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 In this paper, we present a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective 
unrelated parallel machine scheduling problem where setup times are sequence dependent. The 
objectives include mean completion time of jobs and mean squares of deviations from machines 
workload from their averages. The performance of the proposed ICA (PICA) method is examined 
using some randomly generated data and they are compared with three alternative methods 
including particle swarm optimization (PSO), original version of imperialist competitive 
algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The 
preliminary results indicate that the proposed study outperforms other alternative methods. In 
addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to 
perform better. 
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1. Introduction  
 
In scheduling of unrelated parallel machines, there are n jobs, which are supposed to operate on m 
unrelated machines and processing times depend on machines. There are many real-world applications 
where setup times not only depends on machines but also depends on the sequence of various jobs. In 
other words, setup times between two jobs of j and k on machine i is different with setup time between 
two jobs of k and j on the same machine, i. In addition, setup times between two jobs of j and k on 
machine i is different with setup times of two jobs of j and k on i’ (Allahverdiet al., 2008; Vallada, & 
Ruiz, 2011; Cossari et al., 2012).Lei (2009) provided an extensive review of the literature on the 
scheduling problems with multiple objectives. 
 



  192

Rajakumar et al. (2004) presented a method where workflow and workload were assumed to have the 
same meaning and a machine with the lowest workflow is chosen for assignment of a new job from the 
list of unfinished jobs. They considered various priority strategies for the selection of jobs and three 
various strategies were considered, namely random (RANDOM), shortest processing time (SPT) and 
longest processing time (LPT) for the selection of jobs for workflow balancing. The relative percentage 
of imbalance (RPI) was chosen among the parallel machines to assess the performance of these 
strategies in a standard manufacturing environment.  
 
T'kindt et al. (2001) considered a bicriteria scheduling problem connected with the glass bottles 
production where the shop was made up of unrelated parallel machines and the aim was to compute a 
schedule of orders, which maximizes the total margin and minimizes the difference in machines 
workload. Rajakumar et al. (2004), in another assignment, implemented genetic algorithm (GA) to 
solve the parallel machine scheduling problem of the manufacturing system with the objective of 
workflow balancing. They compared the performance of GA with three workflow balancing strategies 
namely RANDOM, SPT and LPT. They adopted RPI among parallel machines for assessing the 
performance of these heuristics and reported that GA provided better performance for the combination 
of different job sizes and machines. 
 
Keskinturk et al. (2012) investigated the problem of minimizing average relative percentage of 
imbalance (ARPI) with sequence-dependent setup times in a parallel-machine environment. They 
presented a mathematical model, which minimizes ARPI, used some heuristics, and two metaheuristics, 
an ant colony optimization algorithm and a GA, and examined on different random data. Their method 
provided better results using ant colony optimization than heuristics and GA did.  
 
Ho et al. (2009) proposed another method for minimizing the normalized sum of square for workload 
deviations on m parallel processors called normalized sum of square for workload deviations 
(NSSWD). Vallada and Ruiz (2011) presented GA for the unrelated parallel machine scheduling 
problem where machine and job sequence dependent setup times were considered and their results 
seemed to provide an excellent performance overcoming the rest of the evaluated techniques in a 
comprehensive benchmark set of instances. 
 
Varmazyar and Salmasi (2012) considered flow shop scheduling problems with sequence-dependent 
setup times, minimizing the number of tardy jobs, and proposed a mixed integer programming to solve 
the resulted problem. They also proposed several meta-heuristic methods based on tabu search (TS) and 
ICA to heuristically solve the problem. They reported that the performance of ICA was worse than the 
other algorithms for some small and medium sized instances while the hybrid of ICA and the TS 
algorithm provided better performance than the other proposed algorithms for large-sized problems. 
 
Tavakkoli-Moghaddam et al. (2009) presented two-level mixed-integer programming model of 
scheduling N jobs on M parallel machines, which minimizes bi-objectives, namely the number of tardy 
jobs and the total completion time of all the jobs and with unrelated parallel machines. They used GA 
to solve the bi-objective parallel machine scheduling problem and the performance of the proposed 
model and GA was verified using various instances. Shokrollahpoura et al. (2009) considered two-stage 
assembly flowshop scheduling problem with minimization of weighted sum of makespan and mean 
completion time as the objective and used ICA to solve the resulted problem. Raghavendra et al. (2006) 
investigated workflow balancing in parallel machine scheduling with precedence constraints using GA. 
 
