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 Electrochemical micromachining (EMM) appears to be a very promising micromachining process 
for having higher machining rate, better precision and control, reliability, flexibility, 
environmental acceptability, and capability of machining a wide range of materials. It permits 
machining of chemically resistant materials, like titanium, copper alloys, super alloys and 
stainless steel to be used in biomedical, electronic, micro-electromechanical system and nano-
electromechanical system applications. Therefore, the optimal use of an EMM process for 
achieving enhanced machining rate and improved profile accuracy demands selection of its 
various machining parameters. Various optimization tools, primarily Derringer’s desirability 
function approach have been employed by the past researchers for deriving the best parametric 
settings of EMM processes, which inherently lead to sub-optimal or near optimal solutions. In 
this paper, an attempt is made to apply an almost new optimization tool, i.e. differential search 
algorithm (DSA) for parametric optimization of three EMM processes. A comparative study of 
optimization performance between DSA, genetic algorithm and desirability function approach 
proves the wide acceptability of DSA as a global optimization tool. 

© 2013 Growing Science Ltd.  All rights reserved 
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1. Introduction  
 

Micromachining refers to those processes where material removal takes place in small dimensions 
ranging from 1-999μm. It also implies machining which cannot be achieved directly using the 
conventional processes. Recent requirements of the advanced manufacturing industries have forced the 
introduction of micro- and nano-components into various products, ranging from biomedical 
applications to chemical micro-reactors and sensors. Micromachining technology plays an important 
role in miniaturization of the components. It helps in machining of micro-slots, complex surfaces and 
holes, which require to be produced in large numbers in a single workpiece, especially in electronic, 
space and automobile industries. If those micro-components are machined using the conventional 
machining processes, there may be occasional problems of tool wear, tool rigidity, heat generation at 
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the tool-workpiece interface etc. Sometimes, it is also difficult to machine complex and intricate shapes 
employing the conventional processes. Since there will be continuous demand for miniaturization for 
efficient space utilization with better quality of products, micromachining technology will become still 
more important in the future (Bhattacharyya et al., 2004). 
 
When electrochemical machining (ECM) process is used in the micron range of application, it is called 
electrochemical micromachining (EMM) process. EMM is a very promising micromachining 
technology due to its various inherent advantages, like high material removal rate (MRR), better 
precision and control, reliability, flexibility, environmental acceptability and green manufacturing. It is 
widely used to machine hard materials at a high MRR, without affecting the tensile strength of the 
workpiece material and its other physical properties, while ensuring a low surface roughness. It also 
permits machining of chemically resistant materials like, titanium, copper alloys, super alloys and 
stainless steel, which are now widely used in biomedical, electronic, micro-electromechanical system 
(MEMS) and nano-electromechanical system (NEMS) applications. EMM process could be used as one 
the best micromachining  techniques for machining electrically conducting, tough and difficult to 
machine materials with appropriate combination of machining parameters. The desired quality of the 
workpiece in EMM process can only be generated through combinational control of its various process 
parameters. Therefore, the optimal use of EMM process for achieving higher MRR, improved profile 
accuracy and surface quality demands proper control of its process parameters. However, to exploit the 
full potential of EMM process, research is still needed to improve the machining accuracy by 
controlling its different machining parameters and determining the optimal parametric combination. An 
excellent review on the machining mechanism of EMM process can be found in Bhattacharyya et al. 
(2004) and Cao et al. (2012). 
 
