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1. Introduction

Most of the researchers considered the time varying demand as an increasing or decreasing function of
time, while in practice, this assumption is not suitable for all products. The demand shows two-fold
ramp type pattern for items like fashion apparel, particular kind of eatables and festival accessories
have limited sales period and become obsolete at the end of period. This kind of pattern has been
termed as ‘‘trapezoidal ramp-type’’. In the beginning of the season, the demand increases up to a
certain time point and stabilizes afterwards but starts declining towards end the of the season. The
economic order quantity (EOQ) model with ramp-type demand rate was initially proposed by Hill
(1995). Since then several researchers and practitioners have paid significant consideration to study
ramp-type demand. Mandal and Pal (1998) developed the EOQ model with ramp-type demand for
exponentially deteriorating items with shortages. Wu and Ouyang (2000) investigated two inventory
models assuming different replenishment policies: one started with shortage and another had shortage
after inventory consumption. After that, Wu (2001) developed a model for deteriorating items with
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ramp-type demand and partial backlogging. Giri et al. (2003) extended ramp-type demand inventory
model with more general Weibull distribution deterioration rate. Manna and Chaudhuri (2006) studied
an EPQ model with ramp-type two time periods categorized demand pattern assuming demand
dependent production. Deng et al. (2007) focussed on the doubtful results found by Mandal and Pal
(1998) and Wu and Ouyang (2000) and obtained a more consistent solution. Panda et al. (2008, 2009)
extended Giri et al.’s (2003) one-fold demand model to two-fold demand. Model studied by Hill (1995)
was extended to trapezoidal-type demand rate by Cheng and Wang (2009). Panda et al. (2009) worked
on a single-item economic production quantity (EPQ) model with quadratic ramp-type demand
function in order to determine the optimal production stopping time. Model of Deng et al. (2007) was
extended to more general ramp-type demand rate, Weibull distribution deterioration rate, and general
partial backlogging rate by Skouri et al. (2009). Hung (2011) extended the model of Skouri et al.
(2009) by applying arbitrary component in ramp-type demand pattern. Shah and Shah (2012) studied a
joint vendor-buyer strategy for trapezoidal demand which is beneficial to both the players in the supply
chain.

In most of the articles mentioned above, the constant rate of production is considered. But constant
production rate is not always realistic. For example, when production model is based on time varying
demand, the assumption of constant production rate is not suitable. Such scenarios results into
application of variable production rate. The study of the model with changeable machine production
rate was initiated by Schweitzer and Seidmann (1991). Khouja (1995) established a production model
with unit production cost depending on used raw materials, engaged labor and tool wear and tear cost.
Bhandari and Sharma (1999) measured the marketing cost in addition to generating a generalized cost
function. The related studies done by Sana et al. (2007) and Sana (2010) may be noted. Dem and Singh
(2012) worked on the EPQ model for damageable items with multivariate demand and volume
flexibility. Dem and Singh (2013) developed an EPQ model with volume flexibility under imperfect
production process. Goyal et al. (2013) developed a production model with ramp type demand and
volume flexibility.

In the present paper, we develop an EPQ model for deteriorating items trapezoidal type demand rate
with volume flexibility. We also assume that the inventory system includes several replenishments and
all the ordering cycles are of fixed length. Such type of demand pattern is generally seen in the case of
any fad or seasonal goods coming to market. The demand rate for such items increases with the time up
to certain time and then stabilizes but in final phase, the demand rate decreases to a constant or zero,
and then the next replenishment cycle starts. We observed that such type of demand rate is very
reasonable and proposed a practical inventory replenishment policy for such type of inventory model.
The remaining paper is structured as follows. In Section 2, we explain the assumptions and notation
used throughout this paper. In Section 3, we formulate the mathematical model and the necessary
conditions to find an optimal solution. In Section 4, we provide numerical example for each case to
illustrate the model. Finally, the study is concluded in section 5.

2. Assumptions and Notations
2.1 Assumptions

1. The inventory involves single item.
2. Demand rate is dependent on time given by

a+bt, (-DT<t<(i-1+u)T
D(t)=1a+b(i-1+uw)T, (i-1+w)T <t <(i-1+v)T
a=byt, (i-1+WT <t<iT

where a,b,b, >0,i=1,2,..., n, u and v are time parameters.
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The function defined above is known as trapezoidal function.

