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 This paper deals with a deterministic inventory model developed for deteriorating items having 
two separate storage facilities (owned and rented warehouses) due to limited capacity of the 
existing storage (owned warehouse) with linear time dependent demand (increasing) over a fixed 
finite time horizon. The model is formulated with infinite replenishment and the successive 
replenishment cycle lengths are in arithmetic progression. Partially backlogged shortages are 
allowed. The stocks of rented warehouse (RW) are transported to the owned warehouse (OW) in 
continuous release pattern. For this purpose, the model is formulated as a constrained non-linear 
mixed integer programming problem.  For solving the problem, an advanced genetic algorithm 
(GA) has been developed. This advanced GA is based on ranking selection, elitism, whole 
arithmetic crossover and non-uniform mutation dependent on the age of the population. Our 
objective is to determine the optimal replenishment number, lot-size of two-warehouses (OW and 
RW) by maximizing the profit function. The model is illustrated with four numerical examples 
and sensitivity analyses of the optimal solution are performed with respect to different 
parameters. 
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1. Introduction  
 
In the existing literature, it is found that the classical inventory models generally deal with a single 
storage facility. The basic assumption in these models is that the management owned a storage with 
unlimited capacity. In the field of inventory management, this is not always true. When an attractive 
price discount for bulk-purchase is available or the cost of procuring goods is higher than the other 
inventory related costs or there are some problems in frequent procurement or the demand of items is 
very high, management then decides to purchase a huge quantity of items at a time. These items cannot 
be stored in the existing storage viz., the owned warehouse (OW) with limited capacity. Then for 
storing the excess items, one (sometimes more than one) additional warehouse is hired on a rental 
basis. This rented warehouse (RW) may be located near the OW or a little away from it. It is generally 
assumed that the holding cost in RW is greater than the same as in OW. Hence, the items are stored 



  
first in OW and only the excess stock is stored in RW. Further, the items of OW are transferred to OW 
in a continuous release pattern to meet the demand until the stock level in RW is emptied and then the 
items of OW are used to satisfy the customer’s demand. 
 
Over the last few decades, two warehouse inventory problems have received considerable attention 
from several researchers. This type of problem was first developed by  Hartely (1976) in the year 1976 
with the assumption of constant demand. Sarma (1983) later extended this model by applying k-release 
rule for transferring the goods from RW to OW with fixed transportation cost per unit. Dave (1988) 
discussed the inventory models for finite and infinite rate of replenishment rectifying the errors of the 
model given by Sarma (1983) and gave a complete analytical solution. Further, Goswami and 
Choudhuri (1992) developed the models with or without shortages for linearly time dependent demand. 
In their model, stocks of RW are transferred to OW in equal time interval. Correcting and modifying 
the assumptions of Goswami and Choudhuri (1992), Bhunia and Maiti (1994) discussed the same 
model and graphically presented the sensitivity analysis on the optimal average cost and the cycle 
length for the variations of location and shape parameters of demand. All these models mentioned 
earlier were discussed only for non-deteriorating items. 
 
In reality, there are so many physical goods, which deteriorate over time due to different factors ( like 
dryness, damage, spoilage, vaporization etc.) during their normal shortage period. This deterioration 
effect depends on the preserving facilities of the warehouses. Hence, in the inventory control problem, 
this effect cannot be ignored. Considering this effect in both warehouses, Sarma (1987) first developed 
a two-warehouse inventory model dealing with exponentially deteriorating items, infinite 
replenishment and fully backlogged shortages. Pakkala and Achary (1992) then extended Sarma’s 
(1987) model for finite replenishment rate. All models discussed in these research papers were 
developed under prescribed scheduling period (cycle length), uniform demand, continuous release 
withdrawal process and without considering the transportation cost for transferring the stocks from RW 
to OW. Benkherouf (1997) presented two-warehouse model considering deterioration effect with 
general form of time dependent demand under the continuous release withdrawal process.   
 
