
* Corresponding author. Tel.: +989121784825 ; +989386231359.
E-mail: St_m_naderibeni@azad.ac.ir (M. Naderi), Mahdi_naderibeni@yahoo.com (M. Naderi)

© 2013 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2013.02.002

International Journal of Industrial Engineering Computations 4 (2013)191–202

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An imperialist competitive algorithm for a bi-objective parallel machine scheduling problem with
load balancing consideration

Mansooreh Madani-Isfahania, Ehsan Ghobadiana, Hassan Irani Tekmehdashc,d, Reza Tavakkoli-
Moghaddamb and Mahdi Naderi-Benia*

aDepartment of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
bDepartment of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
cDepartment of Transportation Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
dDepartment of Construction Management, Islamic Azad University, Science and Research Branch, Tehran, Iran
C H R O N I C L E A B S T R A C T

Article history:
Received October252012
Received in revised format
December 28 2012
Accepted February4 2013
Available online
6February2013

 In this paper, we present a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective
unrelated parallel machine scheduling problem where setup times are sequence dependent. The
objectives include mean completion time of jobs and mean squares of deviations from machines
workload from their averages. The performance of the proposed ICA (PICA) method is examined
using some randomly generated data and they are compared with three alternative methods
including particle swarm optimization (PSO), original version of imperialist competitive
algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The
preliminary results indicate that the proposed study outperforms other alternative methods. In
addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to
perform better.

© 2013 Growing Science Ltd. All rights reserved

Keywords:
Parallel machine scheduling
Genetic algorithm
Imperialist competitive algorithm
Load Balancing
Particle swarm optimization

1. Introduction

In scheduling of unrelated parallel machines, there are n jobs, which are supposed to operate on m
unrelated machines and processing times depend on machines. There are many real-world applications
where setup times not only depends on machines but also depends on the sequence of various jobs. In
other words, setup times between two jobs of j and k on machine i is different with setup time between
two jobs of k and j on the same machine, i. In addition, setup times between two jobs of j and k on
machine i is different with setup times of two jobs of j and k on i’ (Allahverdiet al., 2008; Vallada, &
Ruiz, 2011; Cossari et al., 2012).Lei (2009) provided an extensive review of the literature on the
scheduling problems with multiple objectives.

 192

Rajakumar et al. (2004) presented a method where workflow and workload were assumed to have the
same meaning and a machine with the lowest workflow is chosen for assignment of a new job from the
list of unfinished jobs. They considered various priority strategies for the selection of jobs and three
various strategies were considered, namely random (RANDOM), shortest processing time (SPT) and
longest processing time (LPT) for the selection of jobs for workflow balancing. The relative percentage
of imbalance (RPI) was chosen among the parallel machines to assess the performance of these
strategies in a standard manufacturing environment.

T'kindt et al. (2001) considered a bicriteria scheduling problem connected with the glass bottles
production where the shop was made up of unrelated parallel machines and the aim was to compute a
schedule of orders, which maximizes the total margin and minimizes the difference in machines
workload. Rajakumar et al. (2004), in another assignment, implemented genetic algorithm (GA) to
solve the parallel machine scheduling problem of the manufacturing system with the objective of
workflow balancing. They compared the performance of GA with three workflow balancing strategies
namely RANDOM, SPT and LPT. They adopted RPI among parallel machines for assessing the
performance of these heuristics and reported that GA provided better performance for the combination
of different job sizes and machines.

Keskinturk et al. (2012) investigated the problem of minimizing average relative percentage of
imbalance (ARPI) with sequence-dependent setup times in a parallel-machine environment. They
presented a mathematical model, which minimizes ARPI, used some heuristics, and two metaheuristics,
an ant colony optimization algorithm and a GA, and examined on different random data. Their method
provided better results using ant colony optimization than heuristics and GA did.

Ho et al. (2009) proposed another method for minimizing the normalized sum of square for workload
deviations on m parallel processors called normalized sum of square for workload deviations
(NSSWD). Vallada and Ruiz (2011) presented GA for the unrelated parallel machine scheduling
problem where machine and job sequence dependent setup times were considered and their results
seemed to provide an excellent performance overcoming the rest of the evaluated techniques in a
comprehensive benchmark set of instances.

