
* Corresponding author. Tel./fax: +98-871-6660073 
E-mail: f.ahmadizar@uok.ac.ir (F. Ahmadizar)  
 
© 2014 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2013.09.003 
 
 

 
 

International Journal of Industrial Engineering Computations 5 (2014) 115–126 

 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 

 
 
 

 

 

 
 
Clustering fuzzy objects using ant colony optimization 

 

 
 
Fardin Ahmadizara* and Mehdi Hosseinabadi Farahanib  
 
 
 
 
 
aDepartment of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran 
bDepartment of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran 

C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received June 2 2013 
Received in revised format            
September 7   2013 
Accepted September 7 2013 
Available online  
September 9 2013 

 This paper deals with the problem of grouping a set of objects into clusters. The objective is to 
minimize the sum of squared distances between objects and centroids. This problem is important 
because of its applications in different areas. In prior literature on this problem, attributes of 
objects have often been assumed to be crisp numbers. However, since in many realistic situations 
object attributes may be vague and should better be represented by fuzzy numbers, we are 
interested in the generalization of the minimum sum-of-squares clustering problem with the 
attributes being fuzzy numbers. Specifically, we consider the case where an object attribute is a 
triangular fuzzy number. The problem is first formulated as a fuzzy nonlinear binary integer 
programming problem based on a newly proposed dissimilarity measure, and then solved by 
developing and demonstrating a problem-specific ant colony optimization algorithm. The 
proposed algorithm is evaluated by computational experiments. 
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1. Introduction  
 

Clustering involves partitioning a set of objects into clusters in such a way that the objects belonging to 
the same cluster must be as similar as possible, while those belonging to different clusters must be as 
dissimilar as possible. Cluster analysis has found applications in different areas including image 
segmentation, information retrieval, marketing, analysis of chemical compounds, etc. Considering the 
crispness or fuzziness of classes as well as attributes of objects, clustering models can be categorized as 
follows (D’Urso & Giordani, 2006): 

 Crisp clustering of crisp objects 
 Crisp clustering of fuzzy objects 

 Fuzzy clustering of crisp objects 
 Fuzzy clustering of fuzzy objects 



  

       

116

In crisp clustering, also known as hard clustering, each object would just belong to one cluster, while in 
fuzzy clustering an object has a degree of membership in each cluster, i.e., the clusters are allowed to 
overlap. In both crisp and fuzzy clustering, object attributes may be represented by crisp or fuzzy 
numbers. 

Most of studies conducted on clustering problems have mainly assumed that object attributes are fixed 
and deterministic (crisp clustering of crisp objects, in particular). However, in many real-world 
situations, due to the imprecise or uncertainty of data sources, the attributes should better be 
represented by fuzzy numbers. Consequently, dealing with clustering of fuzzy objects can provide a 
great deal of applications and advantages. 

The k-means algorithm (MacQueen, 1967) and its variations such as the global k-means algorithms 
(Likas et al., 2003; Bagirov, 2008) are the most popular crisp clustering methods. However, to obtain 
better clustering results, researchers have recently focused on the use of metaheuristic algorithms like 
genetic algorithms (Kivijarvi et al., 2003; Handl & Knowles, 2007; Chang et al., 2009; Xiao et al., 
2010), tabu search (Al-Sultan, 1995; Liu et al., 2008), simulated annealing (Sun et al., 1994), ant 
colony optimization (ACO) algorithms (Shelokar et al., 2004; Runkler, 2005) and hybrid algorithms 
(Pirzadeh et al., 2012). 

