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Optimization of a multi-response dynamic system aims at finding out a setting combination of
input controllable factors that would result in optimum values for all response variables at all
signal levels. In real life situation, often the multiple responses are found to be correlated. The
main advantage of PCA-based approaches is that it takes into account the correlation among the
multiple responses. Two PCA-based approaches that are commonly used for optimization of
multiple responses in dynamic system are PCA-based technique for order preference by similarity
to ideal solution (TOPSIS) and PCA-based multiple criteria evaluation of the grey relational
model (MCE-GRM). This paper presents a new PCA-based approach, called PCA-based utility
theory (UT) approach, for optimization of multiple dynamic responses and compares its
optimization performance with other existing PCA-based approaches. The results show that the
proposed PCA-based UT method is superior to the other PCA-based approaches.

Utility theory
© 2013 Growing Science Ltd. All rights reserved

1. Introduction

The usefulness of Taguchi method (Taguchi, 1990) in optimizing the parameter design in static as well
as dynamic system has been well established. In a static system, the response variable representing the
output quality characteristic of the system has a fixed target value. A dynamic system differs from a
static system in that it contains signal factor and the target value depends on the level of the signal
factor set by the system operator. For example, signal factor may be the steering angle in the steering
mechanism of an automobile or the speed control setting of a fan. In other words, a dynamic system has
multiple target values of the response variables depending on the setting of signal variable of the
system.

Optimization of multiple responses in static system has drawn maximum attention of the researchers
(Derringer & Suich, 1980; Khuri & Conlon, 1981; Pignatiello, 1993; Su & Tong, 1997; Wu &
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Hamada, 2000; Tong & Hsieh, 2001; Wu, 2005; Liao, 2006; Kim & Lee, 2006; Tong et al., 2007;
Jeong & Kim, 2009; Pal & Gauri, 2010% 2010"). Product/process design with a dynamic system offers
the flexibility needed to satisfy customer requirements and can enhance a manufacturer’s
competitiveness. In recent time, therefore, many researchers have been motivated to study the robust
design problem concerning the dynamic systems. Miller and Wu (1996) have observed that Taguchi’s
dynamic signal-to-noise ratio (SNR) is appropriate for certain measurement systems but not for
multiple target systems. Wasserman (1996) has observed that the factor-level combination of a
dynamic system using Taguchi’s SNR might not be optimal. McCaskey and Tsui (1997) have found
that Taguchi’s procedure for dynamic system is appropriate only under a multiplicative model. Lunani
et al. (1997) have noted that using SNR as a quality performance measure might produce inaccuracies
due to a biased dispersion effect, thus making it impossible to minimize quality loss. Tsui (1999)
investigated the direct application of the response model (RM) approach for the dynamic robust design
problem. Joseph and Wu (2002) formulated the robust parameter design of dynamic system as a
mathematical programming problem. Chen (2003) developed a stochastic optimization modeling
procedure that incorporated a sequential quadratic programming technique to determine the optimal
factor-level combination in a dynamic system. Lesperance and Park (2003) have proposed the use of a
joint generalized linear model (GLM) so that model assumptions can be investigated using residual
analysis. Su et al. (2005) have proposed a hybrid procedure combining neural networks and scatter
search to optimize the continuous parameter design problem. Bae and Tsui (2006) have generalized
Tsui’s (1999) RM approach based on a GLM and reported that the GLM-RM approach can provide
more reliable results. It may be noted that all these research articles are focused on optimization of a
single-response dynamic system.

Industry has increasingly emphasized developing procedures capable of simultaneously optimizing the
dynamic multi-response problems in light of the increasing complexity of modern product design. To
cope with the need of the modern industries, several studies (Tong et al., 2002; Hsieh et al., 2005; Wu,
2009; Chang, 2006; Chang, 2008; Tong et al., 2008; Chang and Chen, 2011, Tong et al., 2004; Wang,
2007) have recommended procedures for optimizing multiple responses in a dynamic system. The
various approaches for solving multi-response optimization problems in dynamic system can broadly
be classified into three categories, e.g. (1) Response surface methodology and desirability function
(RSM-DF) based approaches (Tong et al., 2002; Hsieh et al., 2005; Wu, 2009) (2) Artificial
intelligence (AI) based approaches (Chang, 2006; Chang, 2008; Tong et al., 2008; Chang and Chen,
2011 ) and (3) Principal component analysis (PCA) based approaches (Tong et al., 2004; Wang, 2007).
The basic advantage of using desirability function as performance metric is that it is a simple unitless
measure and can allow the user to weigh the responses according to their importance. A disadvantage
with this metric is that it does not consider the expected variability and thus the obtained solution may
not yield an ideal result. The Al based approaches uses the techniques of artificial neural network
(ANN) and genetic algorithm (GA) to solve multi-response optimization problems. The advantage of
Al-based technique is that it does not require any specific relationship between quality characteristics
and signal factor. The main disadvantage with Al-based approaches is that the information it contains is
implicit and virtually inaccessible to the user. So the engineers cannot obtain efficient engineering
information during the period of the optimization process.

In real life situation, often the multiple responses are found to be correlated. The main advantage of
PCA-based approaches is that it takes into account correlation among the multiple responses. Tong et
al. (2004) have proposed a PCA-based technique for order preference by similarity to ideal solution
(TOPSIS) method, whereas Wang (2007) has proposed a PCA-based multiple criteria evaluation of the
grey relational model (MCE-GRM) for optimization of multiple responses in a dynamic system. The
PCA-based approaches are easily understandable and can be implemented using Excel sheet. So this
approach has gained quite popularity among the practitioners. This paper presents a new PCA-based
approach for optimization of multiple dynamic responses, called PCA-based utility theory (UT)
approach and compares its optimization performance with other existing PCA-based approaches. The
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results show that the proposed PCA-based UT method is very promising for optimization of multi-
response dynamic systems.