Raghavendra and Murthy (2011) studied the loading problem in flexible manufacturing systems 
involved the assignment of the operation or jobs to the identical parallel machine to process necessary 
part kinds selected to be produced, simultaneously. They used GA heuristic approach for minimizing 
the imbalance of workload among the identical parallel machines. Naderi-Beni et al. (2012) studied no-
wait flow shop problem where setup times depended on sequence of operations. Their results indicated 
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that the proposed two-phase model of this paper performed relatively better than Zimmerman's single-
phase fuzzy method. Moradinasab et al. (2011) provided a no-wait two-stage flexible flow shop 
scheduling problem with setup times where the objective function was to minimize the total completion 
time. The problem was solved using an AICA and GA. Lian (2010) presented united search particle 
swarm optimization algorithm for multiobjective scheduling problem while Keskinturk et al. (2012) 
considered an ant colony optimization algorithm for load balancing in parallel machines with sequence-
dependent setup times. Karimi et al. (2011) investigated group scheduling in flexible flow shops by 
considering a hybridized approach of ICA and electromagnetic-like mechanism and Jolai et al. (2012) 
studied a novel hybrid meta-heuristic algorithm for a no-wait flexible flow shop scheduling problem 
with sequence dependent setup times. Javadi et al. (2008) investigated no-wait flow shop scheduling 
using fuzzy multi-objective linear programming.  
 
In this paper, we present an ICA to solve a bi-objective unrelated parallel machine scheduling problem 
where setup times are sequence dependent. The objectives include mean completion time of jobs and 
mean squares of deviations from machines workload from their averages. The performance of the 
proposed ICA (PICA) method is examined using some randomly generated data and they are compared 
with three alternative methods including particle swarm optimization (PSO), original version of 
imperialist competitive algorithm (OICA) and genetic algorithm (GA) in terms of the objective 
function values. 
 
2. The proposed model 
 
In this study, we consider a mathematical model for ܴหݏห̅ܥ, ∑(ௐିௐഥ )మ , which was originally 
developed by Keskinturk et al. (2012), where j and k represent indexes associated with jobs, which are 
integer numbers between one to n+m. Without loss of generality, we assume jobs 1 to n are real and 
jobs n+1 to n+m are dummy ones with zero processing and setup times, where m is the number of 
unrelated parallel machines. In addition, the setup time of the first job processed after a dummy job is 
assumed to be initial setup time. Finally, there is a dummy job on each machine at the beginning of 
sequencing. The following summarizes the necessary notations for the proposed model of this paper, 
 

jip  Processing time of job j on machine i 
jiks  Setup time of machine i for processing job k after job j 
iw  Workload of machine i 

w  The average workload, i.e. 
1

/
m

i
i

w w m
=

= ∑  

jC  Completion time of job  j 
C  The average completion time, i.e. 

1

/
n

j
j

C C n
=

= ∑  

jiY  Binary variable where it is one if job j is processed on machine i and zero, otherwise, 
jikX  Binary variable where it is one if job k is processed after job j on machine i and zero, otherwise, 

 

The proposed model of this paper is as follows, 
 

(1)   min ܼଵ = ̅ܥ = ∑ ୀଵ݊ܥ  

(2)  min ܼଶ = ∑ ( ܹ − ഥܹ )ଶୀଵ݉ − 1  

  subject to 
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(3)  ∀݆ ≥ ݊ + 1  ܺ
ୀଵ


ୀଵ = 1 

(4)  ∀݆, ݆ ≠ ݇  ܺ
ୀଵ


ୀଵ ≤ 1 

(5)  ∀݅, ݆, ݆ ≠ ݇  ܺ
ୀଵ ≤ ܻ 

(6)  ∀݅, ݇ ≤ ݊, ݆ ≠ ݇  ܺା
ୀଵ = ܻ 

(7)  ∀݆  ܻ
ୀଵ = 1 

(8)  ∀݅  ܻା
ୀଵ = 1 

(9)  ∀݆ ≥ ݊ + ܥ 1 = 0 
(10)  ∀݅, ݆, ݇, ݆ ≠ ܥ ݇ ൫1ܯ+ − ܺ൯ ≥ ܥ +  +  ݏ
(11)  ∀݅, ݆ ≠ ݇ ܹ =  ܻ