Varmazyar and Salmasi (2012) considered flow shop scheduling problems with sequence-dependent
setup times, minimizing the number of tardy jobs, and proposed a mixed integer programming to solve
the resulted problem. They also proposed several meta-heuristic methods based on tabu search (TS) and
ICA to heuristically solve the problem. They reported that the performance of ICA was worse than the
other algorithms for some small and medium sized instances while the hybrid of ICA and the TS
algorithm provided better performance than the other proposed algorithms for large-sized problems.

Tavakkoli-Moghaddam et al. (2009) presented two-level mixed-integer programming model of
scheduling N jobs on M parallel machines, which minimizes bi-objectives, namely the number of tardy
jobs and the total completion time of all the jobs and with unrelated parallel machines. They used GA
to solve the bi-objective parallel machine scheduling problem and the performance of the proposed
model and GA was verified using various instances. Shokrollahpoura et al. (2009) considered two-stage
assembly flowshop scheduling problem with minimization of weighted sum of makespan and mean
completion time as the objective and used ICA to solve the resulted problem. Raghavendra et al. (2006)
investigated workflow balancing in parallel machine scheduling with precedence constraints using GA.

Raghavendra and Murthy (2011) studied the loading problem in flexible manufacturing systems
involved the assignment of the operation or jobs to the identical parallel machine to process necessary
part kinds selected to be produced, simultaneously. They used GA heuristic approach for minimizing
the imbalance of workload among the identical parallel machines. Naderi-Beni et al. (2012) studied no-
wait flow shop problem where setup times depended on sequence of operations. Their results indicated

M. Madani-Isfahani et al. / International Journal of Industrial Engineering Computations 4 (2013)

193

that the proposed two-phase model of this paper performed relatively better than Zimmerman's single-
phase fuzzy method. Moradinasab et al. (2011) provided a no-wait two-stage flexible flow shop
scheduling problem with setup times where the objective function was to minimize the total completion
time. The problem was solved using an AICA and GA. Lian (2010) presented united search particle
swarm optimization algorithm for multiobjective scheduling problem while Keskinturk et al. (2012)
considered an ant colony optimization algorithm for load balancing in parallel machines with sequence-
dependent setup times. Karimi et al. (2011) investigated group scheduling in flexible flow shops by
considering a hybridized approach of ICA and electromagnetic-like mechanism and Jolai et al. (2012)
studied a novel hybrid meta-heuristic algorithm for a no-wait flexible flow shop scheduling problem
with sequence dependent setup times. Javadi et al. (2008) investigated no-wait flow shop scheduling
using fuzzy multi-objective linear programming.

In this paper, we present an ICA to solve a bi-objective unrelated parallel machine scheduling problem
where setup times are sequence dependent. The objectives include mean completion time of jobs and
mean squares of deviations from machines workload from their averages. The performance of the
proposed ICA (PICA) method is examined using some randomly generated data and they are compared
with three alternative methods including particle swarm optimization (PSO), original version of
imperialist competitive algorithm (OICA) and genetic algorithm (GA) in terms of the objective
function values.

2. The proposed model

In this study, we consider a mathematical model for ܴหݏห̅ܥ, ∑(ௐିௐഥ)మ , which was originally
developed by Keskinturk et al. (2012), where j and k represent indexes associated with jobs, which are
integer numbers between one to n+m. Without loss of generality, we assume jobs 1 to n are real and
jobs n+1 to n+m are dummy ones with zero processing and setup times, where m is the number of
unrelated parallel machines. In addition, the setup time of the first job processed after a dummy job is
assumed to be initial setup time. Finally, there is a dummy job on each machine at the beginning of
sequencing. The following summarizes the necessary notations for the proposed model of this paper,

jip Processing time of job j on machine i
jiks Setup time of machine i for processing job k after job j
iw Workload of machine i

w The average workload, i.e.
1

/
m

i
i

w w m
=

= ∑

jC Completion time of job j
C The average completion time, i.e.