The fuzzy c-means algorithm (Bezdek, 1981) and its variations such as the Gustafson-Kessel algorithm 
(Gustafson & Kessel, 1979) are the most popular fuzzy clustering techniques. Metaheuristic algorithms 
have also been applied to solve fuzzy clustering problems (see, e.g., Al-sultan & Fedjki, 1997; Kanade 
& Hall, 2004). However, some researchers have paid attention to fuzzy data. Hathaway et al. (1996) 
have proposed fuzzy c-means clustering for trapezoidal fuzzy numbers. A fuzzy c-numbers clustering 
procedure for LR-type fuzzy numbers has been proposed by Yang and Ko (1996), and extended to 
conical fuzzy vectors by Yang and Liu (1999). Yang et al. (2004) have suggested fuzzy clustering 
algorithms for symbolic and fuzzy data. The so-called alternative fuzzy c-numbers clustering algorithm 
for LR-type fuzzy numbers has been proposed by Hung and Yang (2005) based on an exponential-type 
distance measure. D’Urso and Giordani (2006) have proposed a fuzzy c-means clustering model based 
on a weighted dissimilarity measure for comparing pairs of symmetric fuzzy data. Hung et al. (2010) 
have suggested a clustering procedure, which is robust to initials and cluster number, by modifying the 
similarity-based clustering method proposed by Yang and Wu (2004) to handle LR-type fuzzy 
numbers. Recently, Jafari et al. (2013) have investigated for clustering cellular manufacturing the 
performance of two fuzzy clustering methods. 

This paper deals with the problem of crisp clustering of fuzzy objects. We consider the case where each 
object attribute is a triangular fuzzy number (TFN). In order to introduce a dissimilarity measure 
between fuzzy data, the (squared) Euclidean distance is generalized to TFNs. The problem is 
formulated as a fuzzy nonlinear binary integer programming problem with the objective of minimizing 
the sum of squared distances between objects and centroids. To solve the problem efficiently, an ant 
colony optimization algorithm is then proposed. 

The rest of the paper is organized as follows. In the next section, the problem is introduced and 
formulated. The proposed ACO algorithm is described in Section 3, followed by Section 4 providing 
computational results. Finally, Section 5 concludes the paper. 

2. Crisp clustering of fuzzy objects 

2.1 Problem definition 
 
The problem of crisp clustering of fuzzy objects can be formulated, in general, as a problem of 
partitioning a finite set of N objects into a given number K of disjoint clusters. Each object is 
represented as an R-dimensional vector of fuzzy sets, where each dimension stands for a single 
attribute. 
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Let ijw be the association weight variable of object i with cluster j, which can be assigned as 

1,      if object  is allocated to cluster 
,      1,..., ,    1,...,

0,     otherwise
ij

i j
w i N j K


  


  

Assuming that the objective is to minimize the sum of squared error, which is the most frequently used 
criterion in non-hierarchical (i.e., partitional) clustering (Jain et al., 1999), the problem of crisp 
clustering of fuzzy objects can be formulated as the following fuzzy nonlinear binary integer 
programming problem: 
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(1) 

 

where ijD  denotes a (fuzzy) distance between object i and the center of cluster j, due to the fact that 

each cluster is identified by its center (or centroid). Clearly, each cluster center is an R-dimensional 
vector of fuzzy sets as well. It is noted that the first set of constraints ensures that each object belongs 
to only one cluster, while the second set of constraints ensures that at least one object is assigned to 
each cluster. 
 
In the problem considered in this paper, it is assumed that TFNs are used to embody the imprecise and 
uncertainty of data sources. For a TFN, a particular case of fuzzy sets, the decision maker only needs to 
estimate three values for an object attribute: the most plausible, pessimistic and optimistic values. Let 

ilA  be the TFN representing the value of the lth attribute of object i. ilA  is denoted by triplet 
1 2 3( ,  ,  )il il ila a a , where 1

ila  (most pessimistic value), 2
ila  (most plausible value) and 3

ila  (most optimistic 

value) are real numbers with 1 2 3
il il ila a a  . The membership function of ilA  is then defined as (for real 

number x) 
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The lth attribute value of the center of cluster j is denoted by jlM , which can be obtained by averaging 

the lth attribute values of all objects belonging to the cluster as follows: 
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Since, as is well-known, the multiplication/division of a TFN by a scalar as well as the 
addition/subtraction of two or more TFNs becomes also a TFN (for more discussion on this type of 

fuzzy numbers, the reader is referred to Kaufmann & Gupta, 1991), jlM  is shown by triplet 
1 2 3( ,  ,  )jl jl jlm m m , where 