This article is organized as follows: the second section outlines briefly the dynamic system and the
generic approach for application of PCA-based methods for optimizing multi-response dynamic
systems. The third section describes the utility concept and the proposed PCA-based UT method for
optimizing multiple dynamic responses. In the next section, analyses of two experimental data sets
taken from literature are presented. We conclude in the final section.

2. Dynamic system and the PCA-based approaches for multi-response optimization

For dynamic system, ideal quality is based on the ideal relationship between the signal and response,
and quality loss is caused by deviations from the ideal relationship. So, significant quality improvement
can be achieved by first defining a system’s ideal function, then using designed experiments to search
for an optimal design which minimizes deviations from this ideal function. A dynamic system generally
assumes that a linear form exists between the response and the signal factor. The ideal function can be
expressed as follows:

Y=pM+e, (1)

where Y denotes the response of a dynamic system, M represents the signal factor, f is the slope and ¢
denotes the random error. Here, ¢ is assumed to follow a normal distribution with a mean of zero and
variance of ¢”. The deviation from the ideal function is represented by the variability of the dynamic
system (o°). The objective is to determine the best combination of input controllable variables so that
the system achieves the respective target value at each signal factor level with minimum variability
around the target value.

Let, y,, denotes the value of the response variable Y at the combination of K" level of signal factor (M f
)(k=1,2,...,5) and " level of noise factor (N,) (I =1,2,...,n). Then, the slope S and variability o ofa

single response dynamic system can be respectively obtained using the following equations (Taguchi,
1990):

S n

5 Ell—zlyk]Mk
= i (2)
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k=1i=1
1 s n
o= 23 (v =AM, ) 3)
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Taguchi used SNR (#) and system sensitivity (SS) as the performance measures in a dynamic system to
assess the robustness of a process (Tong et al, 2004; Wang, 2007). The SNR and SS values for ;”
response variable corresponding to i trial, n;and SS;, can be obtained using the following equations:

B;
i ZIOIOglo(_; 4)
ij

SS; =10log,, B;; (35

where S, and 03 are the estimates of the slope and variance of the ideal function for jth G=12,....p)

response variable corresponding to i (i = 1,2,..., m) trial. The PCA-based approaches for optimizing
multi-response dynamic system broadly use the following three steps:
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Step 1: Converting SNR values of the multiple responses into an overall SNR index (SNRI) and
converting SS values of the multiple responses into an overall SS index (SSI) taking into account the
correlation among the SRN values and SS values respectively.

Step 2: Determining the significant/influencing factors with respect to SNRI and SSI values. Then,
obtaining the optimal factor-level combination that optimizes SNRI value, and identifying the
adjustment factor (i.e. the factor that has a large effect on the SSI but no effect on SNRI).

Step 3: Changing the level of the adjustment factor (if available) in the chosen optimal factor-level
combination in such a way that the expected output values of the response variables becomes closer to
their target values.

The two PCA-based methods (Tong et al., 2004; Wang, 2007) mainly differ with respect to the first
step, i.e., methodology used for converting the SNR and SS values of the multiple responses into SNRI
and SSI values respectively. In both the methods, PCA is carried out first separately on normalized
SNR values and normalized SS values. In PCA-based TOPSIS method (Tong et al., 2004), TOPSIS
analysis is used to obtain SNRI and SSI values. These SNRI and SSI values are called as overall
performance index (OPI) for SNR (OPI-SNR) and OPI for SS (OPI-SS) respectively. On the other
hand, in PCA-based MCE-GRM method (Wang, 2007), multiple criteria evaluation of grey relational
model is used to obtain the SNRI and SSI values. The SNRI and SSI values, obtained in MCE-GRM
approach, are called as overall relative closeness to ideal solution (RCIS) for SNR (RCIS-SNR) and
RCIS for SS (RCIS-SS) respectively. The remaining two steps are the same for both the two methods.

3. Utility Concept and the Proposed PCA-based utility theory (UT) approach
3.1 Utility concept

Utility can be defined as the usefulness of a product or process in reference to the expectations of the
users. The overall usefulness of a product/process can be represented by a unified index, termed as
utility which is the sum of individual utilities of various quality characteristics of the product/process.
The methodological basis for utility approach is to transform the estimated value of each quality
characteristic into a common index.

If X; is the measure of effectiveness of j™ attribute (response variable) and there are p attributes
evaluating the outcome space, then the joint utility function (Derek, 1982) can be expressed as:

U(Xp, Xy X ) = fU(X), Uy (X)), U (X)), 6)

where Uj(X)) is the utility of jth response variable. The overall utility function is the sum of individual
utilities if the attributes are independent, and is given as follows:

UXp, Xy X)) = fluj()(j). 7
=

The attributes may be assigned weights depending upon the relative importance or priorities of the
characteristics. The overall utility function after assigning weights to the attributes can be expressed as:

UX), Xyos X)) = ileuj(xj), ®)
Z

where W; is the weight assigned to j™ attribute. The sum of the weights for all the attributes must be
equal to 1.

A preference scale for each response variable is constructed for determining its utility value. Two
arbitrary numerical values (preference numbers) 0 and 9 are assigned to the just acceptable and the best
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value of the response variable respectively. The preference number (P)) for j response variable can be
expressed on a logarithmic scale as follows (Kumar et al., 2000):

X

Pj:ijlogF 5 (9)
J

where X; = value of /" response variable, X "= just acceptable value of ™ response variable and A=

constant for jth response variable. The value of 4; can be found by the condition that if X, = X 7 (where

X 7is the optimal or best value for ™ response), then P;=9. Therefore,

log[ / ] (10)

Xj

The overall utility (U) can be calculated as follows:

U=3W,P, an
=

subject to the condition that ij =1.