ୀଵ +  ݏ ܺ
ୀଵ

ା
ୀଵ  

(12)  ∀݅, ݆, ݇, ݆ ≠ ݇ ܻ , ܺ ∈ {0,1} 
 

Here, Eq. (1) and Eq. (2) represent mean completion time and mean squares of workloads from their 
average. Eq. (3) assigns one dummy job to each machine and guarantees that all dummy jobs are 
processed at the beginning of operations for each machine. According to Eq. (4), only one job is 
processed once each machine is available. Eq. (5) guarantees that only one real job can be processed 
when a machine becomes available. According to Eq. (6), when the processed of a particular job is 
completed, there is a real or dummy job before. Eq. (7) is used to assure that each job is assigned only 
to one machine, Eq. (8) assures that one machine cannot process more than one job at the same time, 
Eq. (9) guarantees that completion times of dummy jobs are equal to zero. In addition, Eq. (10) shows 
the relationship between two consecutive jobs, Eq. (11) computes the workload of each machine and 
Eq. (12) demonstrates the variable type.  

3. Solution method 

The proposed solution strategy of this paper uses two parameters of α and β to merge two objective 
functions, ܴหݏห̅ܥ, ∑(ௐିௐഥ )మ , into single one	ܴหݏหܥ̅ߙ + ߚ ∑(ௐିௐഥ )మ 	where α+β=1. The proposed 
metaheuristics uses a string with the size of n+m-1 where n represents the number of jobs, m denotes 
the number of machines, and the feasible solutions are integer numbers between one and n+m-1, which 
is design using the proposed method by Lian (2010). For instance, Fig. 1 demonstrates a sample of jobs 
and machines when there are three machines and ten jobs.  
 

12 11 1098765 4 3 2 1 
0.18 0.290.350.270.300.080.070.26 0.32 0.39 0.81 0.96 

Sort real numbers↓
1 2 31048119 5 12 7 6 

0.96 0.810.390.350.320.300.290.27 0.26 0.18 0.08 0.07 
Convert real numbers to integer ones↓

1 2 31048*9 5 * 7 6 
Decode 1ܯ: 6 → :2ܯ7 5 → 9 :3ܯ 8 → 4 → 10 → 3 → 2 → 1

 

Fig.1. The method of representation, encoding and decoding 
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Termination criterion is the number of function evaluation (NFE) and since we intend to compare the 
performance of the proposed method with other methods, we use this criterion to have a fair 
comparison.  

3.1. Particle swarm optimization 

Particle swarm optimization (PSO) has been a popular method, which uses a swarm intelligence to find 
best solution (Kennedy & Eberhart, 1995). For PSO implementation, we use the following notations, 

 
Table 1

DescriptionNotation of PSO 
Index for particlesi:
PopulationPOP: 
Number of populationnPop:
Position of particle iPAR[i]:
Velocity of particle iVEL[i]:
Best global solutionGlobalBest:
Inertia coefficientw:
Best position of particle iPBEST[i]:
Personal learning coefficientܥଵ:
Social learning coefficientܥଶ:
Random numbers generated between zero and one  ܴଵ, ܴଶ:

The following steps are used to apply PSO for the proposed method of this paper, 

Initialization 

Step 1. Choose initial values,  

Step 2. Setup initial values using some randomly generated data for all particles with zero value for 
velocity, 

Step 3. Decode the solution and compute the combined objective function based on ܥ̅ߙ + ߚ ∑(ௐିௐഥ )మ , 
Step 4. Choose the particles with minimum cost and store its position as GlobalBest, 

Step 5. Choose the best personal position  

Repeat steps 6 to 12 until termination criterion is met. 