1

1

,      1, 2,3,    1,..., ,    1,...,

N
q

ij il
q i
jl N

ij
i

w a

m q j K l R

w





   



 (3) 

As seen, like each of the objects, each cluster center is represented as an R-dimensional vector of TFNs. 
 

2.2 Dissimilarity measure 
 

This subsection describes how the distance between object i and the center of cluster j, i.e., ijD  given 

in model (1), is measured. In the literature, several measures of distance, dissimilarity and similarity 
between fuzzy data have been suggested (see, e.g., Pappis & Karacapilidis, 1993; Bloch, 1999; Szmidt 
& Kacprzyk, 2000; Kim & Kim, 2004; Yong et al., 2004; D’Urso & Giordani, 2006). However, in 
order to measure the distance between a pair of multidimensional vectors of TFNs, the traditional 
Euclidean distance is utilized and adopted. 
 

By generalizing the squared Euclidean distance to TFNs, 2
ijD , referred to as the dissimilarity between 

object i and the center of cluster j, can then be calculated as follows: 

2 2
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where 

ijl il jld A M     (5) 
 

It is clear that ijld  defined in Eq. (5) is a TFN as well. Therefore, ijld  is denoted as 1 2 3( ,  ,  )ijl ijl ijld d d , 

where 
3 ( 1) ,      1, 2,3,    1,..., ,    1,..., ,    1,...,q q q

ijl il jld a m q i N j K l R        (6) 

Unfortunately however, since 2
ijld  on the basis of the extension principle does not become a TFN, for 

simplicity, it is approximated as a TFN in the following way. 
 

Definition 1 ijld is a positive TFN if 1 0ijld  . It is a negative TFN if 3 0ijld  . It is neither positive nor 

negative if 1 0ijld   and 3 0ijld  . 

 

Definition 2 If ijld  is positive, then 

2 1 2 2 2 3 2(( ) ,  ( ) ,  ( ) )ijl ijl ijl ijld d d d  (7) 

If ijld  is negative, then 

2 3 2 2 2 1 2(( ) ,  ( ) ,  ( ) )ijl ijl ijl ijld d d d  (8) 

And in the case where ijld  is neither positive nor negative, then 

2 2 2 1 2 3 2(0,  ( ) ,  max(( ) , ( ) ))ijl ijl ijl ijld d d d  (9) 
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2.3 Some remarks 
 
Theorem 1 The proposed dissimilarity measure is a symmetric function. 
 

Proof Taking into account Eqs. (4) and (5), to show that 2
ijD  is a symmetric function, it suffices to 

show that 
 

2 2( ) ( )il jl jl ilA M M A      (10) 

 

Let us consider the case where il jlA M   is positive. Then, from Eq. (7), 
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Since 
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obviously, in this case jl ilM A   is negative and then, from Eq. (8), 
2 3 1 2 2 2 2 1 3 2( ) (( ) ,  ( ) ,  ( ) )jl il jl il jl il jl ilM A m a m a m a       

 

As seen, Eq. (10) holds. In the case where il jlA M   is negative, since jl ilM A   is positive, in a similar 

way we can easily show Eq. (10) holds. Furthermore, if il jlA M   is neither positive nor negative, 

jl ilM A   is neither positive nor negative as well. Then, from Eq. (9), 
2 2 2 2 1 3 2 3 1 2( ) (0,  ( ) ,  max(( ) ,( ) ))il jl il jl il jl il jlA M a m a m a m        

 

and 
 

2 2 2 2 1 3 2 3 1 2( ) (0,  ( ) ,  max(( ) ,( ) ))jl il jl il jl il jl ilM A m a m a m a      
 

 
Again, Eq. (10) holds, and the proof is complete. ∎ 

Furthermore, from Definition 2 it follows that 2
ijld  is always approximated by a positive TFN. Taking 

into account Eq. (4), we then have the following corollaries. 
 