Bhunia and Maiti (1997) discussed the same type of problem considering linearly (increasing) time 
dependent demand with fully backlogged shortages. This model is developed for an infinite time 
horizon but the entire cycle over the first period can repeat after completion of the first cycle. It can 
subsequently be repeated with a change value of the constant part of the linear time dependent demand. 
All these models have been developed for single replenishment cycle considering the cycle length as 
prescribed or decision variable. Another assumption is that the cycle will be repeated infinitely. But, 
this is not always true. It is worth mentioning that the production of foodgrains like paddy, rice, wheat 
etc. is periodical throughout the world. Normally, in those countries where the state control is less, the 
demand of essential foodgrains is lowest at the time of harvest and goes up to the highest level just 
before the next harvest. This phenomenon is very common in developing third world countries where 
most of the people are landless (small farmers and land laborers) or marginal farmers. They produced 
foodgrains by cultivating either their own land and/or the landlord by sharing a certain ratio. For 
various reasons, some of them are forced to sell a part of their product and buy grains from open 
market after the consumption of their own grains. As a result, the demand rate of foodgrains remains 
partly constant and increases partly with time for a fixed planning horizon (i.e. for a calendar year). 
 
In the last few years, many researchers have paid considerable more attention on inventory problems 
with fixed planning horizon and deterministic time varying demand pattern. This type of problem was 
first developed by Stanfel and Sivazlian (1975) without the specific assumption about the demand. 
Next, Silver and Meal (1973) introduced a heuristic solution procedure of a deterministic inventory 
model with time varying demand. Donaldson (1977) first developed an exact solution procedure for 
solving a non-shortage inventory model analytically with linear trend in demand over a finite planning 
horizon. However, his solution procedure was computationally complicated. Removing the complexity, 
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several researchers proposed various other techniques for solving Donaldson’s (1977) problem or 
extended it to some more practical situations. In this connection, the works of Silver (1979), Mitra et al. 
(1984), Ritchie (1984), Dave (1989),  Goyal et al. (1992), Datta and Pal (1992), Chung and Ting 
(1993), Horiga (1994), Goyal et al. (1996), Chakraborty and Choudhuri (1997), Bhunia and Maiti 
(1999) among others are worth mentioning. All these models deal with the case of single warehouse 
under unrealistic assumption regarding the storage space of the available warehouse. Recently, very 
few researchers developed this type of problems considering two storage facilities. Lee and Ma (2000) 
developed a no-shortage inventory model for perishable items with free form of time dependent 
demand and fixed planning horizon. In their model, some cycles are of single warehouse system and 
the remaining are of two-warehouse system. Kar et al. (2001) discussed two storage inventory problem 
for non-perishable items with linear trend in demand over a fixed planning horizon considering lot-size 
dependent replenishment (ordering cost). In their models, all cycles are of two-warehouse system. In 
addition to these, researchers like Teng et al.(2001), Yang(2004,2006), Goel et al. (2006), Ouyang et al. 
(2008), Maiti et al.(2008), Jaggi et al.(2011) and others have also contributed to this field of research. 
However, both these two-warehouse models were all based on an impractical assumption that the 
rented warehouse has unlimited capacity. 
 
Normally, the decision-making problems are formulated as unconstrained/constrained non-linear 
optimization problem, which are solved by traditional direct and gradient-based optimization method. 
These methods have some limitations. Among these limitations, one is that the traditional nonlinear 
optimization methods very often stuck to the local optimum. To overcome some of these limitations, 
during last forty years, attempt has been made to solve the problem based on the principle of evolution 
and genetics. Such system has some selection process based on the fitness of individuals and some 
genetic operations. Recently, these type of methods such as Genetic Algorithm (GA), Simulated 
Annealing (SA), Tabu search etc., which are known as soft computing method, are used for solving 
decision-making problems. Among these methods, GA is very popular. It is a stochastic search method 
for optimization problems based on the mechanics of natural selection and natural genetics. It is 
executed iteratively on the set of real/binary-coded solution called population. In each iteration, three 
basic genetic operations i.e., selection, crossover and mutation, are performed.This algorithm is 
developed by Holland in the year 1975. There is an inherent parallelism because GA searches from a 
set of solutions, not from a single one. It is demonstrated considerable success in providing good 
solutions to many complex optimization problems. When the objective functions are multi-modal or the 
search space is partially irregular, algorithms are to be highly robust in order to avoid getting stuck to 
the optimal solution. The advantage of GA is to obtain global solution fairly. GA has been well 
discussed and summarized by several authors i.e., Goldberg (1989), Michalewicz (1996) and Sakawa 
(2002). Recently, GA has been successfully applied to a wide variety of problems such as Traveling 
Salesman problems, Scheduling problems, Numerical Optimization, etc. Till now, only a very few 
researchers have applied it to solve the problem in the field of inventory control system. Among them, 
one may refer to the works of Khouja et al. (1998), Sarkar and Charles (2002), Mandal and Maiti 
(2002), Pal and Bhunia (2004), Das et al.(2007), Rong et al. (2008), Bhunia et al. (2011) and others. 
 