1

/
n

j
j

C C n
=

= ∑

jiY Binary variable where it is one if job j is processed on machine i and zero, otherwise,
jikX Binary variable where it is one if job k is processed after job j on machine i and zero, otherwise,

The proposed model of this paper is as follows,

(1) min ܼଵ = ̅ܥ = ∑ ୀଵ݊ܥ

(2) min ܼଶ = ∑ (ܹ − ഥܹ)ଶୀଵ݉ − 1

 subject to

 194

(3) ∀݆ ≥ ݊ + 1 ܺ
ୀଵ

ୀଵ = 1

(4) ∀݆, ݆ ≠ ݇ ܺ
ୀଵ

ୀଵ ≤ 1

(5) ∀݅, ݆, ݆ ≠ ݇ ܺ
ୀଵ ≤ ܻ

(6) ∀݅, ݇ ≤ ݊, ݆ ≠ ݇ ܺା
ୀଵ = ܻ

(7) ∀݆ ܻ
ୀଵ = 1

(8) ∀݅ ܻା
ୀଵ = 1

(9) ∀݆ ≥ ݊ + ܥ 1 = 0
(10) ∀݅, ݆, ݇, ݆ ≠ ܥ ݇ ൫1ܯ+ − ܺ൯ ≥ ܥ + + ݏ
(11) ∀݅, ݆ ≠ ݇ ܹ = ܻ

ୀଵ + ݏ ܺ
ୀଵ

ା
ୀଵ

(12) ∀݅, ݆, ݇, ݆ ≠ ݇ ܻ , ܺ ∈ {0,1}

Here, Eq. (1) and Eq. (2) represent mean completion time and mean squares of workloads from their
average. Eq. (3) assigns one dummy job to each machine and guarantees that all dummy jobs are
processed at the beginning of operations for each machine. According to Eq. (4), only one job is
processed once each machine is available. Eq. (5) guarantees that only one real job can be processed
when a machine becomes available. According to Eq. (6), when the processed of a particular job is
completed, there is a real or dummy job before. Eq. (7) is used to assure that each job is assigned only
to one machine, Eq. (8) assures that one machine cannot process more than one job at the same time,
Eq. (9) guarantees that completion times of dummy jobs are equal to zero. In addition, Eq. (10) shows
the relationship between two consecutive jobs, Eq. (11) computes the workload of each machine and
Eq. (12) demonstrates the variable type.

3. Solution method

The proposed solution strategy of this paper uses two parameters of α and β to merge two objective
functions, ܴหݏห̅ܥ, ∑(ௐିௐഥ)మ , into single one	ܴหݏหܥ̅ߙ + ߚ ∑(ௐିௐഥ)మ 	where α+β=1. The proposed
metaheuristics uses a string with the size of n+m-1 where n represents the number of jobs, m denotes
the number of machines, and the feasible solutions are integer numbers between one and n+m-1, which
is design using the proposed method by Lian (2010). For instance, Fig. 1 demonstrates a sample of jobs
and machines when there are three machines and ten jobs.

12 11 1098765 4 3 2 1
0.18 0.290.350.270.300.080.070.26 0.32 0.39 0.81 0.96

Sort real numbers↓
1 2 31048119 5 12 7 6

0.96 0.810.390.350.320.300.290.27 0.26 0.18 0.08 0.07
Convert real numbers to integer ones↓

1 2 31048*9 5 * 7 6
Decode 1ܯ: 6 → :2ܯ7 5 → 9 :3ܯ 8 → 4 → 10 → 3 → 2 → 1

Fig.1. The method of representation, encoding and decoding

M. Madani-Isfahani et al. / International Journal of Industrial Engineering Computations 4 (2013)

195

Termination criterion is the number of function evaluation (NFE) and since we intend to compare the
performance of the proposed method with other methods, we use this criterion to have a fair
comparison.