Production rate is k times demand rate, where k >1.

The unit production cost is dependent on production.

Time horizon is finite.

Deterioration rate is a constant.

The deterioration occurs when the item is effectively in stock.

2.2 Notations

D(t)

Demand rate

P(D(t))Production rate, P(D(t))=kD(¢)
0

Cy
C
S,

C(P)

I(1)
T

tisl+u
Lil+y
ti1+r
n

H

Deterioration rate

Set up cost

Holding cost per unit per unit time

Selling price per unit

G

kD(t)

Production cost per unit given by C(P)= R+

Material cost per unit

Factor associated with costs like labor and energy costs
Inventory level at any time t

Constant scheduling period per cycle

Time up to which demand stabilizes and equals to (i-7/+u)T
Time till the demand remains stable and equals to (i-7+v)T
Production run time and equals to (i-1+7»)T

Total number of cycles

length of planning horizon and equals to nT'

3 Model Formulation
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We have considered the following different cases based on the occurrence of time points of demand in
different phases.

3.1 Case(I) When (i-1+vV)T <(i-1+r)T

dlll(t) —

dt

Inventory

0 tu tv tr t1 t1+u t1+r

Fig.1. Graphical representation of the system for Case I
The differential equations governing the system are given as follows:

=(k=1)(a+bt)-01,(2),

(-DT<t<(i-1+u)T, i=1,2,

(1)
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dIlZ (t)
dt
dIIS (t)
dt
0
dt
Solving the Eq. (1) to Eq. (4) using the boundary conditions, /|, ((z nT ) =0,

I, ((-1+w)T) =1, ((-1+w)T), 1, ((i—1+v)T) =1,(G-1+WT), L (iT) =

L(O)=— {bk b+ ”{

= (k=1){a+b(i-1+w)T}=01,(t), (i-1+u)T <t<(i-1+W)T )

=(k-1)(a-bt)-61,(t), (i-1+WT<t<(@i-1+nrT 3)

= —(a-bt)-0L,(1), (i-1+1)T <t<iT “)

’ (5)
02( —bk+b,)— (a ak+Th(i-1)— Tbk(z—l))H—é (a—ak+bt—hkr)

1,(t) =%[Tbl —a+ak—Thk—Thi—Thu +%egregm“l)r {b—bk (6)
bk —b1 O —Th,0—akO+Thk6 + Thi —Tblki)ef’”“e*"“*““} +Thki + Thfo |

1,(0) = (b k—b, +6%" T, *9’(9 (~byk+b )+ (@, —ak + Thy (k~1)(i +v—1))

+é (e*” (k—1)(Th —a+The"" —ae” —Thi+Thie"" + Thue"")) —?b] e (T _1)(k=1))—— (a ak — bt + bkt) ()

L(t)= —% (a—by) —é (b, —e " (b,e” +ale”" —Th,ife"")) ®)

Holding cost for i cycle is
(i— 1+u)T (i-1+v)T (i-1+r)T

_ . iT
HC, =G, {J.(z T 1, (t)d + (i-14u)T 1 (t)dt +J.i—1+v)T 1 (t)dt + J. i—1+)T 1 (t)dt}

a b Th ak bk aec™ be™ Thu The™  ake™
o o ¢ 0 ¢ 0’ ! o’ ! 0 ! 0’ ’ &
bke™"  T?bu’ Tbk Thi Tau Tbu _Ibki Taku Thku Tbku
- - e + +
o 26 92 0 0 92 o’ 0 0 0
T*hiu  Thke™" Thie ™" T’bhku’> Thkie ™" T*hkiu
- - 2 PR + 2 +
0 14 o 26 6 0
b, bk T’hu T°hv T’hu’ Tau Tav b, ., Taku Takv T°hku
= +— ¢ —t +—
o & 0 0 0 0 G 4 0 0
T’hkv T’hiu T’biv T’buv T bk’ T bkuv T’bkiu T bkiv
- + - - - + - +
0 0 0 0 0 0 0 0
( a b Th ak . (bk—b, ). Thk . Thi Tblkij(e,,m —e*‘”)