In this research paper, a deterministic inventory model has been developed for deteriorating items with 
two-warehouses (one is OW and other is RW) by removing the impractical assumption regarding the 
storage capacity of rented warehouses over a finite planning horizon. Due to different preserving 
facilities and storage environment, inventory holding cost, deterioration rates are considered in 
different warehouses. In addition, the  replenishment cycle lengths are in arithmetic progression, the 
demand rate is continuous linear increasing function of time and partially backlogged shortages are 
allowed in all cycles. Like Kar et al.(2001), in each cycle, the replenishment cost is assumed to be 
dependent on lot-size and the stocks of RW are also transported to OW in continuous release pattern. 
The model is formulated as a constrained non-linear mixed integer problem with one integer and one 
non-integer variable. Considering the complexity of solving such model, a real-coded GA has been 
developed for mixed variables (integer and non-integer) with rank-based selection, whole arithmetic 



  
crossover and non-uniform mutation. Finally, four numerical examples are presented to illustrate the 
results for different scenarios. Thereafter, sensitivity analyses have been performed to study the 
variation of optimal replenishment number and the total profit in the inventory system with respect to 
different parameters. 
 
2.    Assumptions and Notations 

The notations used in developing the model are  as follows: 

H Duration of the planning ( time) horizon, 
P Unit selling price of the item, 
D(t) Demand rate of any time t (0 <t<H), 
a ,b Demand parameters, 
W1, W2 Fixed storage capacity of OW and RW respectively, 

1 2,θ θ (<<1) Deterioration rate of items in OW and RW respectively, 
L1-system Stands for single storage/warehouse system, 
L21-system Stands for two-storage/warehouse with initial inventory less than W1+W2, 
L22-system Stands for two-storage/warehouse system with initial inventory W1+W2, 
K1 A proper fraction of which this fraction of each replenishment cycle under L1-system 

and L21-system is of stock-in period of that cycle, 
n Total number of replenishment cycles during the planning horizon H, 
m Boundary cycle number when switching from L1-system and L21-system, 
m1 Cycle number of L21-system,
NL1  {j: cycle index of L1-system with j =1, 2, ..., m}, 
NL21 {j: cycle index of L21-system with j = m + 1, m + 2, ..., m + m1}, 
NL22 {j: cycle index of L22-system with j = m + m1 + 1, m + m1 + 2, …, n}, 
tj,o Starting time of j-th cycle, j =1,2, ..., n, 
tj,1 Time when the inventory level in RW of j-th cycle (j = m + 1, m + 2, …, n) reaches to 

zero, 
tj,2 Time when the inventory level in OW of j-th cycle (j = 1, 2, …, n) reaches to zero 
δ (<1) Partially backlogged shortage parameter, 
γ  Rate of reduction of the successive cycle lengths, 
qj1(t) Inventory level in OW at time t for j-th cycle, j =1, 2, …, n, 
qj2(t) Inventory level in RW at time t for j-th cycle, j = m + 1, m + 2, …, n, 
QL1,j Initial inventory for j-th cycle, j =1, 2, …, m, 
QL2,j Initial inventory for j-th cycle, j = m +1, m + 2, …, n, 
BL,j Backordering unitsfor j-th cycle, j =1, 2, …, n, 
SQL,j Shortage units held during the j-th cycle, 
QTow,j Total inventory units held in OW during j-th cycle, j=1,2,…,n, 
QTrw,j Total inventory units held in RW during j-th cycle, j = m +1, m + 2,…, n, 
Dow,j Inventory units deteriorated in OW during the j-th cycle, j = 1, 2, …, n, 
Drw,j Inventory units deteriorated in RW during the j-th cycle, j = m + 1, m + 2, …, n, 
Ct Transportation cost per unit for transferring the items from RW to OW, 
Cs Shortage cost per unit per unit time, 
Cd Purchase cost per unit, 
Cow,Crw Inventory carrying cost in OW and RW respectively per unit per unit time. 
Cl  Fixed replenishment cost in each cycle, 
Cr1,Cr2 Additional replenishment cost per unit for replenishing items in OW and  RW 