3.1. Particle swarm optimization

Particle swarm optimization (PSO) has been a popular method, which uses a swarm intelligence to find
best solution (Kennedy & Eberhart, 1995). For PSO implementation, we use the following notations,

Table 1

DescriptionNotation of PSO
Index for particlesi:
PopulationPOP:
Number of populationnPop:
Position of particle iPAR[i]:
Velocity of particle iVEL[i]:
Best global solutionGlobalBest:
Inertia coefficientw:
Best position of particle iPBEST[i]:
Personal learning coefficientܥଵ:
Social learning coefficientܥଶ:
Random numbers generated between zero and one ܴଵ, ܴଶ:

The following steps are used to apply PSO for the proposed method of this paper,

Initialization

Step 1. Choose initial values,

Step 2. Setup initial values using some randomly generated data for all particles with zero value for
velocity,

Step 3. Decode the solution and compute the combined objective function based on ܥ̅ߙ + ߚ ∑(ௐିௐഥ)మ ,
Step 4. Choose the particles with minimum cost and store its position as GlobalBest,

Step 5. Choose the best personal position

Repeat steps 6 to 12 until termination criterion is met.

Step 6. Update velocity using Eq. (13) as follows,

(ݓ݁݊)[݅]ܮܧܸ (13) = .ݓ (݈݀)[݅]ܮܧܸ + ܴଵ. [݅]ܵܶܵܧܤܲ) − ([݅]ܴܣܲ + ܴଶ. ݐݏ݁ܤ݈ܾ݈ܽܩ) − ([݅]ܴܣܲ
Step 7. Update each particle position based on Eq. (14)

(ݓ݁݊)[݅]ܱܲܲ (14) = (݈݀)[݅]ܱܲܲ + (ݓ݁݊)[݅]ܮܧܸ

 196

Step 8. Similar to what we have done in step 3, evaluate position of each particle, update the
best position of each particle and determine the best global solution.

Step 9. Do a local search using of the three methods of Swap, Reversion and Insertion with
equal probabilities as shown in Fig. 2.

9 8 7 6 5 4 3 2 1

Swap

9 8 3 6 5 4 7 2 1

9 8 7 6 5 4 3 2 1

reversion

9 8 3 4 5 6 7 2 1

9 8 7 6 5 4 3 2 1

insertion

9 8 6 5 4 7 3 2 1
Fig.2. The way of performing swap, reversion and insertion

Step 10. If the local search yields better solution, replace it with current solution, and update
the best position of each particle

Step 11. Update the best global solution,

Step 12. Do a local search on GlobalBest and update current solution.

3.2. Genetic algorithm

The proposed genetic algorithm (Holland, 1975; Goldberg, 1989) of this paper has the following steps,

Table 2 demonstrates the GA parameters

Table 2
DescriptionNotation of GA
Member of populationPOP[i]:
Population numbernPop:
Portion of population used for crossover operationpCrossover:
Number of parents for crossover operationnCrossover:
Portion of mutationpMutation:
Number of mutationnMutation:
Mutation ratiomu:
Number of genes from a chromosome for mutation nmu:
Tournament sizeTournamentSize:
A number between zero and oneߜ:

M. Madani-Isfahani et al. / International Journal of Industrial Engineering Computations 4 (2013)

197

The GA used for the proposed model of this paper is a standard method adopted from Haupt and
Haupt (2004) and it is briefly described here,

Step 1. Setup all input parameters,

Step 2. Position all individuals,

Step 3. Evaluate each position,

Step 4. Order population in non-decreasing order according to their objective functions,

Repeat step 5 to 7 until termination criterion is met

Step 5. Perform crossover based on the following,

ݎ݁ݒݏݏݎܥ݊ (15) = 2 ∗ .ݎ݁ݒݏݏݎܥ)݀݊ݑݎ 2ܲ݊)
Let X1 and X2be the parents and Y1 and Y2be the children. We generate X1 and X2randomly in the
interval of [−ߜ, 1 + ,and Y1 and Y2are generated as follows [ߜ

