1.19 0.60 1.00 
9 3 1 3 2 1 2 7.81 0.99 .23 959.9 2.25 0.07 -11.97 -3.63 -1.61 17.85 -0.10 -12.96 -1.25 0.02 2.41 1.15 0.00 -2.33 

10 1 3 3 2 2 1 8.50 0.78 .22 386.5 0.87 1.30 -7.28 -1.53 -14.35 18.59 -2.13 -13.21 -0.20 0.51 -0.52 0.29 -0.93 0.80 
11 2 1 1 3 3 2 8.25 1.08 .19 151.6 9.88 0.83 -3.47 -9.31 -13.77 18.33 0.64 -14.57 0.66 -1.31 -0.39 -0.60 1.46 0.31 
12 3 2 2 1 1 3 7.66 1.15 .19 262.6 2.92 1.54 -6.51 -3.40 -16.32 17.69 1.25 -14.43 -0.02 0.07 -0.97 -0.08 0.26 0.98 
13 1 2 3 1 3 2 7.42 0.94 .23 579.5 2.97 0.09 -10.22 -5.27 -2.40 17.41 -0.55 -12.74 -0.86 -0.37 2.23 0.67 0.27 -2.08 
14 2 3 1 2 1 3 7.56 1.13 .18 180.3 7.32 0.51 -4.98 -7.58 -11.95 17.57 1.06 -14.84 0.32 -0.91 0.03 -0.44 1.16 -0.21 
15 3 1 2 3 2 1 9.20 0.82 .19 734.6 5.08 1.12 -9.38 -8.80 -14.95 19.28 -1.74 -14.46 -0.67 -1.19 -0.66 0.90 0.80 0.64 
16 1 3 2 3 1 2 7.87 1.06 .19 290.7 1.28 0.81 -6.71 -0.58 -13.68 17.92 0.48 -14.58 -0.07 0.74 -0.37 0.02 -0.55 0.28 
17 2 1 3 1 2 3 7.43 0.86 .18 21.0 1.89 0.66 4.20 -4.10 -13.25 17.42 -1.34 -15.02 2.39 -0.09 -0.27 -2.48 -0.17 0.07 
18 3 2 1 2 3 1 8.69 0.96 .22 198.3 3.63 0.52 -4.19 -5.93 -10.33 18.78 -0.33 -13.13 0.50 -0.52 0.40 -0.35 0.47 -0.19 

Maximum 2.3 2.12 2.41 1.19 1.46 1.38 

 

Table 9  
Results of PCA of normalized SN ratios for the responses (case study 2) 
Principal component Eigen value Proportion of explained variation Eigenvector 
First 1.394 0.46 0.728 0.146 -0.669 
Second 1.095 0.36 0.187 0.897 0.400 
Third 0.511 0.17 0.659 -0.417 0.626 

 
Table 10  
Results of PCA of normalized SS for the responses (case study 2) 
Principal component Eigen value Proportion of explained variation Eigenvector 

First 1.505 0.50 0.496 -0.691 0.525 
Second 0.957 0.32 0.731 0.006 -0.682 
Third 0.538 0.18 0.468 0.723 0.508 

 

Table 11  
UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values (case study 2) 

Trial no. 
Proposed PCA-based UT method  PCA-based TOPSIS method  PCA-based MCE-GRM method  

UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS 
1 1.291 5.702 0.351 0.502 0.707 1.185 
2 2.360 3.594 0.467 0.537 0.948 1.175 

3 5.640 1.193 0.767 0.382 1.321 0.827 
4 5.942 0.933 0.558 0.670 1.074 1.580 
5 3.611 4.050 0.358 0.000 0.644 0.525 

6 2.646 3.301 0.524 0.511 1.005 1.178 
7 6.701 0.769 0.767 0.302 1.223 0.755 
8 1.083 5.943 0.369 0.790 1.057 1.862 
9 3.129 3.546 0.281 0.359 0.788 0.824 

10 3.448 2.406 0.547 0.751 1.142 1.748 
11 2.018 4.059 0.459 0.416 0.929 0.949 

12 2.473 3.470 0.547 0.167 0.734 0.674 

13 3.607 3.038 0.259 0.307 0.723 0.740 
14 2.539 5.555 0.432 0.158 0.770 0.688 
15 1.112 5.462 0.360 0.845 1.096 2.131 