Jj=1
Let us now consider the application of utility theory for optimizing a multi-response dynamic system.
The computed SNR values for p response variables corresponding to m experimental trials can be
expressed in the following series:

X, X0, X500 X, X

m?
where

X, = X0, X e X X, s
X, = X0 X s X e X
X, = X1 X pseees X X -

ml>

Here, X, representing the observed experimental results in i trial may be called as the i comparative
sequence.

Suppose the ideal SNR value of each response variable is known. Then, X, =1{Xo. Xy Xgpss Xo, |

may be called as the reference sequence, where Xo; represents the ideal SNR value of M G=12,...p)
response variable. It may be noted that X, and X; both include p elements, and Xo; and X represent the

numeric value of j* (j = 1,2,..., p) element in the reference sequence and i comparative sequence
respectively. So, the amount of deviations in SNR from their ideal values can be estimated for different
response variables for the m trials. These differences may be considered as quality losses for SNR for
the response variables, which can be appropriately converted to preference numbers and overall utility
values for SNR (UV-SNR), using Eqs. (9-11). Then, the process setting that would optimize the UV-
SNR can be selected examining the level averages of the control factors on the UV-SNR.

Similarly, based on the ideal sequence and comparative sequences for the SS values, quality losses for
SS for different response variables can be estimated, which can be appropriately converted to overall
utility values for SS (UV-SS). Then, the factors which have significant impact on UV-SS can be
identified examining the factor effects on UV-SS and the existence of adjustment factor(s) in the
dynamic system can be detected. The level of the adjustment factor may be changed so that the actual
output value becomes closer to the target value.
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This approach should work well if the response variables are independent. However, in reality often the
multiple responses are correlated. This problem can be overcome by defining the reference and
comparative sequences with respect to the principal component scores (PCS) instead of the original
response variables. This is because the principal components will be independent even when the
original response variables are correlated.

Based on the above logic, PCA-based UT approach is proposed for optimization of multiple responses
in a dynamic system.

3.2. Proposed PCA-based UT Approach

The computational requirements in the proposed PCA-based UT method can be expressed in the
following ten steps:

Step 1: Calculate SNR and SS values corresponding to different trials for each response variable using
Eq. 4 and Eq. 5 respectively.
Step 2: Normalize the SNR and SS values for each response variable using the following equations:

77;] _77]‘

My =—"7"—"3> 12

! sd(n;) (12)
SS. —SS,

NSS, =——--, (13)
T sd(SS))

where N7, and NSS, are normalized SNR and SS values respectively for ™ (j = 1,2,...,p) response

variable in i trial, 77,and SS; are average SNR and SS values respectively for /* (j= 1,2,...,p) response
variable, and sd(n;)and sd(SS;)are standard deviation of SNR and SS values respectively for "G =
1,2,...,p) response variable.

Step 3: Find out reference sequences for the SNR values as well as SS values.

Higher SNR as well as SS values imply better quality. So the elements in reference sequence for SNR
will be the largest normalized SNR values for the response variables. Similarly, the elements in
reference sequence for SS will be the largest normalized SS values for the response variables.

Step 4: Conduct PCA separately on the normalized SNR values and SS values, and obtain the
eigenvalues, eigenvectors and proportion of variation explained by different principal components of
normalized SNR and SS values.

Step 5: Compute principal component score (PCS), i.e. the values of each principal component of SNRs
for different comparative sequences (trials) and for the reference sequence. Also PCS values of each
principal component of SSs for different comparative sequences (trials) and for the reference sequence.

The PCS value of /" principal component of SNRs corresponding to i comparative sequence of SNR (
PCSSMY) can be obtained using Eq. (14) and the value of /" principal component of the reference
sequence can be estimated using Eq. (15) given below:

PCS;™ =anNn, +apNn, +..+a,Nn,, (i=12,...mand [=12,..p) (14)

PCSy™ =ay x Nnp™ +a, x Npy™ +...+a, x Npy™ (1=12,...p) (15)

Il‘h

where, a,, a, ..., a,are eigen vector of the /" principal component of SNRs.
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On the other hand, the PCS value of /" principal component of SS corresponding to i comparative
sequence of SS ( PCSS%) can be obtained using Eq. (16) and the PCS value of /” principal component of
the reference sequence can be estimated using Eq. (17) given below:

PCS;® =b,NSS; +b,,NSS,, +...+b,NSS,, (i=1.2,...mand [=1.2,...p) (16)
PCSy = by x NSS™ +b, x NSS3™ +...+b, x NSS»™ (I=1,2,....,p) (17)
where, by, by, ..., b, are eigen vector of the I" principal component of SSs.

Step 6: Compute the quality losses in different trials with respect to different principal components.

The absolute difference between PCS3'® and PCS3 ® values can be considered as the quality loss of
SNR for /" principal component in i trial. Similarly, the absolute difference between PCS;° and
PCSS values can be considered as the quality loss of SS for / principal component in i trial.

Therefore, the quality losses of SNR and SS for /* principal component in i'™ trial (Z2** and L) can be
estimated using Eq. (18) and Eq. (19) respectively.

L" =|PCs™ - PCsy™| (18)
L =|Pcs;® - PCsyy| (19)

Step 7: Apply UT for estimating the overall utility values for different trials.