(16) ଵܻ = .ߠ ଵܺ + (1 − .(ߠ ܺଶ
(17) ଶܻ = .ߠ ܺଶ + (1 − .(ߠ ଵܺ

Step 6. Perform mutation based on nMutation

݊݅ݐܽݐݑܯ݊ (18) = .݊݅ݐܽݐݑܯ)݀݊ݑݎ (ܲ݊
The mutation operation is similar to Engelbrecht (2007), as follows

ߝ (19) = 0.5 ∗ ݔܽܯݎܸܽ) − (݊݅ܯݎܸܽ
(20) ܻ = ܺ + .ߝ ݊݀݊ܽݎ

Step 7. Merge the initial population with two new populations obtained from mutation and crossover
and order them on non-decreasing order,

݊݅ݐܽݐݑܯ݊ (18) = .݊݅ݐܽݐݑܯ)݀݊ݑݎ (ܲ݊
Step 8. Choose the first nPop components as new solution.

3.3 Proposed Imperialist Competitive Algorithm

In this section, we present details of the proposed imperialist competitive algorithm (PICA), which is originally
presented by Atashpaz-Gargari and Lucas (2007).Table 3 demonstrates details of parameters used,

Table 3
Notation of PICA

Number of populationnPop:
Number of empiresnEmp:
Total cost of empires kTotalCostEmp(k):
Total cost of imperialist i from empire kݐݏܥ݉ܫ(݅):
Position of imperialist i from empire k݉ܫ(݅):
Position of colony i from empire k݈ܥ(݅):
Average mean cost of colonyߞ:
Assimilation Coefficientߪ:
Average cost of colony k݈ܥݐݏܥതതതതതതതതതതത:

 198

The following summarizes the necessary steps associated with the proposed study,

Step 1. Setup initial values,

Step 2. Determine empires (Similar to step 2 of GA and PSO),

Step 3. Order countries based on their costs in non-decreasing orders and based on nEmp and nPop-
nEmp assign countries to Imperialists. The assignment of countries to Imperialists are performed based
on pi calculated using Boltzmann (Engelbrecht, 2007) and roulette wheel selection strategy as follows,

, (21) = ఎ.ூ௦௧ೖ()ିݔ݁ ୫ୟ୶	(ூ௦௧ೖ())൘

 (22) = ∑, ,ாୀଵ

where η is the pressure coefficient. Total cost associated with empire k is also calculated as follows,

(݇)݉ܧݐݏܥ݈ܽݐܶ (23) = (݅)ݐsܥ݉ܫ + .ߞ .തതതതതതതതതതത݈ܥݐݏܥ

Repeat steps 5 to 10 until termination criterion is met,
Step 5. Go inside each empire, do Assimilation on all colonies and calculate new location as follows,

(24) Col୩(݅)(݊݁ݓ) = (݈݀)(݅)݈ܥ + .ߪ .ݎ ൫݉ܫ(݅) − .൯(݈݀)(݅)݈ܥ

In Eq.(24), r is a string whose elements are generated randomly between zero and one.

Step 6. Do revolution on each Empire and its colonies,

To do this, we first perform a local search on each Imperialist and of the new location maintain a better
objective function, replace the new position with the old one. This policy is applied to all colonies and
the positions are updated, accordingly.

Step 7. If the position of colonies is better than its Empire in terms of their costs, exchange their
position,

Step 8. Update empire cost using Eq. (23),

Step 9. Choose the worst Empire in terms of cost and assign its worst colony to other Empire,

Step 10. Perform a local search on the best Empire.