respectively, (Cr1<Cr2) 
Qow,Qrw Total replenishment quantity in OW and RW respectively for the entire planning 

horizon, 
Qshot Total backlogged quantity for the entire planning horizon, 
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Zj Profit for the j-th cycle, 
Z Net profit during H. 
 

The proposed inventory model has been developed under the following assumptions: 

1. Replenishment rate is infinite and lead-time is constant. 
2.   The inventory system operates for a prescribed planning horizon. 

3.   The demand rate D(t) is a linear function of t such that 

D(t)= a + b t, a, b≥ 0,  0 Ht ≤≤ . 

4. tj+1,0 is the total time that elapses up to and including the shortages occurs and continues until the 
next lot arrives for the j-th cycle (j = 1, 2, …, n) where n denotes the total number of replenishment 
to be made during H. Clearly, t1,0 = 0 and  tn+1,0 = H. 

5. tj,2 is the total time that elapses up to and including the consumption period of the j-th cycle                  
(j =1, 2, …, n). 

6. The consumption period of the j-th cycle (j = 1, 2, …, n) is K1 ( )10 1K≤ ≤ fraction of the j-th cycle 
length (tj+1,0 – tj,0). Then 

1 1,0 1 ,0
,2

(1 ) , 1,2,..., ( 1)j j
j

K t K t j n
t

H j H
+ + − = −⎧⎪= ⎨

=⎪⎩
 

7.   Shortages, if any, are allowed and backlogged in OW during the shortage period. The backlogging 
rate is dependent on the length of the waiting time of the customer over the replenishment cycle. It 
is decreasing with the waiting time (tj+1,0 – t). To consider the situation, the backlogging rate is 
defined as ( ) 1

1,01 jt tδ
−

+⎡ ⎤+ −⎣ ⎦  when inventories are negative i.e., when ,2 1,0j jt t t and δ+≤ ≤  be the 

parameter of backlogging rate. Backlogged are cleared as soon as a fresh stock arrives. Shortages 
are not allowed in the final cycle.  

8.   T is the time length of the first replenishment cycle and γ is the rate of reduction of the successive 
cycle lengths. 

9.   Deterioration is considered only after the inventory stored in the warehouse. There is neither repair 
nor replacement of the deteriorated units during the planning horizon. 

10. Time lag between selling from OW and filling up the space by new units from RW is negligible. 

11. The replenishment cost (ordering cost) FL,j for the j-th cycle is linearly dependent on lot size on that 
cycle and is in the following form: 

FL, j = C1 + Cr1 (QL1,j + BL,j),                              j∈NL1  

            = C1 + Cr1 (W1+ BL, j ) + Cr2 (QL2,j –W1),     j∈NL21 

       = C1 + Cr1 (W1+ BL, j ) + Cr2W2),                 j∈NL22 

3.   Mathematical Model and Analysis 
 
According to the assumptions (6) and (8), the consecutive cycle lengths are in arithmetic progression. 
For the total number of replenishment cycles n, during the planning horizon H, the cycles m and (m + 
m1) for switching from L1-system to L21-system and L21-system to L22-system respectively can uniquely 
be determined for inventory system. In ith cycle (i∈NL1) under the L1-system, the on-hand inventory 
level in OW be QL1,i(≤W1) at time t = ti,0 after fulfilling the partially backordered quantities BL,i. After 
time  t = ti,0, the stock level in OW decreases due to meet up the customer’s demand and deterioration 
effect of the items and reaches to zero at time t = ti,2. Then the shortages begin to accumulate after time 