2. Survey of past research 
 
Bhattacharyya et al. (2001) designed and developed an EMM setup comprising of various mechanical 
machining components, electrical system, an electrolyte flow system and a microprocessor-controlled 
end-gap controlling system. Bhattacharyya et al. (2002) developed an EMM system setup for 
performing basic and fundamental research in the area of EMM, fulfilling the objectives of 
micromachining. Bhattacharyya and Munda (2003a) investigated the influence of machining voltage, 
electrolyte concentration, pulse-on time and frequency of pulsed power supply on MRR and accuracy 
for effective utilization of an ECM system for micromachining operation. Bhattacharyya and Munda 
(2003b) developed an EMM setup to meet the micromachining requirements, and indicated the most 
effective zone of predominant process parameters, such as machining voltage and electrolyte 
concentration for providing the appreciable amount of MRR with less overcut. Bhattacharyya et al. 
(2005) studied the influence of various EMM process parameters, like machining voltage, electrolyte 
concentration, pulse period and frequency on MRR, accuracy and surface finish in microscopic 
domain. Kurita et al. (2006) determined the optimal values of machining voltage, machining pulse 
length, amplitude of the electrode for flushing out contamination and electrolyte concentration, and 
carried out three-dimensional shape micromachining at the derived optimal conditions. Bhattacharyya 
et al. (2007) carried out experiments to determine the optimal values of different EMM process 
parameters, such as micro-tool vibration frequency, amplitude and electrolyte concentration for 
producing micro-holes with higher accuracy and appreciable amount of MRR. Using response surface 
methodology (RSM), Munda et al. (2007) correlated the interactive and higher-order influences of 
various machining parameters on the combined effect of micro-spark and stray-current machining in an 
EMM process. Munda and Bhattacharyya (2008) developed a mathematical model for correlating the 
interactive and higher-order influences of various EMM process parameters, i.e. machining voltage 
pulse on/off ratio, machining voltage, electrolyte concentration, voltage frequency and tool vibration 
frequency on MRR and radial overcut (ROC). Munda et al. (2010) developed mathematical models for 
depicting the interactive and higher-order influences of various machining parameters on ROC in an 
EMM process. The developed mathematical models would be useful to find out the optimal parametric 
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setting to produce better quality machined products at a higher rate. Li and Niu (2010) carried out 
experiments to investigate the influence of some EMM process parameters, such as pulse frequency, 
feed rate of tool, machining voltage and ultrasonic frequency on the machining accuracy of micro-
holes. Malapati and Bhattacharyya (2011) considered five EMM process parameters, i.e. pulse 
frequency, machining voltage, duty ratio, electrolyte concentration and micro-tool feed rate, and 
studied their influences on two important responses, i.e. MRR and machining accuracy, during micro-
channel generation. The optimal values of those process parameters were also found out employing 
desirability function approach. Malapati et al. (2011) studied the effect of various EMM process 
parameters, i.e. machining voltage, electrolyte concentration, frequency pulse period and duty factor on 
MRR and machining accuracy to meet the micromachining requirements. Malapati et al. (2012) 
investigated the influence of different process parameters on micromachining criterion using Taguchi 
method of robust design, and developed second order regression models to search for the best 
parametric combination to achieve the desired micromachining characteristics. Mithu et al. (2012) 
fabricated micro nozzles and micro pockets by EMM process. Rao and Patel (2012) introduced the 
elitism concept in teaching-learning-based optimization algorithm and investigated the effects of 
common controlling parameters, like population size and number of generations on the performance of 
that algorithm. Its optimization performance was also compared with that of other well known 
evolutionary algorithms. Thanigaivelan and Arunachalam (2013) optimized the process parameters for 
EMM operation of 304 stainless steel using grey relational analysis. Machining voltage, pulse on-time, 
electrolyte concentration and tool tip shapes were selected as the typical process parameters, and 
machining rate and overcut were the responses. 
 
The past researchers have already applied various optimization tools and techniques, mainly Taguchi 
method and Derringer’s desirability function approach for finding out the optimal settings of EMM 
process parameters. But, those adopted approaches have several inherent limitations (especially 
generation of near optimal or sub-optimal solutions and high computational time) which compel the 
authors to explore the feasibility and acceptability of an almost unexplored optimization tool, i.e. 
differential search algorithm (DSA) for parametric optimization of EMM processes.    
 
3. Differential search algorithm 
 
The sustainability and efficiency of food sources available in nature (pastures, water supplies etc.) 
typically vary with the periodicity of seasonal changes. Thus, it is the characteristic of many species 
(eusocial, subsocial or presocial) to show seasonal migratory behavior  to move to a more thriving 
habitat (Krebs and Davies, 1997). The migrating species of living beings constitute a superorganism, 
containing a large number of individuals. 
 
There are a number of stochastic computational intelligence algorithms that model the behavior of 
superorganisms. Some of the most popular algorithms in this category include particle swarm 
optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) algorithm, ant colony 
optimization (ACO) etc. The differential search algorithm (DSA) is the latest addition to this group. 
Movement of a superorganism can be described by a Brownian-like random walk model (Trianni et al., 
2011). In DSA, it is assumed that a population made up of random solutions of the respective problem 
corresponds to an artificial superorganism migration (Civicioglu, 2012). This superorganism tends to 
migrate to a global minimum of the problem. In the course of this migration, the artificial 
superorganism tests whether some randomly selected positions are temporarily suitable for stop-over. 
If it is so, members of the superorganism that made this discovery immediately settle at this discovered 
position and continue their migration from here on. 
 