Corollary 1 The distance between a pair of multidimensional vectors of TFNs is measured by a TFN. 
 
Corollary 2 The proposed dissimilarity measure is positive (i.e., a positive TFN). 
 
Theorem 1 and Corollary 2 show two essential properties of a distance measure. However, there is 
another important issue to be considered. When a cluster contains just one object, its centre clearly 
coincides with that object (this is also shown by Eq. (3)) and consequently, the distance between the 
object and the cluster center should be zero. In other words, such a cluster should not have any 
contribution to the objective function. Due to the fact that the subtraction of two equal TFNs does not 
become zero (see Eq. (5) and Eq. (6)), from Eq. (4), singleton clusters would therefore have an 
undesirable effect on the objective function if not revised. Hence, the objective function of model (1) is 
modified as follows: 
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where jy  is a binary variable such that 
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It is then easy to show that 
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Considering Eq. (11) and Eq. (12), the problem of crisp clustering of fuzzy objects can then be 
formulated as follows (without additional variables jy ): 
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(13) 

 

Since 2
ijD  is a TFN, the objective function of the above model is obviously the sum of some TFNs. We 

then have the following corollary. 
 
Corollary 3 The objective function of model (13) becomes a TFN. 
 
Theorem 2 The traditional minimum sum-of-squares clustering problem (with crisp object attributes) 
is a particular case of the problem of crisp clustering of fuzzy objects stated in model (13). 
 
Proof Consider the case where the uncertainty of data sources is neglected by the decision maker. In 
this situation, each object attribute is undoubtedly set equal to its most plausible value, that is, the value 

of the lth attribute of object i is set to 2
ila . It is then easy to show, considering Eqs. (2–9), that the 

proposed dissimilarity measure is reduced to the traditional squared Euclidean distance and 
consequently, the problem stated in model (13) to the traditional minimum sum-of-squares clustering 
problem. In other words, the latter problem is a particular case of the former one. ∎ 
 
From Theorem 2, it follows that the complexity of the problem under consideration is at least of the 
same order as that of the traditional problem. Since it is known that the traditional problem is NP-hard 
when the number of clusters exceeds 3 (Brucker, 1978), the problem of crisp clustering of fuzzy objects 
stated in model (13) is NP-hard as well. 
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3. Proposed ant colony algorithm 
 
To solve the problem under consideration, an ant colony algorithm is developed. ACO algorithms, 
firstly introduced by Dorigo (1992), are population-based, cooperative search procedures derived from 
the behavior of real ants. Without using visual cues, real ants exploiting pheromones as a 
communication medium are able to find the shortest path from the nest to a food source. After 
representing a combinatorial optimization problem by a graph, an ACO algorithm makes use of simple 
agents, called artificial ants, to move across the graph and iteratively construct solutions. That is, an 
artificial ant builds a complete solution by starting with a null one and iteratively adding solution 
components. Moreover, artificial ants deposit pheromones on their path, and the generation of solutions 
is then guided by the pheromone trails. ACO algorithms have thus far had substantial applications in 
many hard optimization problems, such as reliability optimization (Ahmadizar & Soltanpanah, 2011) 
and scheduling (Ahmadizar & Hosseini, 2012) problems. For further details on ACO algorithms, 
interested readers may refer to Dorigo & Stutzle (2004). 
 