  
t =  ti,2 and continue up to time t = ti+1,0 until the next lot arrives. This entire cycle repeats m times in 
between the time horizon H. Again, in j-th (j∈NL21) cycle under L21-system, the on-hand inventory 
levels in OW and RW be W1 and QL2,j- W1 respectively at time t = tj,0 after fulfilling the partially 
backordered quantities BL,j. It is assumed that the quantities in OW are consumed only after consuming 
the quantities kept in RW. After time t = tj,0, the stock level in RW decreases due to demand and 
deterioration and reaches to zero at time     t = tj,1. Again from t = tj,0 to t = tj,1, the stock level decreases 
due to deterioration only and after t = tj,1, it decreasesdue to demand as well as deterioration and reaches 
to zero level at time t = tj,2. Then shortages occur and continue up to the time t = ti+1,0 until the next lot 
arrives. This cycle repeats m1 times. In k-th cycle (k∈NL22) under L22-system, the replenishment 
quantity is (W1+W2+BL2,k) of which  the backordered quantities BL2,k is fulfilled, W1 and W2 units are 
stored in OW and RW respectively. In this cycle, during the interval (tk,0, tk,1), the stocks of RW will be 
depleted due to demand and deterioration and the stocks of OW, due to deterioration only. Then, the 
stocks of OW decreases to meet up the customer’s demand and deterioration effect during (tk,1, tk,2). 
During the interval (tk,2, tk+1,0), shortages are accumulated. This cycle will be repeated for n – (m + m1) 
times. In this inventory system, our objective is to find the parameters m (number of cycles under L1-
system), m1(number of cycles under L21-system), K1 and γ  which maximizes the net profit over the 
planning horizon (0,H).   
 
Table 1  
Number of cycles of different system of different scenarios 
Scenario L1-sysytem L21-system L22-system Remarks about Scenario 
I n 0 0 m = n 
II m m1(= n – m) 0 m(<n) ≠ 0, m1 = n – m 
III m 0 n – m m(<n) ≠ 0, m1 = 0 
IV 0 m1 n – m1 m1(<n) ≠ 0, m = 0 
V 0 0 0 m1 = n)≠ 0, m=0 
VI 0 0 0 m = 0, m1 = 0 
VII m m1 N – (m + m1) m(<n) ≠ 0, m1(<n) ≠ 0 
 
For the i-th (i∈NL1) cycle of L1- system, the differential Eq.s describing the inventory level are given by  
 

1
1 1 ,0 ,2

( )
( ) ( ),i

i i i
dq t

q t D t t t t
dt

θ+ = − ≤ ≤  (1)

1
,2 1,0

1,0

( ) ( ) ,
1 ( )

i
i i

i

dq t D t t t t
dt t tδ +

+
= − < ≤

+ −
 (2)

with the boundary conditions 
1 ,2, 1 

1 1,  ,0

( )  0        at     

 ( )   at    
i i L

i L i i

q t t t i N

q t Q t t

= = ∈ ⎫⎪
⎬= = ⎪⎭

 (3)

The solutions of the differential Eq. (1) and (2) are as follows: 
,2

1 1 1 ,0 ,2( ) exp( ) ( ) exp( ) ,
it

i i i
t

q t t D u u du t t tθ θ= − − ≤ ≤∫  (4)

,2

1 ,2 1,0
1,0

( )( ) ,
1 ( )

it

i i i
it

D uq t du t t t
t uδ +
+

= < ≤
+ −∫  (5)

The initial inventory level QL1,iof OW in i-th cycle is given by  
,2

,0

1, 1 ,0 1 ,0 1( ) exp( ) ( ) exp( )
i

i

t

L i i i i
t

Q q t t D u u duθ θ= = − ∫  

         = 1 ,2 ,0 , 2 ,02 2
1 1 1 11 1

exp( ( ) ( ) ( )i i i i
a b b a b bt t t tθ
θ θ θ θθ θ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− − + − − +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

 

 
 
 
(6)
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Now the inventory units deteriorated during the first cycle are given by  