A detailed pseudo code for DSA (Civicioglu, 2012) is presented below, and its nuances are explained 
in the subsequent paragraphs of this section. 
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Pseudo code: Differential search algorithm  

Require: 
N: Size of the population, where i = {1,2,3,…,N} 
D: Dimension of the problem 
G: Number of maximum generation 
1: Superorganism = initialize(), where Superorganism = [ArtificialOrganismi] 
2:   yi = Evaluate(ArtificialOrganismi) 
3:   for cycle = 1: G do 
4:  donor = SuperorganismRandom_Shuffling(i) 

5:  1 2 3[2 ] ( )Scale randg rand rand rand     

6:  ( )StopoverSite Superorganism Scale donor Superorganism     

7:  1 40.3p rand   and 2 50.3p rand   

8:  if rand6 < rand7 then  
9:   if rand8 < p1 then 
10:    r = rand(N,D)  
11:    for Counter1 = 1: N do 
12:     9( 1,:) ( 1,:)r Counter r Counter rand   

13:    end for 
14:   else 
15:    r = ones(N,D)  
16:    for Counter2 = 1: N do 
17:     10( 2, ( )) ( 2, ( ))r Counter randi D r Counter randi D rand   

18:    end for 
19:   end if 
20:  else 
21:   r = ones(N,D) 
22:   for Counter3 = 1: N do 
23:    2( ,1, )d randi D p rand D      

24:    for Counter4 = 1: ( )size d  do 

25:     ( 3, ( 4)) 0r Counter d Counter   

26:    end for 
27:   end for 
28:  end if 
29:  , , 0 | , [1, ]I J I Jindividuals r I i J D     

30:  , ,( ) : ( )I J I JStopoverSite individuals Superorganism individuals  

31:  if , ,i j i jStopoverSite low  or , ,i j i jStopverSite up  then 

32:   , : ( )i j j j jStopoverSite rand up low low     

33:  end if 
34:  ; ( )StopoverSite i iy evaluate StopoverSite  

35:  ; ; ;

;
;

:
StopoverSite i StopoverSite i Superorganism i

Superorganism i
Superorganism i

y y y
y

y else


 


 

36:  ; ;
:

i StopoverSite i Superorganism i

i
i

StopoverSite y y
ArtificialOrganism

ArtificialOrganism else


 


 

37: end for 

 
A member of an artificial organism, in its initial position, is defined by the following equation:  
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, ( )i j j j jx rand up low low     (1) 

 
Subsequently, the artificial organisms are defined by Xi = [xi,j] and the superorganism made up of these 
artificial organisms is denoted by Superorganismg= [Xi]. The mechanism of finding a stop-over site 
involves implementation of the Brownian-like random walk model (Trianni et al., 2011). The randomly 
selected individuals of the artificial organisms move towards the targets of donor = [XRandom_Shuffling(i)] in 
order to discover these stop-over sites, which are pivotal for a successful migration. The magnitude of 
the change in positions of the members of the artificial organisms is governed by the Scale factor. The 
value of Scale is determined using a gamma random number generator (randg), which in turn, is 
controlled by a uniform random number generator (rand). This coding structure (refer to line 5 of 
pseudo code) allows the artificial superorganism to radically change direction within the habitat. 
 
The expression for a stop-over site position is given by the following equation: 
 

( )StopoverSite Superorganism Scale donor Superorganism     (2) 

                      
The members which participate in the search process for stop-over sites are determined by a stochastic 
scheme (lines 8-28 of pseudo code). Since this process is completely random, there is a probability that 
an element of the stop-over site is beyond the limits of the habitat (i.e. search space). To make the code 
foolproof against this situation, a suitable check is hence devised (lines 31-33 of pseudo-code). 
 
If a stop-over site is more thriving than the sources owned by the artificial organism, the artificial 
organism moves to the newly discovered stop-over site. While the artificial organisms change site, the 
superorganism continues its migration towards the global optimum. 
 
Two unique characteristics of DSA make it a successful search tool for solution of multi-modal 
functions. Firstly, DSA may simultaneously use more than one individual; and secondly, this algorithm 
has no inclination to go towards the so-called best possible solution of the problem. These features are 
unlike the other existing algorithms, like PSO, ABC etc. These traits are also evident from the nature of 
the scatter plots generated by DSA (given in sub-section 4.1 of this paper). The scatter diagrams 
generated by algorithms, like ABC and PSO clearly show a clustering of navigated data points near the 
optima (Samanta & Chakraborty, 2011). But in case of DSA, such a behavior is not to be observed 
(refer to scatter diagrams given in sub-section 4.1 of this paper). 
 