3.1 Solution construction 
 
To apply an ACO algorithm to the problem of crisp clustering of fuzzy objects stated in model (13), it 
is represented by a graph with two types of nodes. The first set of nodes contains one element for each 
object and the other contains one element for each cluster. Each node in the first set is then connected 
to each node in the second set by an edge, indicating that each object can be assigned to each cluster. 
To construct a solution, an artificial ant starts from the first object and chooses (moves to) one of the 
clusters by applying a transition rule. In other words, the object is assigned to the chosen cluster. Then, 
the ant iteratively moves to the next object and chooses a cluster. Clearly, each ant may move to a node 
corresponding to a cluster several times. 
 

Let ij  be the pheromone trail between object i and cluster j, i.e., the pheromone trail associated with 

edge (i, j) of the given graph. ij  shows the desirability of assigning object i to cluster j. The 

pheromone trails are regularly modified at run-time and form a kind of adaptive memory of previously 
found solutions. As mentioned, while constructing a solution, an object is assigned to a cluster by an 
ant according to a transition rule so-called pseudo-random proportional rule (Dorigo & Gambardella, 
1997) as follows: with probability q0 an ant v for object i chooses the cluster j for which the pheromone 

trail is maximum, that is, arg max( )ijj  . While with probability 1-q0, the ant chooses a cluster j 

according to the probability distribution given in the following equation: 

1

,      1,...,ijv
ij K

ih
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p j K
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


 


 

(14) 

As seen, q0 (a parameter between 0 and 1) determines the relative importance of exploitation versus 
exploration. Moreover, it is noteworthy that the heuristic information is not employed in the proposed 
approach. The heuristic information, unlike the pheromone trails, represents a priori information about 
the problem instance definition provided by a source different from the artificial ants. The reason is that 
by assigning an object to a cluster, the cluster centre given in Eq. (2) relocates frequently and hence, the 
heuristic information may not be introduced appropriately. 
 

3.2 Repairing infeasible solutions 
 

From the solution construction mechanism, it follows immediately that a generated solution may be 
infeasible. The first set of constraints is guaranteed during the construction process, i.e., each object is 
assigned to only one cluster, but it is possible that no object is assigned to some of the clusters 
(producing empty clusters, that is, the violation of the second set of constraints). To repair an infeasible 
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solution constructed by an ant, a straightforward procedure based on a neighborhood search is therefore 
developed in which the infeasible solution is always replaced by a feasible one as follows: 

Step 1. Determine empty clusters. 
Step 2. For each empty cluster j, do the following (in an increasing order of j): 

2.1. Among objects that their cluster has at least two objects, randomly select one. 
2.2. Reassign the selected object to cluster j. 

 

3.3 Updating of the pheromone trails 
 

In the beginning, each pheromone trail is set equal to a fixed value τ0=0.1 and then, at run-time, the 
pheromone trails are regularly modified according to a global updating rule. This rule is proposed to 
increase the pheromone values compatible to better solutions to make the search more directed. 
 

Once all ants have constructed their solutions (and after repairing infeasible solutions), each pheromone 
trail compatible to the solution generated by ant v (for each ant in the colony) is updated as follows: 

(1 ) ,ij ij
vz

      (15) 

where ρ, a parameter between 0 and 1, is the pheromone trail evaporation rate and vz  is a defuzzified 

value of the objective function for the solution of ant v. Then, each pheromone trail compatible to the 
best solution obtained so far is updated as follows: 

(1 ) ,ij ij
best

B
z

      (16) 

where bestz  is a defuzzified value of the objective function for the best solution obtained up to now and 

B is a positive parameter determining the relative importance of this solution. It should be noted here 
that the value of the objective function for each (feasible) solution is defuzzified to not only apply the 
above updating rule but also compare a new generated solution with the best one generated so far. 
Several ranking methods for defuzzification/comparison of fuzzy sets are available in the literature 
(see, e.g., Chang & Lee, 1994; Chu & Tsao, 2002; Abbasbandy & Hajjari, 2009). In this study, 
however, the overall existence ranking index proposed by Chang and Lee (1994) is adopted to 

defuzzify Z , which is a TFN (as stated in Corollary 3) denoted by 1 2 3( ,  ,  )z z z . The defuzzified value 

(with the pure weighting; for more discussion on the various weightings, the reader is referred to Chang 
& Lee, 1994) is then defined as 
 

1 2 3( 4 )
6

z z zz    (17) 

3.4 General structure of the algorithm 
 

In the following, the general structure of the ACO algorithm proposed to solve the problem under 
consideration is represented. 