0 ¢ & & ¢ ¢ @

b Ib Ib, bk a ¢ b s T’ byr T b,y ~oT o
+?+?+?—?—?e +E€ - 9 ( (e —e )
bk or _or\ T’hyr* T’by* Thk Thik 77711 szl Tar Tb,r Thu Tav
(e =)+ P e P R S S 9
0 20 20 ¢ ¢ ¢ ¢ 0 ¢ ¢ 0 ©)
_i Du—r)T _& Gv-r)T +£ otr Th,ki Tb ki Takr Tb,kr Tbku _Takv Th 00T
5 € 5 € 5 € e 2 2 2 2
6 6 6 6 6 % 6 6 6 %
+b17§€e(}(u7r‘)7‘ +%eowﬂ-)7 _ifeo(u—v)r + T*bkr " T?b,ir _ T"bykv _ Tbyiv _ Tblzk O _&;iewr-r
6 6 6 1% % [ % 6 6
szzk e 4 Tblzk 0T T°bkr* " T’bkv’ " Iblzki oo _ n’zzki e 4 szk 0(v-rT szk O(v-r)T
% 6 260 20 6 % 6 6
Tbl 0T Tb,i Gt 1oU Thu 0T b, ve(}(v—r')T T’ b,ikr T b,kiv  Thki LT
92 02 o’ & [ 0 o’
_Thku 0T _ Tb,kv Gro-nr 100 To,r T°byir  Thyi o(1-r)T T’bki b, Ta

o’ N 0 14 0 14 o 0

2 .
e w e e 2 et o e e
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Production cost for i" cycle is

(i-14u)T G (i-14v)T G .
=j R+ (a+blt)dt+j R+ . {a+b(i—1+u)T}dt
(-1 k(a+b) i1t k{a+b,(i—1+u)T}

il

0 Re—k(a, -y
wor (7 k(a, = byt) (10)
=—(Tu(2G + 2Rak —2RTbk + 2RTh ki + RTbku))—T (u —v)(G + Rak — RTbk + RTb ki + RTbku)
+%(T(r ~v)(2G +2Rak + 2RTb,k — 2RTb,ki — RTh,kr — RTb,kv))
Sales revenue for i" cycle is
(i-1+u)T (i-1+W)T . iT
SR, =5, { [ @b [ @b -tranes [ —bzt)dt}
= %(TSOu(Za —2Tb, + 2Thi+Thu))—TS,(u—v)(a—Tb, + Thi+Thu) (11)
1
-3 (TS,(v—=D)(2a+Tb, - 2Tb,i —Th,v))
Total profit per unit time of the system is
12
TPIZ%Z(SRH_PCH_HCH_CI) (12
3.2Case (I) When (i—-1+r)T < (i—-1+v)T <iT
A
2
e
5 Q Q
=
0 ty t, t ot t1su trar t; tha thoter t g
Time
Fig. 2. Graphical representation of the system for Case II
The differential equations governing the system are given as follows:
13
%z(k—l)(aﬁtblt)—ﬁln(t), (-DIr<t<(@@-1+w)T,i=12,...,n (13)
14
%=(k—l){a+b1(i—1+u)T}—6112(t), -1+ T <t<(i-1+r)T (14)
t
15
(-1+rT<t<(@-1+v)T (15)