The DSA has only two control parameters, p1 and p2 (line 7 of pseudo code). Civicioglu (2012) 
conducted detailed tests to determine the most appropriate values for these two control parameters, and 
concluded that this algorithm is not much sensitive to the values of p1 and p2. The straightforward 
algorithmic structure of DSA allows for its easy application in practical engineering problems of 
interest. 
 
4. Illustrative examples 
 
In order to prove and validate the usefulness, applicability and solution accuracy of DSA in solving 
complex polynomial mathematical functions, the following three real time optimization problems are 
considered. In all these three cases, the past researchers developed RSM-based equations correlating 
the responses with various EMM process parameters and adopted different optimization tools to search 
out the optimal combinations of the EMM process parameters for enhanced machining performance. In 
this paper, those RSM-based equations are considered for both single and multi-objective optimization 
of the responses employing DSA tool.   
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4.1 Example 1 
 
Malapati and Bhattacharyya (2011) developed an EMM setup to study the influence of various process 
parameters, like pulse frequency, machining voltage, duty ratio, electrolyte concentration and micro-
tool feed rate on MRR, width-overcut (WOC), length-overcut (LOC) and linearity during micro-
channel generation. In order to develop the relationships between the considered five EMM process 
parameters and responses, 32 experiments were conducted on bare copper plates 
(15mm×10mm×0.15mm) using a central composite half factorial second-order rotatable design plan. 
Each of the EMM process parameters was set at five different levels, as given in Table 1. Among the 
considered responses, MRR is the ratio of difference in weights (final weight − initial weight) to the 
machining time, WOC is the excess dimensional machining across the micro-channel, LOC is the 
excess dimensional machining along the micro-channel and linearity is defined as the uniformity of 
width along the length of the generated micro-channel. Using the experimental data and with the help 
of MINITAB software, Malapati and Bhattacharyya (2011) developed four RSM-based equations for 
the considered responses, as given by Eqs. (3-6), to explore the interactive and higher-order effects of 
various EMM process parameters on the responses. 
 
Table 1  
EMM process parameters along with their levels (Malapati and Bhattacharyya, 2011) 
Parameter Unit Levels 

−2 −1    0 +1 +2 
Pulse frequency (x1) kHz 40     50 60 70 80 
Machining voltage (x2) V 7     8 9 10 11 
Duty ratio (x3) % 30     40 50 60 70 
Electrolyte concentration (x4) g/l 50     60 70 80 90 
Micro-tool feed rate (x5) μm/sec 150     175 200 225 250 

 

YMRR = 2.59446 + 0.237004x2 + 0.426029x3 + 0.340938x4 − 0.385790x1
2
 + 0.295540x2

2 − 
0.299427x3

2 + 0.224331x1x5 + 0.327156x2x3 − 0.243256x2x4 
(3) 

YWOC = 0.124856 + 0.0288208x4 + 0.0270208x5 − 0.0173807x3
2 + 0.0140443x5

2 + 
0.0203563x1x4 − 0.0257063x1x5 − 0.0209313x2x3 

(4) 

YLOC = 0.403467 + 0.0526542x2 + 0.0604563x1x2 + 0.0457563x1x3 + 0.0344187x1x4 − 
0.166544x2x4 − 0.0554562x2x5 + 0.0495813x3x4 + 0.0413687x3x5 + 0.0534565x4x5 

(5) 

YLinearity = 0.0721852 + 0.00868750x1 + 0.0112125x2 + 0.0171458x4 − 0.0128688x1x3 + 
0.0151188x1x4 + 0.00841875x2x4 − 0.0116062x2x5 − 0.00749375x4x5 

(6) 

 
Single objective optimization 
 
In single objective optimization, all the four responses of the considered EMM process, i.e. MRR, 
WOC, LOC and linearity, are separately optimized using DSA. Among these responses, MRR needs to 
be maximized and the remaining three responses are to be minimized. For all these single objective 
optimization problems, the constraints are set as 40 ≤ x1 ≤ 80, 7 ≤ x2 ≤ 11, 30 ≤ x3 ≤ 70, 50 ≤ x4 ≤ 90 and 
150 ≤ x5 ≤ 250. In Table 2, the results of single objective optimization of the responses are presented 
and it is observed that different combinations of the optimal EMM process parameters are attained by 
DSA for different responses. It may simply become impossible for the process engineers to set different 
EMM process parameter settings for attaining the desired values of the responses. This compels 
implementation of multi-objective optimization technique for achieving a unique combination of 
process parameters to simultaneously attain all the preferred values of the responses. Table 2 also 
compares the optimization performance of DSA with that of genetic algorithm (GA) which has already 
become a quite prominent population-based approach for dealing with complex optimization problems. 
It is quite evident from the optimization results of Table 2 that DSA outperforms GA with respect to 
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the values of all the considered responses. While solving the above-mentioned single objective 
optimization problems on an Intel® Core™ i5-2450M CPU @ 2.50 GHz with 4.00 GB RAM 
computing platform, the average computational time taken by DSA is 8.11sec, whereas, GA takes an 
average of 12.41 sec to solve those problems. Fig. 1 compares the convergence of DSA and GA for all 
the four responses and it is clear that DSA is quite faster than GA in achieving the optimal values of the 
responses. As Malapati and Bhattacharyya (2011) did not perform any single objective optimization of 
the responses, the results of DSA cannot be compared with theirs. 