Step 1. Initialize the pheromone trails and set the parameters. 
Step 2. While the termination condition is not met, do the following: 

 

2.1. For each ant in the colony, do: 
a. By repeatedly applying the transition rule, construct a complete solution; 
b. If the solution is infeasible, replace it by a feasible one by applying the repairing 

mechanism; 
c. Calculate the objective function value, and then defuzzify it by means of the 

defuzzification method; 
d. In case of an improved solution, update the best solution generated so far. 

2.2. Modify the pheromone trails according to the global updating rule. 
 

Step 3. Return the best solution generated. 
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4. Computational experiments 
 

To show the performance of the proposed ACO algorithm, a fuzzified version of a well-known 
standard clustering test dataset, namely Fisher's Iris dataset containing 150 objects with 4 attributes 
(Fisher, 1936), is used. To fuzzify this dataset, the object attributes are assumed to be TFNs. For 
simplicity, the symmetrical triangular possibility distribution is then applied to build the fuzzy object 
attributes. The most plausible value of each object attribute is first set to be equal to its value in the 
original dataset and then, the corresponding most pessimistic and optimistic values are, respectively, 
assumed to be 80% and 120% of the most plausible value. Eight different numbers of clusters are 
considered: from K=3 to K=10, providing eight problem instances. 
 

The algorithm has been coded in Visual C++6.0 under Microsoft Windows XP operating systems, 
running on a Pentium IV, 2.6 GHz PC with 2 GB memory. The proposed ACO algorithm has some 
numeric parameters that could impact its performance. In order to calibrate these parameters, the 
Taguchi method, which is an experimental design methodology is employed. Table 1 shows the input 
data, the factors and their levels, for the Taguchi method. 

 

Table 1  
Factors and factor levels 
Factor Level Factor Level 

Number of (ants, iterations) 
1: (10, 10000)  1: 0.1 
2: (20, 5000)  2: 0.2 
3: (30, 4000)  3: 0.3 

q0 
1: 0.9  1: 1 
2: 0.95 B 2: 10 
3: 0.99  3: 20 

 
Since the objective function of the problem under consideration is classified in the smaller-the-better 
type, the signal-to-noise (S/N) ratio of the minimization objectives calculated by the following formula 
(Phadke, 1989) is a suitable measure, 
 

 
2

ratio 10logS N objective   (18) 
 

where the defuzzified value of the objective function is utilized as objective . It is noted that the terms 

‘signal’ and ‘noise’ indicate the desirable value (response variable) and the undesirable value (standard 
deviation), respectively, and the purpose is to maximize the S/N ratio. Among the standard table of 
orthogonal arrays, L9(3

4) pattern presented in Table 2 is selected as the fittest design fulfilling the 
necessary requirements.  
 
Table 2  
The orthogonal array L9(3

4) 
Trial Number of (ants, iterations) q0  B 
1 1 1 1 1 
2 1 2 3 2 
3 1 3 2 3 
4 2 1 3 3 
5 2 2 2 1 
6 2 3 1 2 
7 3 1 2 2 
8 3 2 1 3 
9 3 3 3 1 

 
Finally, Table 3 summarizes the results, that is, the mean S/N ratios obtained at each level of the 
factors; the best levels of the factors are indicated in bold. Accordingly, the numeric parameters of the 
proposed ACO algorithm are set as follows: 20 ants in the colony, q0=0.99, =0.1 and B=10. In 
addition, the algorithm terminates when the total number of iterations in Step 2 reaches 5000. 
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Table 3  
Results of the Taguchi method 
Factor Level Mean S/N ratio 

Number of (ants, iterations) 

1 -52.076 

2 -51.553 
3 -51.925 

q0 
1 -51.788 
2 -52.005 

3 -51.772 

 

1 -51.737 
2 -51.818 
3 -51.999 

B 
1 -52.219 
2 -51.515 
3 -51.820 

 

Furthermore, the computational results for the problem instances are shown in Table 4, which gives, for 
each number of clusters, the average and best objective function values achieved by the algorithm over 
ten independent runs, respectively. 