4. The results

In this section, we examine the performance of the proposed method of this paper on some randomly
generated data. Table 4 shows the input data,

Table 4
The way of generating input parameters

Valuesparameters
(3,10) (3,20) (3,30) (4,15) (4,30) (4,45)(5,20) (5,25) (5,50) (6,25) (6,50) (6,75) (݉, () Processing time [10,99]ܷܦ~ (݊ (ݏ) Setup time [1,25]ܷܦ~
,ߙ)(0.8,0.2) (0.6,0.4) (0.4,0.6) (0.2,0.8) (ߚ

M. Madani-Isfahani et al. / International Journal of Industrial Engineering Computations 4 (2013)

199

We have performed different studies to find the best tuning values. The likelihood of a revolution is
considered as 0.05 with the rate of 0.05. The value of NFE for problems 3, 4, 5 and 6 are 100000,
150000, 200000 and 250000, respectively. Table 5 demonstrates some other parameters,

 Table 5
The values of parameters of GA, PSO and PICA

PICAPSO GA
nPop=150nPop=100 nPop=100
nEmp=15w=0.3 pCrossover=0.8 ߟ = ଵܥ 1 = 0.8 pMutation=0.1 ߪ = ଵܥ 1.7 = 1 mu=0.05 ߞ = 0.1 TournamentSize=3

Each example is solved 5 times leading us to have 960 instances, we have considered various values for
α, and β. Table 6, Table 7, Table 8 and Table 9 demonstrate the results of our survey.

Table 6
The average objective function values of GA, PSO, OICA and PICA while α=0.2 and β=0.8

Number of instances instances GA PSO OICA PICA
1 3×10 28.88 25.28 26.11 25.04
2 3×20 40.62 43.51 41.34 36.48
3 3×30 61.56 61.01 64.26 58.85
4 4×15 38.47 30.95 32.92 27.78
5 4×30 47.40 48.96 44.97 41.99
6 4×45 72.89 69.25 69.92 61.75
7 5×20 29.67 30.96 31.66 26.71
8 5×40 49.86 50.37 51.51 43.56
9 5×60 80.60 77.83 82.97 71.30

10 6×25 35.33 32.35 32.09 25.81
11 6×50 54.82 52.37 57.78 47.56
12 6×75 88.53 81.20 95.02 73.59

Table 7
The average objective function values of GA, PSO, OICA and PICA while α=0.4 and β=0.6

Number of instances instances GA PSO OICA PICA
1 3×10 53.75 51.49 50.09 43.43
2 3×20 74.58 69.01 77.89 75.14
3 3×30 119.18 119.49 121.86 112.25
4 4×15 78.19 60.00 54.64 49.46
5 4×30 86.41 85.02 92.55 80.89
6 4×45 137.06 128.41 139.02 125.10
7 5×20 56.92 57.80 55.97 47.92
8 5×40 96.97 92.38 95.19 86.31
9 5×60 154.08 143.06 163.37 135.88

10 6×25 56.81 55.92 62.01 50.31
11 6×50 102.51 107.85 111.54 91.83
12 6×75 169.80 165.63 172.26 143.49

Table 8
The average objective function values of GA, PSO, OICA and PICA while α=0.6 and β=0.4

Number of instances instances GA PSO OICA PICA
1 3×10 74.30 68.41 77.52 66.99
2 3×20 110.37 102.55 111.89 102.12
3 3×30 172.65 165.34 174.35 164.45
4 4×15 99.92 90.21 83.47 79.68
5 4×30 124.54 124.89 126.05 113.31
6 4×45 199.14 191.78 202.08 175.56
7 5×20 87.94 89.91 81.31 74.28
8 5×40 137.47 138.48 138.59 122.84
9 5×60 226.74 238.72 221.71 194.47

10 6×25 88.98 90.74 79.79 70.27
11 6×50 135.57 158.60 164.49 134.85
12 6×75 249.55 226.69 258.63 202.90

 200

Table 9
The average objective function values of GA, PSO, OICA and PICA while α=0.8 and β=0.2

Number of instances instances GA PSO OICA PICA
1 3×10 94.56 85.31 90.76 84.76
2 3×20 143.25 124.32 145.04 123.71
3 3×30 217.50 198.77 224.28 196.08
4 4×15 112.57 103.87 96.51 84.80
5 4×30 158.47 159.61 151.41 136.26
6 4×45 239.36 255.60 269.46 216.95
7 5×20 107.72 107.67 107.44 89.71
8 5×40 179.94 173.12 179.38 148.27
9 5×60 279.86 289.52 312.13 247.38

10 6×25 105.69 103.84 104.99 90.15
11 6×50 200.87 189.67 200.96 157.01
12 6×75 286.70 300.32 348.02 264.82

In addition, we present the results in terms of descriptive figures and Fig. 3 to Fig. 5 show the results.