 

Table 2  
Single objective optimization results for Example 1 

Method Response Objective Value x1 x2 x3 x4 x5 

DSA 

MRR Maximize 5.6223 66.3833 7.0000 30.0000 50.0000 159.6055 
WOC Minimize 7.05E-07 61.0216 11.0000 45.6017 54.9639 172.8989 
LOC Minimize 2.68E-05 67.7531 9.3063 70.0000 84.1044 201.5386 

Linearity Minimize 3.19E-06 79.1782 7.0000 68.3325 64.1964 150.0000 

GA 
 

MRR Maximize 3.9635 60.6760 7.0000 50.0200 77.8400 224.1500 
WOC Minimize 6.85E-05 77.7851 10.4260 62.0426 87.4213 250.0000 
LOC Minimize 5.19E-04 60.8481 7.4079 30.0000 67.2276 250.0000 

Linearity Minimize 7.14E-04 72.5229 7.5649 34.6474 87.4393 229.2281 
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* Inset plot: vertical axis in logarithmic scale 

Fig. 1. Convergence diagrams of DSA and GA for Example 1 
 

Malapati and Bhattacharyya (2011) observed that MRR would increase with the increasing values of 
duty ratio up to a level of duty ratio = 50%, and then it would start decreasing rapidly. Due to increase 
in duty ratio, the on-time of pulse period would increase, causing an increase in MRR. Usually, the 
dissolved machining products are flushed out from the machining zone during off-time of pulse period. 



  

       

48 

Increase in duty ratio would also increase the dissolution rate, and these products cannot be efficiently 
flushed out, once the duty ratio crosses the limit of 50%. Up to 50% duty ratio, the on-time is lower 
than off-time of pulse period, hence, the dissolved products can be flushed out easily. Beyond 50% 
duty ratio, the dissolved products may pile up in the machining zone, disrupting the dissolution process 
and reducing the MRR. It was also found out that MRR would increase with electrolyte concentration. 
At higher concentration, more ions would be associated with machining, thus increasing the current 
density that would lead to higher MRR. Due to increase in machining voltage, machining current would 
also increase, leading to increase in current density which causes higher MRR. It was also observed 
that the value of MRR would increase non-linearly with increasing values of machining voltage. At 
higher machining voltage, ions associated with the machining process would be more, which may have 
an impact in enhancing the value of MRR. 
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Fig. 2. Change of MRR with respect to various EMM process parameters 

It was observed that WOC would be the minimum for lower duty ratio and machining voltage. Increase 
in duty ratio would increase the dissolution rate and, at the same time, decrease the off-time. So these 
dissolved products cannot be flushed out completely from the machining zone during a short span of 
off-time; they disturb the dissolution process and sometimes stick between the micro-tool and the 
workpiece, causing poor localization effects which in turn cause larger overcut. Furthermore, at higher 
machining voltage, electrochemical reactions generate hydrogen gas bubbles, which break down 
resulting in the occurrence of micro-sparks, causing uncontrollable material removal in the periphery of 
the micro-channel, which, in turn, produces larger overcut. Figures 2 and 3 respectively exhibit the 
variations of MRR and WOC with varying values of the EMM process parameters. These scatter 
diagrams clearly corroborate with the findings of Malapati and Bhattacharyya (2011). Similar types of 
scatter diagrams exhibiting variations of LOC and linearity are also developed which are not shown 
here due to lack of space. 
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Multi-objective optimization 
 
In multi-objective optimization, all the four responses are simultaneously optimized and for this, the 
following combined objective function is developed. 
 