Step 6. Update velocity using Eq. (13) as follows, 
 

(ݓ݁݊)[݅]ܮܧܸ  (13) = .ݓ (݈݀)[݅]ܮܧܸ + ܴଵ. [݅]ܵܶܵܧܤܲ) − ([݅]ܴܣܲ + ܴଶ. ݐݏ݁ܤ݈ܾ݈ܽܩ) −  ([݅]ܴܣܲ
Step 7. Update each particle position based on Eq. (14) 
 

(ݓ݁݊)[݅]ܱܲܲ  (14) = (݈݀)[݅]ܱܲܲ +  (ݓ݁݊)[݅]ܮܧܸ
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Step 8. Similar to what we have done in step 3, evaluate position of each particle, update the 
best position of each particle and determine the best global solution.  

Step 9. Do a local search using of the three methods of Swap, Reversion and Insertion with 
equal probabilities as shown in Fig. 2.  

  
9  8  7  6  5  4  3  2  1 

  
Swap  

9  8 3 6 5 4 7 2 1  
              
9  8  7  6  5  4  3  2  1 

reversion  

9  8  3  4  5  6  7  2  1  
                  
9  8 7 6 5 4 3 2 1  

insertion  

9  8  6  5  4  7  3  2  1  
Fig.2. The way of performing swap, reversion and insertion  

Step 10. If the local search yields better solution, replace it with current solution, and update 
the best position of each particle 

Step 11. Update the best global solution, 

Step 12. Do a local search on GlobalBest and update current solution.  

3.2. Genetic algorithm 

The proposed genetic algorithm (Holland, 1975; Goldberg, 1989) of this paper has the following steps, 

Table 2 demonstrates the GA parameters 
 

Table 2
DescriptionNotation of GA  
Member of populationPOP[i]:
Population numbernPop:
Portion of population used for crossover operationpCrossover:
Number of parents for crossover operationnCrossover:
Portion of mutationpMutation:
Number of mutationnMutation:
Mutation ratiomu:
Number of genes from a chromosome for mutation nmu:
Tournament sizeTournamentSize:
A number between zero and oneߜ:
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The GA used for the proposed model of this paper is a standard method adopted from Haupt and 
Haupt (2004) and it is briefly described here, 

Step 1. Setup all input parameters, 

Step 2. Position all individuals, 

Step 3. Evaluate each position, 

Step 4. Order population in non-decreasing order according to their objective functions, 

Repeat step 5 to 7 until termination criterion is met 

Step 5. Perform crossover based on the following, 

ݎ݁ݒݏݏݎܥ݊  (15) = 2 ∗ .ݎ݁ݒݏݏݎܥ)݀݊ݑݎ 2ܲ݊ ) 
Let X1 and X2be the parents and Y1 and Y2be the children. We generate X1 and X2randomly in the 
interval of [−ߜ, 1 +  ,and Y1 and Y2are generated as follows [ߜ
 

(16)  ଵܻ = .ߠ ଵܺ + (1 − .(ߠ ܺଶ 
(17)  ଶܻ = .ߠ ܺଶ + (1 − .(ߠ ଵܺ 

Step 6. Perform mutation based on nMutation 
 

݊݅ݐܽݐݑܯ݊ (18) = .݊݅ݐܽݐݑܯ)݀݊ݑݎ  (ܲ݊
The mutation operation is similar to Engelbrecht (2007), as follows 
 

ߝ  (19) = 0.5 ∗ ݔܽܯݎܸܽ) −  (݊݅ܯݎܸܽ
(20)  ܻ = ܺ + .ߝ  ݊݀݊ܽݎ

Step 7. Merge the initial population with two new populations obtained from mutation and crossover 
and order them on non-decreasing order, 
 

݊݅ݐܽݐݑܯ݊  (18) = .݊݅ݐܽݐݑܯ)݀݊ݑݎ  (ܲ݊
Step 8. Choose the first nPop components as new solution. 