dlﬁit(t‘) =—{a+b(i-1+u)T} = 0L,(0),
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16
dlz;t(t) —(a-bt)-01,(1), (i—-1+r)T <t<iT (16)
Solving the Egs. (13-16) using the boundary conditions, /,, (i —1)T) =0
1, ((i—l+u)T) =1, ((i—l+u)T) , 1y, ((i—1+r)T) =1, (( l+r)T) ” (zT) =0
1,(t) = —é{blk —b + G T {%(—blk +5) —%(a —ak+Th (i —1)—Thk(i— 1))H (17)
—l(a —ak +bt—bkt)
0
1 . 1 — i+u—
1,(1) :5[Tb1 —a+ak—Thk—Tbi—-Thu +56 e b —bk (18)
+(bk—b +al—-Tb0—ak0+ThkO+Th,i —Tblki)eg("’l)re’g(”“’”r} +Thki+ Tblku]
121 (t) — _% (_Tbl +a+ Tbll + Tblu _% (e—HTeH(H—r—l)T (ble—ﬁ(i+r—l)Teﬁ(i+l¢—l)T + akg _ bleﬁ(i—l)Te—H(i+r—l)T
+b1kez9(i—l)Te—H(i+r—l)T + aggﬁ(i—l)Tg—H(Hr—l)T _blkeﬁ(i+1¢—l)T—H(i+r—l)T _ Tblkg + Tblklg + Tblkgu (19)
_Tblgeﬁ(i—l)T—H(Hr—l)T _ akgeﬁ(i—l)Te—H(Hr—l)T + Tblkgeﬁ(i—l)T—H(Hr—l)T + Tbligeﬁ(i—l)T—H(Hr—l)T
_Tblkigeﬁ(i—I)T—H(H—V—I)T )))
L,(t)= —% (a—by) —é (b, —e " (b,e” +ale” —Th,ife"™)) (20)
Holding cost for i cycle is
(i— 1+u)T (i— 1+r)T (i-1+v)T
HG, =G, {J. T (t)dt + i—lu)T 1, (t)dt J.(i—1+r)T 21 t)dt +J. “14+v) T }
(8 b Tb ak blk ae ™ be ™ Thu The™ ake™ bke™ T hu’
2(_2__3__2__2+_3_ TR ; + T 2 3
o 6 6 6 6 0 0 0 0 0 0 20
Tb k & _Tau N Tbu  Thki N Taku N Thku T’bku 3 T’b,iu 3 Thke " 3 Thie ™" N T°bku’
02 i 0 i 6’ 0 6 0 0 6’ 6* 20
—OuT 2 . 2 2 2 2
+Tb1klf +T b kiu +b_13_%+(—%+%+]1—l?+a—]§—%)(e_m _e—HuT)_T bu +T br +T bu
0 0 6 0 o & 6 o0 0 0 0 0
Tau _E_ﬁeg(u_,)f _ Taku N Takr +%eg(u_,)f N Tbku B T’bkr N T’b,iu B T’bir
0 6 & 0 0 6’ 0 0 0 0
Zb ru Tb k —QrT Tbl —-OrT Tbk —HuT Tbl —OuT sz ku Tbkl —-OrT —OuT
I A A S 2 e e GRS (1)

 Dhkir _T'bkiv T'bpru ak a b Th _ak bk Thk Thi IOy o _ o)

(_ i B USRI el

7 7 7 Y R A N S o’
3 T°br T N T’by _Thk +E _Tav +%ea(“’”7 +%em_v)f N T°b,ir 3 T’b,iv N T°bru 3 T’ buv
7 7 ¢ ¢ @ @ &’ 7 7 7 7
Tbk LT Thki gy Thhku oy sz i b Ta 1Tb, sz a 2b V sz V
—r e e e
0 0 7 g & 06 6 20 6 0 20
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Production cost for i cycle is

PC,=[""" R+ S (a+boyde+ [T R+ G (a+b,(i—1+u)T}dt
2 Janr k(a+b) 1 ot kfa+ b (i—1+u)T} !

(22)
:%(Tu(ZG +2Rak —2RTb k + 2RTbki + RTbku))+T(r —u)(G + Rak - RTb,k + RTb,ki + RTb,ku)
Sales revenue for i cycle is
(i-1+u)T (i-1+v)T . iT
SR, =S, { [ @b [ @b a-tvandes [ —bzt)dt}
= %(TSOu(Za —2Tb, + 2Tbhi+Thu))—TS,(u—v)(a—Tb, + Thi+Thu) (23)
—% (TS,(v=1)(2a+Tb, —2Tb,i —Th,v))
Total profit per unit time of the system is
24
TPZZ%Z(SRI'Z_PCI'Z_HCQ_CI) (24
3.3 Case (III) When (i—1+r)T <(i—-1+u)T <iT
A
2
8
=
> Qo Q
K|
O tr tu tl t1+r tZ tn-l tn-1+r tn g
t, f Time
Fig. 3. Graphical representation of the system for Case III
The differential equations governing the system are given as follows:
25
%z(k—l)(aﬁtblt)—éln(t), (-DT <t<@@-1+nT,i=12,....,n 25)
26
%z—(cxﬁtblt)—ﬁlﬂ(t), (14T <t<(i—1+u)T (26)
27
%=—{a+b1(i—1+u)T}—lez(t), ((-1+u)T <t<(@i-1+v)T @7)
t
28
—dlz;t(t) =—(a—-byt)—01,(1), (i—-1+v)T <t<iT (28)