Minimize 
max

4

min

3

min

2

min

1
1

)()()()(
Z

MRR

Yw

Linearity

Yw

LOC

Yw

WOC

Yw MRRLinearityLOCWOC 









 , 

(7) 

where YWOC, YLOC, YLinearity and YMRR are the RSM-based equations for WOC, LOC, Linearity and MRR 
respectively as developed using the experimental data; w1, w2, w3 and w4 are the weight/priorities 
assigned to WOC, LOC, Linearity and MRR respectively; and (WOC)min, (LOC)min, (Linearity)min and 
(MRR)max are respectively the optimal values of the considered responses as obtained from the single 
objective optimization results. The weights need to be assigned to the responses in such a way that they 
must add up to one. Sometimes, analytic hierarchy process may be helpful to determine the weight 
values to be allocated to the responses. In this case, equal weights, i.e. w1 = w2 = w3 = w4 = 0.25, are 
assigned to all the four responses. The same set of constraints as considered for single objective 
optimization is also used here for multi-objective optimization.  
 
After solving the combined objective function of Eq. (7) using DSA, the multi-objective optimization 
results of Table 3 are obtained. It is observed that a combination of EMM process parameters given by 
pulse frequency = 80.0000 kHz, machining voltage = 8.3340V, duty ratio = 64.6364%, electrolyte 
concentration = 69.1625g/l and micro-tool feed rate = 181.4039μm/sec provides the simultaneously 
optimized values of the four responses as MRR = 4.8279 mg/min, WOC = 0.00006 mm, LOC = 0.0861 
mm and linearity = 0.00053. The minimum objective function value (Z1) is achieved as -0.0341. After 
solving the multi-objective optimization problem for the EMM process using composite desirability 
function approach, Malapati and Bhattacharyya (2011) determined the optimal combination of various 
machining parameters as pulse frequency of 52.2818 kHz, machining voltage of 10.1033 V, duty ratio 
of 68.3890%, electrolyte concentration of 85.1515 g/l and micro-tool feed rate of 208.5860 μm/sec, 
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where maximum MRR (3.1039 mg/min) and minimum values of accuracy (WOC of 0.0003 mm, LOC 
of 0.1676 mm and linearity of 0.0691) were achieved. It can be concluded that the optimal values of all 
the four responses as derived by DSA are far better than those achieved by Malapati and Bhattacharyya 
(2011) through their experiments.  
 

Table 3  
Multi-objective optimization results for Example 1 

x1  x2 x3 x4 x5 WOC  LOC  Lin MRR  

80.0000 8.3340 64.6364 69.1625 181.4039 6.03E-05 0.0861 5.33E-04 4.8279 
 

4.2 Example 2 
  
Munda and Bhattacharyya (2008) considered pulse on/off ratio, machining voltage, electrolyte 
concentration, voltage frequency and tool vibration frequency during EMM operation to investigate 
their effects on MRR and radial overcut (ROC) of the machined components. The experimentation plan 
was designed not only to obtain the optimal scheme for multi-variable experimentation, but also to 
perform studies for exploring the interactive and higher-order effects of various process parameters. A 
stainless steel wire of diameter 335μm was used as the micro tool for the experimentation and the 
workpiece specimens were 15×10×0.15 mm bare copper plates. A central composite half fraction 
second-order rotatable design with 32 experiments was adopted for studying the relationship between 
the process parameters and responses. The original values of EMM process parameters with their 
corresponding levels are shown in Table 4. The developed RSM-based equations for MRR and ROC 
are respectively given in Eqs. (5-6). 

 
Table 4  
EMM process parameters and their levels (Munda and Bhattacharyya, 2008) 

Parameter Unit Levels 
−2 −1    0 +1 +2 

Pulse on/off ratio (x1)  0.5     1.0 1.5 2.0 2.5 
Machining voltage (x2) V 2.5         3.0 3.5 4.0 4.5 
Electrolyte concentration (x3) g/l 10         15 20 25 30 
Voltage frequency (x4) Hz 35         40 45 50 55 
Tool vibration frequency (x5) Hz 100         150 200 250 300 

 
YMRR = −1.78917 + 0.111858x1 + 1.36263x2 − 0.0864044x3 + 0.0231122x4 − 0.00139639x5 − 
0.201666x1

2 − 0.0860582x2
2 − 0.000145752x3

2 − 0.000319532x4
2 + 3.893684×10-6x5

2 − 
0.0704326x1x2 + 0.00838936x1x3 + 0.00275664x1x4 + 0.00178484x1x5 + 0.00870264x2x3 − 
0.00700764x2x4 − 0.00105004x2x5 + 0.00125437x3x4 + 0.0000247626x3x5 + 0.0000181174x4x5 

 
(8) 

 
YROC = −1.08149 + 1.21039x1 + 0.448639x2 − 0.0821333x3 + 0.0247783x4 − 0.00258589x5 + 
0.0198541x1