16 4.100 2.252 0.575 0.323 0.902 0.862 
17 5.345 1.080 0.669 0.408 1.212 1.161 

18 3.479 3.489 0.459 0.598 1.131 1.132 
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Table 12  
ANOVA results on UV-SRN, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 2) 

Source 
UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS 

SS DF F    SS DF F SS DF F SS DF F SS DF F 
A 6.2321 2 2.30 7.0900 2 2.56 0.0078 2 - 0.0337 2 - 0.0222 2 - 0.0243 2 - 
B 1.0889 2 - 0.5920 2 - 0.0248 2 - 0.1528 2 7.12* 0.0521 2 1.81 0.7291 2 39.75* 
C 5.5184 2 2.03 5.4930 2 1.99 0.0014 2 - 0.1144 2 5.33* 0.0004 2 - 0.6561 2 35.77* 
D 3.9110 2 1.44 1.9248 2 - 0.0342 2 1.59 0.0538 2 2.50 0.0389 2 - 0.1052 2 5.74* 
E 2.2990 2 - 5.7002 2 2.06 0.0527 2 2.45 0.3436 2 15.99* 0.4078 2 14.16* 1.0034 2 54.70* 
F 19.14 2 7.06* 16.46 2 5.95* 0.1710 2 7.96* 0.1759 2 8.19* 0.0900 2 3.12 0.9204 2 50.18* 

Error 8.8182 5 
 

9.9337 5  0.0841 5  0.0151 5  0.0970 5  0.0399 5  
(P Error) 12.2061 9 

 
12.4504 9  0.1181 11  0.0488 7  0.1584 11  0.0642 7  

Total 47.0064 17 
 

47.1922 17  0.3761 17  0.8893 17  0.7083 17  3.4784 17  
*Statistically significant at 5% level 

Table 13  
Level averages on UV-SRN, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 2) 
Factor UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

Level 1 Level 
2 

Level 
3 

Level 
1 

Level 
2 

Level 
3 

A 2.872 3.243 3.973 3.404 3.723 2.847 0.510 0.459 0.490 0.476 0.385 0.477 0.962 0.927 1.012 1.1451 1.0600 1.1277 
B 4.182 2.826 3.080 2.517 4.047 3.410 0.446 0.476 0.536 0.533 0.318 0.486 0.968 0.901 1.033 1.3049 0.8335 1.1943 
C 3.112 2.845 4.130 3.812 3.609 2.552 0.499 0.479 0.480 0.414 0.555 0.368 0.961 0.968 0.972 0.9811 1.3809 0.9708 
D 2.741 3.483 3.864 3.756 3.254 2.964 0.453 0.457 0.548 0.447 0.512 0.378 0.906 0.975 1.019 1.1333 1.1913 1.0081 
E 2.857 3.602 3.628 4.096 2.769 3.109 0.424 0.556 0.479 0.251 0.559 0.527 0.757 1.104 1.039 0.7929 1.3581 1.1818 
F 2.337 2.977 4.773 4.509 3.298 2.167 0.407 0.428 0.623 0.581 0.409 0.348 0.963 0.883 1.056 1.4307 0.9548 0.9473 

 

Table 14  
Predicted SN ratios at the optimal conditions derived by the three methods 

Optimization method 
Optimal 

condition 
Predicted SNR values Total 

SNR  Y1 Y2 Y3 
Proposed PCA-based UT method A1B3C3D3E2F3 -0.256 dB -0.777 dB -10.448 dB -11.481 dB 
PCA-based TOPSIS method A1B3C1D3E2F3 1.257 dB 2.680 dB -17.591 dB -13.654 dB 
PCA-based MCE-GRM method A3B3C3D3E2F3 2.242 dB 1.543 dB -16.077 dB -12.293 dB 
 

5. Conclusion 

Industries are increasingly emphasizing optimization of multiple responses in dynamic system in the 
light of increasing complexities of modern manufacturing design. Often the multiple responses are 
correlated. Hence, the PCA-based approaches which take into account the possible correlation among 
the responses have gained popularity among the practitioners. This paper proposes a new PCA-based 
approach, called PCA-based utility theory (UT) approach. Two sets of past experimental data are 
analyzed using the proposed method and two other known PCA-based approaches. The results show 
that the proposed PCA-based UT approach outperforms the other PCA-based approaches in terms of 
overall optimization performance. This implies that the proposed PCA-based UT method is very 
promising for optimization of dynamic systems with multiple responses. 
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