Using Eq. (9) and Eq. (10), the estimated quality losses of SNR for different principal components can
be appropriately converted to preference numbers. Then, the overall utility values of SNR (UV-SNR)
for different trials can be estimated using En. (11). Similarly, the overall utility values of SS (UV-SS)
for different trials can be estimated using Eqgs. (9-11). It is suggested here to consider the proportion of
variation expressed by different principal components as their weights.

Step 8: Perform ANOVA (analysis of variance) on UV-SNR values and UV-SS values for
identification of the most influencing control factors on UV-SNR and UV-SS respectively.

Step 9: Use arithmetic average to calculate the factor effects on UV-SNR and UV-SS values.

Step 10: Determine the optimal factor level combination by higher-the-better factor effects on UV-SNR
value.

Step 11: 1dentify the adjustment factor (a factor significantly affecting UV-SS value but insignificantly
affecting UV-SNR value), if any. Then change the level of the adjustment factor in the optimal solution
in such a way that the actual output value becomes closer to the target value. Implement the adjusted
optimal solution.

4. Analysis, Results and Discussion

For the purpose of illustration of the proposed PCA-based UT approach and comparison of its
optimization performance with the other available PCA-based approaches, two sets of the past
experimental data are taken into consideration. These two data sets are analyzed using the proposed
PCA-based UT method, PCA-based TOPSIS method and PCA-based MCE-GRM methods as two
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separate case studies. According to Taguchi, higher SNR implies better quality. Therefore, it is decided
to consider the expected total SNR of the response variables at the optimal process condition as the
performance metric for comparison of the optimization performance of these three PCA-based
approaches.

4.1 Case study 1

Hsieh et al. (2005) introduced a problem of the control of two responses relating to optically pure
compound performance using eight chemical factors: type of cap, shaking rate, glucose concentration,
yeast addition, concentration of enzyme inhibitor, pH of reaction solution, buffer concentration, and
yeast preculture time (denoted as A, B, C, D, E, F, G, and H respectively). The two optimized
responses are S-CHBE (Ys), where a larger response is desired, and R-CHBE (Yz), where a smaller
response is desired. Response S-CHBE (Ys) is more important than R-CHBE (Yz). When carefully
controlled, the S-CHBE forming enzymes are more active than R-CHBE and ultimately produce a
higher optical purity. Since altering the substrate concentration would affect both the responses Ys and
Yz, the substrate concentration was considered as a signal factor (M) in the experiment. Additionally,
the freshness of the yeast was considered as a noise factor (V). The L,s orthogonal array was employed
in that experiment. Six observations were made for both Ys and Yz under each experimental
combination. According to the ideal function as given in Eq. (1), the regression models for Y5 and Yz on
the signal factor M for each experimental run were established and then, SNR and SS for each response
were computed using Eq. (4) and Eq. (5) respectively. These computed values are displayed in Table 1.
The same experimental data are reanalyzed here using the proposed PCA-based UT approach and the
other PCA-based procedures as case study 1.

Higher SNR as well as SS values imply better quality and so the elements in reference sequence for
SNR as well as SS should be the largest normalized SNR and SS values for the response variables.
Thus, the reference sequence for SNR and SS values are {2.141, 2.091} and {1.826, 2.032}
respectively. Now, the SNR and SS values of the response variables for the 18 trials are subjected to
PCA in STATISTICA software separately. The eigenvalues, proportion of variation explained by
different principal components and eigenvectors corresponding to different principal components
arising from PCA of SNR and SS values are shown in Tables 2 and 3 respectively. Then applying step
5 described in section 3.2, PCSs for different comparative sequences (i.e. trials) and the reference
sequence are computed, and using step 6, the quality losses of each principal component are estimated
for different trials. Utility theory is now applied to the dataset of quality losses. Applying Eq. (9) and
Eq. (10), the quality losses for each principal component of SNR corresponding to different trials are
converted to preference numbers between 0 and 9. The average preference number for a trial is taken as
the measure of overall utility value for SNR (UV-SNR) for that trial. Similarly, overall utility values
for SS (UV-SS) for different trials are obtained. On the other hand, overall OPI-SNR and OPI-SS are
computed from the same data set applying PCA-based TOPSIS method, and RCIS-SNR and RCIS-SS
are computed using PCA-based MCE-GRM method. The computed UV-SNR, UV-SS, OPI-SNR, OPI-
SS, RCIS-SNR and RCIS-SS values for different trials are shown in Table 4.

The ANOVA is carried out separately on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-
SS values. In these analyses, the F-values for various factors are first computed using the error variance
and then, the sum of squares of the factors having F-values less than equal to 1 are pooled with the
estimated error variance. The F-values for the remaining factors are finally estimated using the pooled
error variance. Table 5 shows the results of these ANOVA. It can be noted from Table 5 that factors B,
D and E significantly affect the SNRI values (i.e. UV-SNR, OPI-SNR and RCIS-SNR) obtained by all
the three PCA-based approaches. However, the factors affecting the SSI (i.e. UV-SS, OPI-SS and
RCIS-SS) are different in the three PCA-based approaches. Factor H has significant effect on UV-SS,
factors A, D, E and H have significant effects on OPI-SS and factors A and D have significant effects
on RCIS-SS values. It may be recalled that a factor that has significant effect on SSI but no effect on
SNRI may be considered as an adjustment factor. This implies that H is the adjustment factor according
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to the proposed PCA-based UT approach whereas A and H are adjustment factors according to PCA-
based TOPSIS method and A is the adjustment factor according to the PCA-based MCE-GRM method.