2 + 0.0554876x2
2 + 0.00108447x3

2 + 0.000640329x4
2 + 2.817205×10-6x5

2 − 
0.139966x1x2 − 0.00133867x1x3 − 0.0161759x1x4 − 5.41335×10-5x1x5 − 0:00307591x2x3 − 
0.0163201x2x4 + 0:000831331x2x5 + 0.000786541x3x4 + 0.0000725981x3x5 
− 6.94181×10-5x4x5 

 
 

(9) 

Single objective optimization          
 
Now employing DSA, the RSM-based equations, as given in Eqns. (8)-(9) for the two responses, i.e. 
MRR and ROC, are separately optimized. In this case, MRR needs to be maximized while 
minimization of ROC is required. For optimizing the RSM-based equations for the two responses, the 
constraints are set as 0.5 ≤ x1 ≤ 2.5, 2.5 ≤ x2 ≤ 4.5, 10 ≤ x3 ≤ 30, 35 ≤ x4 ≤ 55 and 100 ≤ x5 ≤ 300. The 
results of single objective optimization using DSA are provided in Table 5. Again, two different sets of 
optimal EMM process parameter combinations are derived for the two separate responses. Table 5 also 
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compares the optimal values of the responses as derived by DSA with those obtained by GA. It is again 
proved that DSA is superior to GA with respect to their optimization performance. Figure 4 shows the 
convergence of DSA and GA for the considered two responses. As Munda and Bhattacharyya (2008) 
did not perform any single objective optimization of the responses, so the optimal solutions as achieved 
applying DSA cannot be compared with those of the past researchers. The effects of various EMM 
process parameters on MRR and ROC are also observed through the developed scatter diagrams and 
the trends exactly match with those identified by Munda and Bhattacharyya (2008).      
 

Table 5  
Results of single objective optimization for Example 2 

Method Response Objective Value x1 x2 x3 x4 x5 

DSA 
MRR Maximize 1.2911 0.5000 4.1197 30.0000 51.5735 100.0000 
ROC Minimize 2.03E-05 0.5000 2.8408 10.9621 35.0000 173.3133 

GA 
 

MRR Maximize 0.9630 0.5000 3.3169 26.0909 55.0000 287.1363 
ROC Minimize 9.91E-04 0.5988 2.8443 15.4795 35.2165 100.0000 
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Fig. 4. Convergence diagrams of DSA and GA for Example 2 
 
Multi-objective optimization 
 
In order to simultaneously optimize both the responses, the following objective function of Eqn. (10) is 
developed: 
 

Minimize 1 2
2

min max

,
( ) ( )

ROC MRRw Y w Y
Z

ROC MRR

 
   (10) 

where YROC and YMRR are the RSM-based equations for ROC and MRR respectively; w1 and w2 are the 
weight/priorities assigned to ROC and MRR respectively; and (ROC)min and (MRR)max are respectively 
the optimal values of the considered responses as obtained from the single objective optimization 
results. Here, equal weights, i.e. w1 = w2 = 0.50 are allocated to both the responses. From the results of 
multi-objective optimization as obtained using DSA and shown in Table 6, it is observed that the 
maximum MRR value of 0.8354 g/min and minimum ROC value of 0.0097 mm are obtained at the 
optimal combination of EMM process parameters of pulse on/off ratio = 0.5000, machining voltage = 
4.0974V, electrolyte concentration = 30.0000g/l, voltage frequency = 47.0184 Hz and tool vibration 
frequency = 300.0000Hz. The value of the minimum objective function (Z2) is found as -0.0810. 
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Munda and Bhattacharyya (2008) determined the maximum MRR value as 0.700 g/min and minimum 
ROC value as around 20μm at the optimal parametric combination of pulse on/off ratio = 1.0, 
machining voltage = 3 V, electrolyte concentration = 15g/l, voltage frequency = 42.118Hz and tool 
vibration frequency = 300 Hz. Thus, it can be claimed that while using DSA, the value of MRR is 
increased from 0.700 g/min to 0.8354 g/min and the ROC value is drastically reduced from 20μm to 9μm.  
 
Table 6  
Results of multi-objective optimization for Example 2 

x1 x2 x3 x4 x5 ROC MRR 
0.5000 4.0974 30.0000 47.0184 300.0000 0.0097 0.8354 

 

4.3 Example 3 
 

After taking into consideration pulse on/off ratio, machining voltage, electrolyte concentration, voltage 
pulse frequency and tool vibration frequency as the five major EMM process parameters, Munda et al. 
(2007) studied their influences on micro-spark and stray-current affected zone (MSAZ) (in mm) of the 
machined surface. The value of MSAZ is quantified as the average difference between the hole radius 
to the distances between centre of the hole and different points along the curve that indicate the stray-
current and micro-spark affected zone. Each of the EMM process parameters was set at five different 
levels, as given in Table 7. Based on a central composite half fraction second-order rotatable design 
plan and using the experimental data, the RSM-based regression equation, as given in Eqn. (11), was 
developed to study the interactive and higher-order effects of various EMM process parameters on 
MSAZ.  