Solving the Eqs. (25-28) using the boundary conditions,
L, (G=DT)=0, L ((=1+NT) =1, (G =1+rT), L, ((-1+w)T) =1, ((-1+w)T), L, (iT)=0
(29)

1,()= —é{bl kb + @ {é(—blk +h) —é(a —ak +Tb,(i—1)— Th k(i —1))H —%(a —ak+ bt —bkt)
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1 > —or_oGrnr 1 . . 1 . b
L,(t) =?(b1 —0¢c¢e (E(a —ak +Tb,(i+r—1)—Thk(i +r—1))—5(a +Tb,(i +r—1))+?
+é (bk—b, + QP GIT T (é (<bk+b,) —é (a—ak + Th(i~1)~ Th k(G ~1))))) —é (a+bi)
L,(t)= —% (a—Tb, +Thi+Thu —% (e (b, +(=b, + bk +a@—Th, — ak@ + Thk + Th;i
—Tblkig)eg(i_l)Te_g(m‘_l)T +(bk + ak@—Tb kO +Thkr6 + Tblkig)eg(i+r_l)Te_g(m‘_l)r)))
L,(t)= —% (a—by) —é (b, —e " (b,e” +ale”" —Th,ife""))

Holding cost for i cycle is

HC

(i-141)T (i-1+)T (i-149)T iT
5 =G {J.(il)T 1, (t)dt +J.i—1+r)7‘ Iy, (t)dt + J. i—14u)T Iy (t)dt + J. H+v)7123 (t)dt}

a b Th ak bk ae® N he " T *bu . The ™" N ake ™"

T e ey @ e e ¢ @
bke®" T’bu’ Thk Thi Tau Thu _Thki T aku T bku T*bku
- t—ot _2 Tt 2 2
& 20 o o 6 0 o 0 o 0
T’hiu  Thke™" Thie ™" T hku’ Thkie ™ T’bkiu
- - + + +
0 & & 20 & 0

ak bk a b Th ak bk Tbhki Thk Thi 4r _p\ T'hr Thu T°bhr’ Thu’
St Tt (e —e )— + + -
¢ ¢ o & & & 0 o o o o o 260 260
_Ihk Tar _Tbr Tau  Thu Tbla Thkr ak gy bk _gunr szlir szliu

—+ + —e +—e +—

02 9 ¢ 6 & 02 R & 2] 2]
Thki gy Thk s b a b Tb ak bk Thk Tbi Tbki ;s _, ov
T T e e e e e e )
szlu + szl" + T2b1u2 JLau Tau Tav _ﬂeﬂ?(u—v)T +a_ke—t9(u—r)T _a_ke—ﬁ(v—r)T _%e—ﬁ(u—r)T
2] 2] 2] 6 60 & 6 & &
bk 00 ,)T+T bjiu szzv T buv Tbke,g(u nr Tbk o 00NT Thki o 0T _ Thki o 00T
6‘3 2] 2] 2] & 02 N N
+Tb1kr 0T _ Thk R T’hi b, Ta Tb, T°h, a . T’by  T°by’ L@ oo
& ¢ 6 & 60 & 20 & 2] 20 &
+ﬁ T @ Tav Tb,v T biv Thyi gy
g ° e ot o ¢ )

Production cost for i cycle is
PC, = N Ry — k(a+bp)dt = —(Tr(2G +2Rak —2RTbk + 2RTbki + RTbkr))
-7 k(a )

Sales revenue for i cycle is

SR, = {j @b+ [ @1 oo [ (a—bzt)dt}

=%(TS0u(2a—2Tb1 +2Tbi+Tbu))—TS,(u—v)(a—Tb, +Thi+Thu)

—% (TS, (v=1)(2a + Th, — 2Th,i — Th,v))

(30)

1)

(32)

(33)

(34)

(35)
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Total profit per unit time of the system is

1
T‘P3 ZEZI_:(SRB_PCB_HCB_CI) (36)

Our objective is to find maximum total profit per unit time in each case, i.e.,

max TP, (n,r) = %Z(SRW - PC,, —HC,, —C,), where n is a positive integer and 0<r<I, m=1, 2, 3

1

4 Solution Procedure
The solution procedure is as follows:
Step 1. Let n be a fixed positive integer.

Step 2. Equate the first derivatives of 7P,, in Eq. (12), Eq. (24) and Eq. (36), denoted by TP,(r | n) with
respect to r to zero and solve all the three equations for r.

d’TP, (r|n)

Step 3. Check for concavity. The sufficient condition for maximum 7P,,(r | n) is -2
r

<0.