∫=
2,

0,

)(11,

i

i

t

t
iiOW dttqD θ  

Hence, 
1

,
1

2,

0,

)(
θ

iOW
t

t
i

D
dttq

i

i

=∫  

i.e., the inventory carrying units during the i-th cycle is given by 

=iOWq ,
1

,

θ
iOWD

 (7)

   Again the deteriorated units during the i-th cycle is the difference between the initial inventory and 
the total selling   
i.e., 

,2

,0

, 1, ( )
i

i

t

OW i L i
t

D Q D t dt= − ∫  

{ } 2 2
1, ,2 ,0 ,2 ,0( ) ( )

2L i i i i i
bQ a t t t t= − − − −   

 

 
 
 
(8)

The total units backlogged quantities and the maximum level of shortages for i-th cycle is given by 
 

1,0

,2

1,02
, 1 1,0 ,2 1,0 1,0 ,22( ) ( ) ( 1 ) log 1 ( )

2

i

i

t
i

L i i i i i i i
t

b tb aSQ q t dt t t t t t
b
δ δ δ

δ δ

+

+
+ + += − = − − + + + + −∫  

 1,0
1,0 1,0 ,2 1,0 ,22

1
( 1 ) ( ) log 1 ( )i

i i i i i

tb a t t t t t
b

δδ δ δ
δδ

+
+ + +

+⎧ ⎫
+ + + − − + −⎨ ⎬

⎩ ⎭
  

 

 
 
 
 
 
 

(9)
     and 

BL,i= 
1,0

,2

1 1,0 1,0 ,2 1,0 1,0 ,22
1,0

( )( ) ( ) ( 1 ) log 1 ( )
1 ( )

i

i

t

i i i i i i i
it

D t dt b b aq t t t t t t
t t b

δ δ δ
δ δ δ

+

+ + + +
+

− = =− − + + + + −
+ −∫   

(10)
 
Again, according to the earlier assumption, the i-th replenishment time 0,1+it  can be expressed as  
 

0,1+it ( 1) / 2 , 0,1, 2, ...,iT i i i nγ= − − =  
 

(11) 

 
     The length of the i-th cycle is 0,1+it - 0,it = ( 1)T i γ− −  
 

(12)

 
As the sum of the length of n replenishment cycle is H,  

∑
=

=−−
n

i
HiT

1
])1([ γ  

which implies that  
( 1)

2
HT n
n

γ
= + −   

 
(13)

Again, for  j-th (j∈NL21) cycle of L21-system, the differential Eq. governing the inventory system are 
given by 



  
2

2 2 ,0 ,1

( )
( ) ( ),j

j j j

dq t
q t D t t t t

dt
θ+ = − ≤ ≤   

 
(14)

1
1 1 ,0 ,1

( )
( ) 0,j

j j j

dq t
q t t t t

dt
θ+ = ≤ ≤   (15)

1
1 1 ,1 ,2

( )
( ) ( ),j

j j j

dq t
q t D t t t t

dt
θ+ = − < ≤    (16)

( ) ( )
( )

1
,2 1,0

1,0
,

1
j

j j
j

dq t D t
t t t

dt t tδ
+

+
= < ≤

+ −
  (17)

with the boundary conditions 
 

2 ,1 1 ,2 1 ,0 1( ) 0, ( ) 0 , ( )j j j j j jq t q t q t W= = =  (18)
 
Also, qj1(t) is continuous at t = tj,1. The solutions of the differential Eq. (14)-(17) using the boundary 
conditions (18) are as follows 

,1

2 2 ,0 ,1( ) ( )exp{ ( )} ,
jt

j j j
t

q t D u u t du t t tθ= − − ≤ ≤∫   (19)

1 1 1 ,0 ,0 ,1( ) exp{ ( )},j j j jq t W t t t t tθ= − ≤ ≤ (20)
,2

1 1 1 ,1 ,2( ) exp( ) ( )exp( ) ,
jt

j j j
t

q t t D u u du t t tθ θ= − < ≤∫   (21)

,2

1 , 2 1,0
1,0

( )( ) ,
1 ( )

jt

j j j
jt

D uq t du t t t
t uδ +
+

= < ≤
+ −∫  (22)