Fig.4. comparison between the average objective function
values of mentioned algorithms while α=0.4 and β=0.6

Fig.3. comparison between the average objective function
values of mentioned algorithms while α=0.2 and β=0.8

Fig.6. comparison between the average objective function
values of mentioned algorithms while α=0.8 and β=0.2

Fig.5. comparison between the average objective function
values of mentioned algorithms while α=0.6 and β=0.4

As we can observe from the results of Fig. 3 to Fig. 6, PICA performs better than other alternative
methods including ICA, PSO and GA, especially when the sizes of instances increase. ICA performs
the worst while GA and PSO come somewhere between.

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

1 2 3 4 5 6 7 8 9 10 11 12

av
er

ag
e

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

instances

PICA ICA PSO GA

2025
3035
4045
5055
6065
7075
8085
9095

1 2 3 4 5 6 7 8 9 10 11 12

av
er

ag
e

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

instances

PICA ICA PSO GA

80
110
140
170
200
230
260
290
320
350

1 2 3 4 5 6 7 8 9 10 11 12

av
er

ag
e

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

instances

PICA ICA PSO GA

60
80
100
120
140
160
180
200
220
240
260
280

1 2 3 4 5 6 7 8 9 10 11 12

av
er

ag
e

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
es

instances

PICA ICA PSO GA

M. Madani-Isfahani et al. / International Journal of Industrial Engineering Computations 4 (2013)

201

5. Conclusion

In this paper, we have presented a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective
unrelated parallel machine scheduling problem where setup times are sequence dependent. The
objectives include mean completion times of jobs and mean squares of deviations from machines
workload from their averages. The performance of the proposed ICA (PICA) method has been
examined using some randomly generated data and they have been compared with three alternative
methods including particle swarm optimization (PSO), original version of imperialist competitive
algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The
preliminary results have indicated that the proposed study outperforms other alternative methods. In
addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to perform
better.

References

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. (2008).A survey of scheduling problems with setup

times or costs.European Journal of Operational Research, 187, 985-1032.
Atashpaz-Gargari, E., & Lucas, E. C. (2007). Imperialist Competitive Algorithm: An algorithm for

optimization inspired by imperialist competitive.IEEE Congress on Evolutionary Computation,
Singapore, 4661-4667.

Cossari, A., Ho, J.C., Paletta, G., &Torres, A.J.R. (2012).A new heuristic for workload balancing on
identical parallel machines and a statistical perspective on the workload balancing criteria,
Computers and Operations Research, 39, 1382-1392.

Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction, 2nd ed., Wiley.
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley Longman.
Haupt, R. L., & Haupt, S. E. (2004).Practical Genetic Algorithm.2nd ed., Wiley.
Ho, J.C., Tseng, T.L.B., Torres, A.J.R., Lopez, F.J. (2009).Minimizing the normalized sum of square

for workload deviations on m parallel processors.Computers and Industrial Engineering, 56, 186-
192.

Holland, J.H. (1975).Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor.

Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of Operational Research, 167, 592-
623.

Javadi, B., Saidi-Mehrabad, Haji, A., Mahdavi, I., Jolai, F., & Mahdavi-Amiri, N. (2008).No-wait flow
shop scheduling using fuzzy multi-objective linear programming.Journal of Franklin Institute, 345,
452-467.

Jolai, F., Rabiee, M., & Asefi, H. (2012). A novel hybrid meta-heuristic algorithm for a no-wait flexible
flow shop scheduling problem with sequence dependent setup times.International Journal of
Production Research, 50 (24), 7447-7466.

Karimi, N., Zandieh. M., & Najafi, A. A. (2011). Group scheduling in flexible flow shops: a hybridised
approach of imperialist competitive algorithm and electromagnetic-like mechanism.International
Journal of Production Research, 49 (6), 4965-4977.