Step 4. If 0 <r <1, calculate 7P,, from Eq. (12), Eq. (24) and Eq. (36).

Step 5. Repeat Step 2 to Step 4 by assuming different positive integer values of n. The optimal
solution,(n*, r) must satisfy the following condition:

TP (n*-1, r)<TP (n*, r)= TP, (n*+1, r)

5 Numerical Example and Sensitivity Analysis

We determine the optimal value of decision variables and net profit using solution procedure defined in
last section. We use the following values of the parameters in appropriate units: S,=10, T=6, k=1.5,
C1=100, Co=1, a= 10, b;=1b,=0.1, 6=0.01. The optimal net profit 7P,, , optimal number of cycles »n and
optimal time parameter for production run time  for the three cases are provided in Table 1.

Table 1
Summary of results
Case n r TP,
I 6 0.1065 1539
I 6 0.9585 688.90
1T 6 0.9585 718.10
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Fig. 6. Net profit in Case (III)

Keeping in view the above experimental results, sensitivity analysis is performed for Case I in which
the maximum profit is obtained. It is carried out by changing the parameters by 50% and 25%, taking
one parameter at a time and keeping all other parameters fixed. Change in percentage in total cost of
the system, denoted by PCT, corresponding to various parameters is calculated and specified in last
column of each of the tables given below.

Table 2
Sensitivity analyses
Parameter Value TP, Parameter Value TP,
5 -298.40 5 1212
S, 7.5 620.20 a 7.5 1379
12.5 2457 12.5 1705
15 3385 15 1872
0.05 1481 0.75 1880
by 0.075 1526 k 1.125 1713
0.125 1568 1.875 1368
0.15 1596 2.25 1197
0.005 1545 0.15 1532
0 0.0075 1549 u 0.225 1537
0.0125 1536 0.375 1547
0.015 1533 0.45 1551
0.3 1400 2.5 1939
% 0.45 1474 R 3.75 1740
0.75 1625 6.25 1337
0.9 1722 7.5 1152
9 1573
G 13.5 1556
22.5 1528
27 1518

The effect of various parameters on total profit is listed in tabular form (see, Table 2).The observations
are as follows:
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1. Total profit increases with the increasing selling price S, which is a quite expected
phenomenon.

2. Total profit increases with the increasing initial parameter ‘a’ and time sensitive parameter
‘b;’of demand. High demand of manufactured units motivates more production which in turn
becomes a significant reason to earn extra profit.

3. As the coefficient related to production rate ‘A’ increases, total profit decreases. For higher
values of ‘k’, quantity of production becomes more in proportion to the demand.

4. Total profit decreases with increasing value of the deterioration rate ‘6’. Because the greater
amount of deteriorated units results into loss of sales that could have been contributed to profit.

5. As the parameters ‘u’ and ‘v’ increase, total profit increases. Since, ‘u’ contributes to the point
up to which demand stabilizes and ‘v’ contributes to the point till the demand remains stable,
therefore, their increment results into greater demand which causes greater profit.

6. The value of profit function decreases with the increasing value of parameters ‘R’ and ‘G’ and
*J°. It is suitable that the unit production cost increases with the increasing material cost, labor
cost and tool/die cost. If unit production cost becomes more than selling price, the total profit
turns out to be negative. This is a disagreeable condition for any business policy whereas less
unit production cost is always acceptable.

6. Conclusion

In this paper, particular items following trapezoidal ramp type demand has been considered. Three
cases according to the demand has been focused and for each case, a profit function is formulated,
which is to be maximized. The condition to find the optimal solution is provided and using numerical
experiment, we observe that the profit is maximum when the demand starts declining before the
production stops. Sensitivity analysis is performed corresponding to various parameters and the results
show that our mathematical model is more realistic. The proposed model can be further enriched in
several ways like stochastic or fuzzy modelling.
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