3.3 Proposed Imperialist Competitive Algorithm 

In this section, we present details of the proposed imperialist competitive algorithm (PICA), which is originally 
presented by Atashpaz-Gargari and Lucas (2007).Table 3 demonstrates details of parameters used, 
 

Table 3
Notation of PICA  

Number of populationnPop:
Number of empiresnEmp:
Total cost of empires kTotalCostEmp(k):
Total cost of imperialist i from empire kݐݏܥ݉ܫ(݅):
Position of imperialist i from empire k݉ܫ(݅):
Position of colony i from empire k݈ܥ(݅):
Average mean cost of colonyߞ:
Assimilation Coefficientߪ:
Average cost of colony k݈ܥݐݏܥതതതതതതതതതതത:
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The following summarizes the necessary steps associated with the proposed study, 

Step 1. Setup initial values, 

Step 2. Determine empires (Similar to step 2 of GA and PSO), 

Step 3. Order countries based on their costs in non-decreasing orders and based on nEmp and nPop-
nEmp assign countries to Imperialists. The assignment of countries to Imperialists are performed based 
on pi calculated using Boltzmann (Engelbrecht, 2007) and roulette wheel selection strategy as follows, 

, (21) = ఎ.ூ௦௧ೖ()ିݔ݁ ୫ୟ୶	(ூ௦௧ೖ())൘
 

  (22) = ∑, ,ாୀଵ  

where η is the pressure coefficient. Total cost associated with empire k is also calculated as follows, 
 

(݇)݉ܧݐݏܥ݈ܽݐܶ  (23) = (݅)ݐsܥ݉ܫ + .ߞ  .തതതതതതതതതതത݈ܥݐݏܥ

Repeat steps 5 to 10 until termination criterion is met, 
Step 5. Go inside each empire, do Assimilation on all colonies and calculate new location as follows, 
 

(24)  Col୩(݅)(݊݁ݓ) = (݈݀)(݅)݈ܥ + .ߪ .ݎ ൫݉ܫ(݅) −  .൯(݈݀)(݅)݈ܥ
 
In Eq.(24), r is a string whose elements are generated randomly between zero and one. 

Step 6. Do revolution on each Empire and its colonies,  

To do this, we first perform a local search on each Imperialist and of the new location maintain a better 
objective function, replace the new position with the old one. This policy is applied to all colonies and 
the positions are updated, accordingly.  

Step 7. If the position of colonies is better than its Empire in terms of their costs, exchange their 
position,  

Step 8. Update empire cost using Eq. (23), 

Step 9. Choose the worst Empire in terms of cost and assign its worst colony to other Empire, 

Step 10. Perform a local search on the best Empire. 

4. The results 

In this section, we examine the performance of the proposed method of this paper on some randomly 
generated data. Table 4 shows the input data, 
 

Table 4
The way of generating input parameters

Valuesparameters 
(3,10) (3,20) (3,30) (4,15) (4,30) (4,45)(5,20) (5,25) (5,50) (6,25) (6,50) (6,75) (݉, () Processing time [10,99]ܷܦ~ (݊ (ݏ) Setup time [1,25]ܷܦ~
,ߙ)(0.8,0.2) (0.6,0.4) (0.4,0.6) (0.2,0.8)  (ߚ
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We have performed different studies to find the best tuning values. The likelihood of a revolution is 
considered as 0.05 with the rate of 0.05. The value of NFE for problems 3, 4, 5 and 6 are 100000, 
150000, 200000 and 250000, respectively. Table 5 demonstrates some other parameters, 
 

 Table 5
The values of parameters of GA, PSO and PICA

PICAPSO GA 
nPop=150nPop=100 nPop=100 
nEmp=15w=0.3 pCrossover=0.8 ߟ = ଵܥ 1 = 0.8 pMutation=0.1 ߪ = ଵܥ 1.7 = 1 mu=0.05 ߞ = 0.1  TournamentSize=3 

Each example is solved 5 times leading us to have 960 instances, we have considered various values for 
α, and β. Table 6, Table 7, Table 8 and Table 9 demonstrate the results of our survey. 
 

Table 6
The average objective function values of GA, PSO, OICA and PICA while α=0.2 and β=0.8

Number of instances instances GA PSO OICA PICA 
1 3×10 28.88 25.28 26.11 25.04 
2 3×20 40.62 43.51 41.34 36.48 
3 3×30 61.56 61.01 64.26 58.85 
4 4×15 38.47 30.95 32.92 27.78 
5 4×30 47.40 48.96 44.97 41.99 
6 4×45 72.89 69.25 69.92 61.75 
7 5×20 29.67 30.96 31.66 26.71 
8 5×40 49.86 50.37 51.51 43.56 
9 5×60 80.60 77.83 82.97 71.30 