Kennedy, J., & Eberhart, R.C. (1995).Particle swarm optimization.In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, 4, 1942-1948.

Keskinturk, T., Yildirim, M.B., & Barut, M. (2012). An ant colony optimization algorithm for load
balancing in parallel machines with sequence-dependent setup times.Computers & Operations
Research, 39, 1225-1235.

Lei, D. (2009). Multi-objective production scheduling: a survey.International Journal of Advanced
Manufacturing Technology, 43(9-10), 926-938.

Lian, Z. (2010). A united search particle swarm optimization algorithm for multiobjective scheduling
problem.Applied Mathematical Modelling, 34, 3518-3526.

 202

Moradinasab, N., Shafaei, R., Rabiee, M., & Ramezani, P. (2012). No-wait two stage hybrid flowshop
scheduling with genetic and adaptive imperialist competitive algorithms.Journal of Experimental &
Theoretical Artificial Intelligence, DOI: 10.1080/0952813X.2012.682752.

Naderi-Beni, M., Tavakkoli-Moghaddam, R., Naderi, B., Ghobadian, E., & Pourrousta, A. (2012). A
two-phase fuzzy programming model for a complex bi-objective no-wait flow shop scheduling.
International Journal of Industrial Engineering Computations, 3, 617-626.

Nagar, A., Haddock, J., Heragu, S. (1995). Multiple and bicriteria scheduling: a literature survey.
European Journal of Operational Research, 81, 88-104, DOI: 10.1016/0377-2217(93) E0140-S.

Ouazene, Y., Hnaien, F., Yalaoui, F., & Amodeo, L. (2011). The joint load balancing and parallel
machine scheduling problem.Operations Research Proceedings 2010, DOI: 10.1007/978-3-642-
2009-0_79, Springer_Verlag Berlin Heidelberg.

Pinedo, M.L. (2008). Scheduling, Algorithms, and Systems.3rd ed., Springer.
Raghavendra, B.V., & Murthy, A.N.N. (2011).Workload balancing in identical parallel machine

scheduling while planning in flexible manufacturing system using genetic algorithm.ARPN Journal
of Engineering and Applied Sciences, 6 (1).

Rajakumar, S., Arunachalam, V.P., & Selladurai, V. (2004). Workflow balancing strategies in parallel
machine scheduling.International Journal of Advanced Manufacturing Technology, 23, 366-374,
DOI: 10.1007/s00170-003-1603-4.

Rajakumar, S., Arunachalam, V.P., & Selladurai, V. (2006).Workflow balancing in parallel machine
scheduling with precedence constraints using genetic algorithm.Journal of Manufacturing
Technology Management, 17, 239-254.

Rajakumar, S., Arunachalam, V.P., & Selladurai, V. (2007).Workflow balancing in parallel machines
through genetic algorithm.International Journal of Advanced Manufacturing Technology, 33, 1212-
1221, DOI: 10.1007/s00170-006-0553-z.

Shokrollahpour, E., Zandieh, M., & Dorri, B. (2011).A novel imperialist competitive algorithm for bi-
criteria scheduling of the assembly flowshop problem.International Journal of Production Research,
49 (11), 3087-3103.

Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., & Sassani, F. (2009). Design of a
genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent
setup times and precedence constraints.Computers and Operations Research, 36, 3224-3230.

T’Kindt, V., Billaut, J.C., & Proust, C. (2001).Solving a bicriteria scheduling problem on unrelated
parallel machines occurring in the glass bottle industry.European Journal of OperationalResearch,
135, 42-49.

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling
problem with sequence dependent setup times.European Journal of Operational Research, 211,
612-622.

Varmazyar, M., & Salmasi, N. (2012).Sequence-dependent flow shop scheduling problem minimising
the number of tardy jobs.International Journal of Production Research, 50 (20), 5843-5858.

Yuan, X. (2011).Multi-objective optimization of fuzzy parallel machines scheduling problem using
nondominated genetic algorithms. Journal of Software, 6 (10).