The level averages on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values are
displayed in Table 6. Higher UV-SNR, OPI-SNR and RCIS-SNR value imply better quality and
therefore, examining Table 6, the optimal solutions based on the proposed PCA-based UT method,
PCA-based TOPSIS and PCA-based MCE-GRM method are chosen as A;B3;CiD3;E;F,GsH;,
A1B3C2D3E2F1G3H1 and A1B3C3D1E3F3G3H1, respectively.

As mentioned earlier, the ultimate interest of the process engineer is to maximize the total SNR value.
So the SNR values of the individual response variables at different optimal process conditions derived
by these methods are predicted using additive model. Table 7 displays the predicted SNR values for the
response variables at the different optimal conditions. Examining the results in Table 7, it is found that
the optimal condition derived by application of the proposed PCA-based UT method results in higher
total SNR, which implies better optimization performance.

Table 1
. . 2
Experimental layout and estimates of , ¢”, SNR and SS for the responses (case study 1)
Experimental layout Estimates from regression models Normalized Normalized
! : SNR ss SNR sS
Factors and their levels p o
Trial 2 2
A B CDEFGH B By oy, oy Ys Ye Ys Yr Ys Yi Ys Yi
T 1 1 1 1 1 1 1 1 0455 01042 01708 00177 081 212 -687 -19.64 -1.312 079 0876  0.055
2 1 1 2 2 2 2 2 2 04224 01218 00468 00110 581 130 -749 -1829 1057 1281 0280  0.668
3 1 1 3 3 3 3 3 3 04077 01123 00701 00111 375 055 -779 -1899 0081 1172 -0.017  0.349
4 1 2 1 1 2 2 3 3 04608 0.1083 0.1156 00103 264 056 -673 -1931 -0444 1173 1.010  0.206
5 1 2 2 2 3 3 1 1 04547 00972 01376 00033 177 457 -685 2025 -0857 1762 0.898 -0.219
6 1 2 3 3 1 1 2 2 03757 01402 00532 00163 424 081 -850 -17.07 0312 1210 -0702 1221
7 1 3 1 2 1 3 2 3 0393 012609 00633 00648 395 -605 -804 -17.93 0.174 0202 -0255 0.829
8 I 3 2 3 2 1 3 1 0396 01061 00241 00068 810 2.9 -808 -1949 2141 1412 -0291 0.126
9 1 3 3 1 3 2 1 2 05079 00736 01013 00013 406 620 -588 -22.66 0227 2001 1826 -1.312
100 2 1 1 3 3 2 2 1 04046 0.1061 00665 0.0044 391 408 -786 -19.49 0.158 1.690 -0.081  0.126
12 1 2 1 1 3 3 2 0395 00682 01717 00257 032 -742 -797 2332 -1.844 0000 -0.187 -1.612
12 2 1 3 2 2 1 1 3 03613 0108 0096 00239 131 -3.12 -884 -1933 -1.075 0.633 -1.030  0.195
13 2 2 1 2 3 1 3 2 04377 01027 0076 00022 402 681 -7.18 -1977 0207 2091 0578 -0.002
14 2 2 2 3 1 2 1 3 03147 01723 00650 00513 183 -238 -10.04 -1527 -0.828 0.742 -2.188  2.032
15 2 2 3 1 2 3 2 1 04688 00809 0.1213 00027 258 385 -658 -21.84 -0472 1.655 1154 -0.941
6 2 3 1 3 2 3 1 2 0348 01129 00263 00133 660 -0.18 -920 -1895 1431 1.063 -1373 0370
17 2 3 2 1 3 1 2 3 03679 00595 00562 00020 3.82 248 -869 2451 0.113 1455 -0878 -2.148
18 2 3 3 2 1 2 3 1 04274 0.1043 00509 0.0098 555 045 -738 -19.63 0933 1157 0379  0.058
Maximum 2041 2.091 _1.826  2.032
Table 2
Results of PCA on SNR values of the responses (case study 1)
Principal component Eigen value Proportion of explained variation Eigenvector
First 1.381 0.69 0.707 0.707
Second 0.619 0.31 0.707 -0.707
Table 3
Results of PCA on SS values of the responses (case study 1)
Principal component Eigen value Proportion of explained variation Eigenvector
First 1.429 0.71 0.707 0.707

Second 0.571 0.29 -0.707 0.707
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Table 4
UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values (case study 1)

Trial  Proposed PCA-based UT method PCA-based TOPSIS method PCA-based MCE-GRM method

no. UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS
1 0.863 3.155 0.300 0.708 0.677 1.866
2 5.102 4.268 0.787 0.565 1.766 1.592
3 2.692 3.835 0.604 0.554 1.192 1.364
4 1.933 3.441 0.515 0.709 0.977 2.013
3 1.707 2.774 0.541 0.740 0.815 1.829
6 3.107 2.477 0.649 0.387 1.307 1.163
7 4.076 2.947 0.458 0.477 1.225 1.317
8 7.297 3.308 0.984 0.535 2.899 1.206
9 3.446 2.051 0.713 0.945 1.369 2.560
10 3.065 8.016 0.685 0.565 1.294 1.303
11 0.271 1.096 0.177 0.690 0.472 1.071
12 1.074 1.895 0.318 0.420 0.731 0.928
13 3.498 3.017 0.712 0.672 1.362 1.649
14 1.362 1.446 0.376 0.197 0.813 0.699
15 2.115 2.057 0.584 0.845 0.986 1.935
16 5.234 1.540 0.809 0.354 2.034 0.833
17 2.851 0.633 0.652 0.627 1.241 0.686
18 4.753 3.160 0.745 0.638 1.658 1.537
Table 5
Results of ANOVA on UV-SRN and UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 1)
S UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS
ource SS  DF F SS DF __F ss DF F SS _ DF F ss DF F ss DF F
A 2.00 1 3.95 0.65 1 - 0.013 1 - 0.020 1 16.31 0.148 1 3.52 1.013 1 19.0
B 22.6 2 22.3 7.04 2 5.2 0.191 2 10.5 0.000 2 - 1.990 2 235 0.148 2 1.40
C 0.23 2 - 6.76 2 5.0 0.001 2 - 0.016 2 6.53 0.048 2 - 0.535 2 5.02
D 11.6 2 11.5 5.85 2 4.3 0.113 2 6.22 0.311 2 122.1 1.214 2 14.3 1.086 2 10.1
E 5.97 2 5.90 1.11 2 - 0.173 2 9.48 0.087 2 34.47 0.902 2 10.6  0.251 2 2.36
F 1.13 2 - 7.14 2 5.2 0.036 2 2.01 0.009 2 3.73 0.204 2 2.41 0.412 2 3.87
G 4.98 2 4.92 4.90 2 3.6 0.058 2 3.19 0.017 2 6.73 0.386 2 4.57  0.069 2 -
H 4.39 2 4.34 9.38 2 6.9 0.094 2 5.16 0.092 2 36.34 0.508 2 6.02 0.624 2 5.86
Error 1.67 2 1.62 2 0.030 2 0.004 2 0.120 2 0.144 2
(P. error) 3.04 6 3.38 5 0.045 5 0.005 4 0.169 4 0.213 4
Total 54.6 17 44.4 17 0.712 17 0.560 17 5.525 17 4.285 17
“Statistically significant at 5% level
Table 6
Level averages on UT-SNR, UT-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 1)
UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS
Factor Level Level Level Level Level Level Level Level Level Level Level Level Level Level Level Level Level Level
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
A 3.358  2.692 3.139 2.540 1.359 1.177 - 0.617 0.562 - 0.624 0.556 - 1.657 1.182 -
B 2.178 2287 4.609 3.711 2.535 2.273 1.022 1.043 1.738 0.479 0.563 0.727 0.584 0.592 0.596 1.354 1.548 1.357
C 3.111 3.098 2.864 3.686 2.254 2.579 1.261 1.334 1.207 0.580 0.586 0.602 0.581 0.559 0.631 1.497 1.181 1.581
D 1.913 3.368 3.793 2.072 3.010 3.437 0.954 1.259 1.590 0.490 0.594 0.685 0.754 0.585 0.432 1.689 1475 1.095
E 2405 3.793 2.876 2.380 2.751 3.388 1.025 1.565 1.212 0.451 0.666 0.651 0.516 0.571 0.684 1.275 1.418 1.565
F 3.115 3277 2.683 2414 3.730 2.375 1.370 1.313 1.121 0.602 0.637 0.529 0.558 0.603 0.610 1.250 1.617 1.392
G 2.281 3.386 3.407 2.144 3.400 2.976 1.073 1.303 1.427 0.509 0.636 0.623 0.561 0.578 0.633 1.452 1.333 1473
H 3.300  3.443 2.331 3.745 2.408 2.366 1.388 1.385 1.030 0.640 0.641 0.487 0.672 0.602 0.497 1.613 1478 1.168
Table 7
Predicted SNR values at the optimal conditions derived by the proposed and other PCA-based methods
. . .. Predict NR
Optimization method Optimal condition Yredlc edS % Total SNR
S R
Proposed PCA-based UT method AB;C,D;E;F,G;H, 9.089 dB 2.453 dB 11.542 dB
PCA-based TOPSIS method AB;C,DsEF G3H,y 8.403 dB 2.449 dB 10.852 dB

PCA-based MCE-GRM method A,B;C;D,E;F3G3H, 4.394 dB 4.920 dB 9.315 dB
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4.2 Case study 2

Chang (2006) simulated an example of a dynamic system with multiple responses for illustrating
application of their proposed neural network-based desirability function approach for optimizing
multiple dynamic responses. That example involved three response variables, i.e. Y1, > and Y3. Chang
(2006) obtained the hypothetical experimental data based on Monte Carlo simulation. Six control
factors, i.e. A, B, C, D, E and F were allocated to L5 orthogonal array. The signal factor had three
levels, e.g. M, M, and M3, and the corresponding values were 10, 20 and 30 respectively. Two levels
of noise factor (N; and N;) were also in the system. Twelve observations were simulated for Y, ¥, and
Y3 under each experimental combination. The simulated experimental data are available in Chang
(2006). The same experimental data are reanalyzed here using the proposed PCA-based UT approach
and the other PCA-based procedures as case study 2. According to the ideal function as given in Eq.
(1), the regression models for Y;, Y, and Y3 on the signal factor M for each experimental run were
established and then, SNR and SS for each response were computed using Eq. (4) and Eq. (5)
respectively. These computed values are displayed in Table 8.

As higher SNR as well as SS values imply better quality, the largest normalized SNR and SS values
for the response variables are taken as the elements in the reference sequence for SNR and SS
respectively, i.e. the reference sequence for SRN and SS are considered as {2.39, 2.12, 2.41} and
{1.19, 1.46, 1.38} respectively. Now, the SNR and SS values of the response variables for the 18 trials
are subjected to PCA in STATISTICA software separately. The eigenvalues, proportion of variation
explained by different principal components and eigenvectors corresponding to different principal
components arising from PCA of SNR and SS values are shown in Tables 9 and 10 respectively. Then
applying steps 5-6 described in Section 3.2, PCSs for different comparative sequences (i.e. trials), PCSs
for the reference sequence and the quality losses of each principal component are estimated for
different trials. Utility theory (UT) is then applied to obtain the UV-SNR and US-SS values for
different trials. On the other hand, overall OPI-SNR and OPI-SS are computed from the same data set
applying PCA-based TOPSIS method, and RCIS-SNR and RCIS-SS are computed using PCA-based
MCE-GRM method. The computed UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS
values for different trials are shown in Table 11.