 
Table7  
EMM process parameters and their levels (Munda et al., 2007) 
Parameter Unit Levels 

−2 −1    0 +1 +2 
Pulse on/off ratio (x1)  0.5     1.0 1.5 2.0 2.5 
Machining voltage (x2) V 2.5         3.0 3.5 4.0 4.5 
Electrolyte concentration (x3) g/l 10         15 20 25 30 
Voltage frequency (x4) Hz 35         40 45 50 55 
Tool vibration frequency (x5) Hz 100         150 200 250 300 

 
YMSAZ = −0.418161 − 0.468499x1 − 0.0470149x2 + 0.122239x3 − 0.0330168x4 + 0.0121153x5 − 
0.0685619x1

2 − 0.0267494x2
2 − 0.00218687x3

2 + 0.000838756x4
2 − 4.86869×10-6x5

2 + 0.0829706x1x2 + 
0.01128426x1x3 + 0.00587294x1x4 − 0.000567606x1x5 + 0.0165958x2x3                
− 0.000465437x2x4 − 0.00117664x2x5 − 0.00202633x3x4 − 7.65231×10-5x3x5 − 9.07856×10-5x4x5 

(11) 

 
The RSM-based equation depicting the interrelationship between various EMM process parameters and 
MSAZ is now minimized with respect to the constraints set as 0.5 ≤ x1 ≤ 2.5, 2.5 ≤ x2 ≤ 4.5, 10 ≤ x3 ≤ 
30, 35 ≤ x4 ≤ 55 and 100 ≤ x5 ≤ 300. The results of single objective optimization obtained using DSA 
and GA are exhibited in Table 8. Employing desirability function approach, Munda et al. (2007) 
observed the optimal setting of various process parameters as pulse on/off ratio = 2.1618, machining 
voltage = 2.8347 V, electrolyte concentration = 10 g/l, voltage frequency = 35 Hz and tool vibration 
frequency = 100 Hz, and a minimum MSAZ value of  1×10-4 mm. From Table 8, it is found that the 
minimum values of MSAZ are 4.1×10-7 mm and 1.23×10-4 mm respectively when the same 
optimization problem is solved using DSA and GA techniques. Hence, it can be concluded that the 
adopted DSA is far superior to GA and desirability function approach with respect to their optimization 
performance and computational speed. Figure 5 compares the convergence of DSA and GA for this 
single objective optimization problem.      
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Table 8  
Results of single objective optimization for Example 3 

Method Response Objective Value x1 x2 x3 x4 x5 
DSA MSAZ Minimize 4.1E-07 1.0750 4.5000 27.8550 45.8650 161.4100 
GA MSAZ Minimize 1.23E-04 0.9758 3.8396 12.3990 43.4800 129.4400 
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Fig. 5. Convergence diagrams of DSA and GA for Example 3 
 
In this example, as there is only a single response, i.e. MSAZ, multi-objective optimization cannot be 
performed. 
 
5. Conclusions   
 
For having enhanced MRR, better surface finish and surface integrity, it is always demanded that the 
machining parameters of the EMM processes are set at their optimal values. In this paper, three 
examples leading to parametric optimization of EMM processes are considered and subsequently 
solved using DSA technique, which is an almost unexplored optimization tool for dealing with 
complex multi-modal mathematical functions. It is observed that in all the three cases, DSA provides 
better values of the considered responses (both for single and multi-objective optimization) when 
compared to those observed by the past researchers. When the optimization performance of DSA is 
compared with that of GA, the most popular population-based optimization method, it is again found 
that DSA outperforms GA in all the three examples. Not entirely depending upon the manufactures’ 
data or handbook data, the process engineers can now set the EMM processes at their optimal settings 
for having improved machining performance. As a future scope, the optimization performance of DSA 
can also be compared with that of other familiar evolutionary algorithms, like ACO, PSO, ABC, 
simulated annealing and biogeography-based optimization techniques. The applicability of DSA for 
parametric optimization of other non-traditional machining processes, like laser machining process, 
wire electric discharge machining process, plasma arc machining process, electro-chemical discharge 
machining process can also be experimented.            
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