10 6×25 35.33 32.35 32.09 25.81 
11 6×50 54.82 52.37 57.78 47.56 
12 6×75 88.53 81.20 95.02 73.59 

 

Table 7
The average objective function values of GA, PSO, OICA and PICA while α=0.4 and β=0.6

Number of instances instances GA PSO OICA PICA 
1 3×10 53.75 51.49 50.09 43.43 
2 3×20 74.58 69.01 77.89 75.14 
3 3×30 119.18 119.49 121.86 112.25 
4 4×15 78.19 60.00 54.64 49.46 
5 4×30 86.41 85.02 92.55 80.89 
6 4×45 137.06 128.41 139.02 125.10 
7 5×20 56.92 57.80 55.97 47.92 
8 5×40 96.97 92.38 95.19 86.31 
9 5×60 154.08 143.06 163.37 135.88 

10 6×25 56.81 55.92 62.01 50.31 
11 6×50 102.51 107.85 111.54 91.83 
12 6×75 169.80 165.63 172.26 143.49 

 

Table 8
The average objective function values of GA, PSO, OICA and PICA while α=0.6 and β=0.4

Number of instances instances GA PSO OICA PICA 
1 3×10 74.30 68.41 77.52 66.99 
2 3×20 110.37 102.55 111.89 102.12 
3 3×30 172.65 165.34 174.35 164.45 
4 4×15 99.92 90.21 83.47 79.68 
5 4×30 124.54 124.89 126.05 113.31 
6 4×45 199.14 191.78 202.08 175.56 
7 5×20 87.94 89.91 81.31 74.28 
8 5×40 137.47 138.48 138.59 122.84 
9 5×60 226.74 238.72 221.71 194.47 

10 6×25 88.98 90.74 79.79 70.27 
11 6×50 135.57 158.60 164.49 134.85 
12 6×75 249.55 226.69 258.63 202.90 
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Table 9
The average objective function values of GA, PSO, OICA and PICA while α=0.8 and β=0.2

Number of instances instances GA PSO OICA PICA 
1 3×10 94.56 85.31 90.76 84.76 
2 3×20 143.25 124.32 145.04 123.71 
3 3×30 217.50 198.77 224.28 196.08 
4 4×15 112.57 103.87 96.51 84.80 
5 4×30 158.47 159.61 151.41 136.26 
6 4×45 239.36 255.60 269.46 216.95 
7 5×20 107.72 107.67 107.44 89.71 
8 5×40 179.94 173.12 179.38 148.27 
9 5×60 279.86 289.52 312.13 247.38 

10 6×25 105.69 103.84 104.99 90.15 
11 6×50 200.87 189.67 200.96 157.01 
12 6×75 286.70 300.32 348.02 264.82 

 

In addition, we present the results in terms of descriptive figures and Fig. 3 to Fig. 5 show the results. 

  

Fig.4. comparison between the average objective function 
values of mentioned algorithms while α=0.4 and β=0.6 

Fig.3. comparison between the average objective function 
values of mentioned algorithms while α=0.2 and β=0.8   

  

Fig.6. comparison between the average objective function 
values of mentioned algorithms while α=0.8 and β=0.2

Fig.5. comparison between the average objective function 
values of mentioned algorithms while α=0.6 and β=0.4

 

As we can observe from the results of Fig. 3 to Fig. 6, PICA performs better than other alternative 
methods including ICA, PSO and GA, especially when the sizes of instances increase. ICA performs 
the worst while GA and PSO come somewhere between.  
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5. Conclusion 

In this paper, we have presented a new Imperialist Competitive Algorithm (ICA) to solve a bi-objective 
unrelated parallel machine scheduling problem where setup times are sequence dependent. The 
objectives include mean completion times of jobs and mean squares of deviations from machines 
workload from their averages. The performance of the proposed ICA (PICA) method has been 
examined using some randomly generated data and they have been compared with three alternative 
methods including particle swarm optimization (PSO), original version of imperialist competitive 
algorithm (OICA) and genetic algorithm (GA) in terms of the objective function values. The 
preliminary results have indicated that the proposed study outperforms other alternative methods. In 
addition, while OICA performs the worst as alternative solution strategy, PSO and GA seem to perform 
better. 
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