The ANOVA is carried out separately on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-
SS values. Table 12 shows the results of these ANOVA. It can be noted from Table 12 that only factors
F significantly affect UV-SNR and OPI-SNR whereas only factor E significantly affect RCIS-SNR. On
the other hand, examining the ANOVA of SSI values (i.e. UV-SS, OPI-SS and RCIS-SS) it is found
that, there is no adjustment factor according to the proposed PCA-based UT approach whereas B, C
and E are the adjustment factors according to PCA-based TOPSIS method and B, C, D and E are the
adjustment factor according to the PCA-based MCE-GRA method.

The level averages on UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values are
displayed in Table 13. Higher UV-SNR, OPI-SNR and RCIS-SNR value imply better quality and
therefore, examining Table 13, the optimal solutions based on the proposed PCA-based UT method,
PCA-based TOPSIS and PCA-based MCE-GRA method are chosen as A3B1C3D3E3F3, A1B3C1D3E2F3
and A3B3C3D3E2F3, respectively.

As mentioned earlier, the ultimate interest of the process engineer is to maximize the total SNR value.
So the SNR values of the individual response variables at different optimal process conditions derived
by these methods are predicted using additive model (Taguchi, 1990). Table 14 displays the predicted
SNR values for the response variables at the different optimal conditions. Examining the results in
Table 14, it is found that the optimal condition derived by application of the proposed PCA-based UT
method results in higher total SNR, which implies better optimization performance.
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Table 8

Experimental layout and estimates of £, o”, SNR and SS for the responses (case study 2)