 

Table 4  
Average and best results for the fuzzified version of Fisher's Iris dataset 
K Fuzzy value Defuzzified value K Fuzzy value Defuzzified value 
3 (0.125, 78.945, 2128.239) 407.357 3 (0.125, 78.945, 2128.238) 407.357 
4 (0.086, 57.632, 2025.102) 375.953 4 (0.086, 57.633, 2025.099) 375.952 
5 (0.064, 49.161, 1982.270) 363.162 5 (0.086, 46.666, 1963.712) 358.410 
6 (0.064, 42.870, 1941.841) 352.231 6 (0.039, 39.061, 1928.101) 347.398 
7 (0.060, 38.330, 1906.180) 343.259 7 (0.092, 35.713, 1908.276) 341.870 
8 (0.039, 37.416, 1883.653) 338.893 8 (0.039, 37.474, 1873.752) 337.281 
9 (0.049, 34.584, 1855.819) 332.367 9 (0.039, 33.289, 1842.739) 329.322 
10 (0.049, 31.912, 1824.929) 325.438 10 (0.039, 32.247, 1814.068) 323.849 

 
From Table 4, as the best and average objective function values (particularly, the defuzzified values) 
are very close to each other for each number of clusters, it can be concluded that the proposed ACO 
algorithm is robust. Moreover, in view of the fact that the CPU time needed by the algorithm for each 
problem instance has never been more than 39 seconds, it seems that the algorithm is fast. Finally, it is 
noteworthy that the best results (over the ten runs) concerning the most plausible objective function 
value for the eight problem instances have been 78.945, 57.632, 46.666, 39.061, 35.713, 35.674, 
33.289 and 28.917, respectively. Considering Eqs. (2-9), it is obvious that the most plausible value of 
the objective function depends only on the most plausible values of the object attributes (that is, the 
values in the original dataset). Then, comparing the above results with the optimal objective function 
values for the original non-fuzzy dataset, which for the eight numbers of clusters are 78.851, 57.228, 
46.446, 39.040, 34.298, 29.989, 27.786 and 25.834, respectively (see Hansen et al., 2005), it can be 
concluded that the proposed algorithm is efficient. Of course, recall that the algorithm manages to 
minimize the defuzzified value of the objective function. In other words, if the algorithm managed to 
minimize the most plausible value of the objective function, it would be possible to attain even better 
results than those reported above. 
 

5. Conclusions 
 

This paper deals with the problem of crisp clustering of fuzzy objects. Specifically, we consider the 
case where triangular fuzzy numbers are used to embody the imprecise and uncertainty of data sources. 
The squared Euclidean distance is adopted to introduce a dissimilarity measure between fuzzy data. 
The problem is then formulated as a fuzzy nonlinear binary integer programming problem with the 
objective of minimizing the sum of squared distances between objects and centroids. In view of the NP-
hardness of the problem, an ant colony optimization algorithm is proposed to solve it that is a simply 
structured approach. An artificial ant constructs a solution by iteratively applying a pseudo-stochastic 
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rule based on the pheromone trails. If the constructed solution is infeasible, it is then replaced by a 
feasible solution by means of a straightforward repairing mechanism. To make the search more 
directed, the pheromone trails are dynamically modified according to a global updating rule. Moreover, 
the parameters of the algorithm are calibrated via the Taguchi method. Computational results show that 
the proposed algorithm is robust, fast and efficient. 
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