Experimental layout Estimates from regression models Normalized Normalized
Factors and their B 2 SNR Ss SNR S8
= levels i
“aBCcDEF fy By, Py, 0'31 oy O'i ny, r, ny y4npynyuynunil
I 1 1 1 1 1 1 769 08 .19 6054 554 087 -10.10 -8.83 -1389 1772 -1.39 -14.51 -0.83 -120 -042 071 0.89 036
2 2 2 2 2 2 2 85 104 18 4617 292 092 -8.00 -433 -14.55 1865 031 -14.89 -036 -0.14 -0.57 046 026 043
3 3 3 3 3 3 3 813 106 21 434 114 221 183 -0.05 -1685 1821 052 -13.40 185 086 -1.10 -1.79 -0.66 138
4 1 1 2 2 3 3 79 074 21 599 017 044 977 510 -9.80 1801 -2.63 -1339 076 207 053 071 -2.54 -0.39
5 2 2 3 3 1 1 734 123 18 5907 274 021 -1040 259 819 1731 178 -1490 -090 0.26 090 0.69 020 -1.17
6 33 1 1 2 2 85 107 .17 2971 285 089 -608 -396 -1469 1865 059 -1521 007 -006 -060 004 024 038
7 1 2 1 3 2 3 804 113 20 928 037 050 -157 530 -10.87 1810 1.04 -13.86 1.09 212 028 -107 -1.76 -024
8 2 3 2 1 3 1 926 087 20 9947 413 157 -10.64 -7.39 -1606 1933 -123 -14.10 -095 -086 -091 119 060 1.00
9 3 1 3 2 1 2 781 099 23 9599 225 007 -11.97 -3.63 -1.61 1785 010 -12.96 -125 0.02 241 115 000 -2.33
10 1 3 3 2 2 1 85 078 22 38.5 08 130 -728 -1.53 -1435 1859 -2.13 -13.21 -020 051 -0.52 029 -0.93 0.80
11 2 1 1 3 3 2 825 108 19 1516 9.88 083 347 931 -1377 1833 0.64 -1457 066 -131 -039 -0.60 146 031
12 3 2 2 1 1 3 766 115 19 2626 292 154 -651 -3.40 -1632 17.69 125 -1443 002 0.07 -097 -008 026 098
13 1 2 3 1 3 2 742 094 23 5795 297 009 -1022 -527 -240 1741 -0.55 -12.74 -086 -037 223 067 027 -2.08
14 2 3 1 2 1 3 75 113 .18 1803 7.32 051 -498 -7.58 -1195 1757 1.06 -14.84 032 -091 003 -044 116 -021
15 3 1 2 3 2 1 920 08 .19 7346 508 112 938 -880 -1495 1928 -1.74 -1446 -0.67 -1.19 -066 090 0.80 0.64
6 1 3 2 3 1 2 78 106 .19 2907 128 081 -671 -058 -13.68 1792 048 -1458 007 0.74 -037 002 -0.55 028
17 2 1 3 1 2 3 743 08 .18 210 1.89  0.66 420 -4.10 -1325 1742 -1.34 -15.02 239 -009 -027 -248 -0.17 0.07
18 3 2 1 2 3 1 869 096 22 1983 3.63 052 -419 -593 -10.33 1878 -0.33 -13.13 050 -0.52 040 -0.35 047 -0.19
Maximum 2.3 2.12 2.41 1.19 1.46 1.38
Table 9
Results of PCA of normalized SN ratios for the responses (case study 2)
Principal component Eigen value Proportion of explained variation Eigenvector
First 1.394 0.46 0.728 0.146 -0.669
Second 1.095 0.36 0.187 0.897 0.400
Third 0.511 0.17 0.659 -0.417 0.626
Table 10
Results of PCA of normalized SS for the responses (case study 2)
Principal component Eigen value Proportion of explained variation Eigenvector
First 1.505 0.50 0.496 -0.691 0.525
Second 0.957 0.32 0.731 0.006 -0.682
Third 0.538 0.18 0.468 0.723 0.508
Table 11
UV-SNR, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS values (case study 2)
Trial no Proposed PCA-based UT method PCA-based TOPSIS method PCA-based MCE-GRM method
) UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS
1 1.291 5.702 0.351 0.502 0.707 1.185
2 2.360 3.594 0.467 0.537 0.948 1.175
3 5.640 1.193 0.767 0.382 1.321 0.827
4 5.942 0.933 0.558 0.670 1.074 1.580
5 3.611 4.050 0.358 0.000 0.644 0.525
6 2.646 3.301 0.524 0.511 1.005 1.178
7 6.701 0.769 0.767 0.302 1.223 0.755
8 1.083 5.943 0.369 0.790 1.057 1.862
9 3.129 3.546 0.281 0.359 0.788 0.824
10 3.448 2.406 0.547 0.751 1.142 1.748
11 2.018 4.059 0.459 0.416 0.929 0.949
12 2.473 3.470 0.547 0.167 0.734 0.674
13 3.607 3.038 0.259 0.307 0.723 0.740
14 2.539 5.555 0.432 0.158 0.770 0.688
15 1.112 5.462 0.360 0.845 1.096 2.131
16 4.100 2.252 0.575 0.323 0.902 0.862
17 5.345 1.080 0.669 0.408 1.212 1.161
18 3.479 3.489 0.459 0.598 1.131 1.132
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Table 12
ANOVA results on UV-SRN, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 2)
Source UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS
SS DF F SS DF F SS DF F SS DF F SS DF F
A 6.2321 2 2.30 7.0900 2 2.56  0.0078 2 - 0.0337 2 - 0.0222 2 - 0.0243 2 -
B 1.0889 2 - 0.5920 2 - 0.0248 2 0.1528 2 7.12" 0.0521 2 1.81 0.7291 2 39.75°
© 5.5184 2 2.03 5.4930 2 1.99  0.0014 2 - 0.1144 2 533" 0.0004 2 - 0.6561 2 3577
D 3.9110 2 1.44 1.9248 2 - 0.0342 2 1.59 0.0538 2 2.50 0.0389 2 - 0.1052 2 5.74"
E 2.2990 2 - 5.7002 2 2.06  0.0527 2 245  0.3436 2 1599"  0.4078 2 14.16"  1.0034 2 54.70"
F 19.14 2 7.06* 16.46 2 595* 0.1710 2 7.96"  0.1759 2 8.19" 0.0900 2 3.12 0.9204 2 50.18"
Error 8.8182 5 9.9337 5 0.0841 5 0.0151 5 0.0970 5 0.0399 5
(P Error) 12.2061 9 12.4504 9 0.1181 11 0.0488 7 0.1584 11 0.0642 7
Total 47.0064 17 47.1922 17 0.3761 17 0.8893 17 0.7083 17 3.4784 17
“Statistically significant at 5% level
Table 13
Level averages on UV-SRN, UV-SS, OPI-SNR, OPI-SS, RCIS-SNR and RCIS-SS (case study 2)
Factor UV-SNR UV-SS OPI-SNR OPI-SS RCIS-SNR RCIS-SS
Level Level Level Level Level Level Level Level Level Level Level Level Levell Level Level Level Level Level
1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3
A 2.872 3.243 3.973 3.404 3.723 2.847 0.510 0.459 0.490 0.476 0.385 0.477 0.962 0.927 1.012 1.1451 1.0600 1.1277
B 4.182 2.826 3.080 2.517 4.047 3.410 0.446 0.476 0.536 0.533 0.318 0.486 0.968 0.901 1.033 1.3049 0.8335 1.1943
C 3.112 2.845 4.130 3.812 3.609 2.552 0.499 0.479 0.480 0.414 0.555 0.368 0.961 0.968 0.972 0.9811 1.3809 0.9708
D 2.741 3.483 3.864 3.756 3.254 2.964 0.453 0.457 0.548 0.447 0.512 0.378 0.906 0.975 1.019 1.1333 1.1913 1.0081
E 2.857 3.602 3.628 4.096 2.769 3.109 0.424 0.556 0.479 0.251 0.559 0.527 0.757 1.104 1.039 0.7929 1.3581 1.1818
F 2.337 2.977 4.773 4.509 3.298 2.167 0.407 0.428 0.623 0.581 0.409 0.348 0.963 0.883 1.056 1.4307 0.9548 0.9473

Table 14
Predicted SN ratios at the optimal conditions derived by the three methods
Optimization method Opti.n?al Predicted SNR values Total
condition Y Y, Y; SNR
Proposed PCA-based UT method AB;C;D;EF; -0.256dB  -0.777dB -10.448dB -11.481 dB
PCA-based TOPSIS method A,B;C,D;E,F; 1.257 dB 2.680dB -17.591dB  -13.654 dB
PCA-based MCE-GRM method A;B;C;3D;E,Fs 2.242 dB 1.543dB -16.077dB  -12.293 dB

5. Conclusion

Industries are increasingly emphasizing optimization of multiple responses in dynamic system in the
light of increasing complexities of modern manufacturing design. Often the multiple responses are
correlated. Hence, the PCA-based approaches which take into account the possible correlation among
the responses have gained popularity among the practitioners. This paper proposes a new PCA-based
approach, called PCA-based utility theory (UT) approach. Two sets of past experimental data are
analyzed using the proposed method and two other known PCA-based approaches. The results show
that the proposed PCA-based UT approach outperforms the other PCA-based approaches in terms of
overall optimization performance. This implies that the proposed PCA-based UT method is very
promising for optimization of dynamic systems with multiple responses.
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