Now the initial inventory level QL2,j of OW and RW in the j-th cycle (using (19)) is given by 
 

QL2,j = W1 + qj2( tj,0 )= 1 2 ,1 ,0 ,1 ,02 2
2 2 2 22 2

exp( ( )) ( ) ( )j j j j
a b b a b bW t t t tθ
θ θ θ θθ θ
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+ − − + − − +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
  

(23)
 
Again, the inventory deteriorated during the j-th cycle in RW and OW are respectively given by 

∫−−=
1,

0,

)(1,2,

j

j

t

t
jLjrw duuDWQD = 2 2

2, 1 ,1 ,0 ,1 ,0{ ( ) ( )}
2L j j j j j
bQ W a t t t t− − − + −     (24)

    
and 

∫−=
2,

1,

)(1,

j

j

t

t
jow duuDWD   = 2 2

1 ,2 ,1 ,2 ,1{ ( ) ( )}
2j j j j
bW a t t t t− − + −  

    

(25)

Similarly, jowjow QTD ,1, θ=  which implies that the inventory carrying units for j-th cycle in RW and 
OW are given by 
 

, , 2/rw j rw jQT D θ=  (26)
, , 1/ow j ow jQT D θ=  (27)

 

Hence the expression for SQL,j and BL,j be the same as in (9) and (10) on substitution for i by j. Again 
from the continuity of qj1(t) at t = tj,1, we have [from (20) and (21)] 

,1

,2

1 ,1 1 1 ,0 ,1( ) exp( ( )) exp( ( )
j

j

t

j j j
t

D u u t du W t tθ θ− = −∫  

 which implies  
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2
1 ,2 ,1 1 1 ,2 1 1 ,1 1 1 ,1 ,0exp{ ( )}( ) ( ) exp{ ( )}j j j j j jt t a b t b a b t b t tθ θ θ θ θ θ θ− + − − + − = − −   (28)

 
From the above Eq., it is not possible to find out the explicit form of tj,1 in terms of tj,2. Generally, the 
value of 1θ is quite small as it is the deterioration rate of items stored in OW. Thus, 1θ (tj,2 – tj,1)<<1 and 

1θ (tj,1 – tj,0)<<1. Hence the series expansion of the exponential functions and ignoring the third and 
higher degree terms, Eq. (28) reduces to   
A1 tj,1

2 – B1tj,1 + C1 = 0               (29)
where 

2
1 1 1 ,2 1 1jA a b t b Wθ θ θ= + − −  (30)
1 1 ,2 ,2 1 1 1 ,02{ ( ) (1 )}j j jB a a bt t W tθ θ θ= + + − +  (31)

2 2 2
1 ,2 1 ,2 1 ,2 1 1 ,0 1 ,0{2 ( ) } (2 2 )j j j j jC t a a b t b t W t tθ θ θ θ= + + + − + +  (32)

   
 Hence the Eq. (29) gives only the admissible solution 

2
1 1 1 1

,1
1

4
2j

B B A C
t

A
− −

=    (33)

provided 2
1 1 14 0B A C− >  

Again, for the r-th (r∈NL22) cycle of L22-system, the differential Eq. describing the inventory level are 
given by 

2
2 2 ,0 ,1

( )
( ) ( ),r

r r r
dq t

q t D t t t t
dt

θ+ = − ≤ ≤  (34)

1
1 1 ,0 ,1

( )
( ) 0,r

r r r
dq t

q t t t t
dt

θ+ = ≤ ≤  (35)

1
1 1 ,1 ,2

( )
( ) ( ),r

r r r
dq t

q t D t t t t
dt

θ+ = − < ≤  (36)

( ) ( )
( )

1
,2 1,0

1,0
,

1
r

r r
r

dq t D t
t t t

dt t tδ +
+

= < ≤
+ −

 (37)

with the boundary conditions  
 

2 ,0 2 2 ,1 1 ,0 1 1 ,2( ) , ( ) 0 , ( ) , ( ) 0r r r r r r r rq t W q t q t W q t= = = = (38)
 
The solutions of the differential Eq. (34)-(37) using the boundary conditions (38) are as follows 

,1

2 2 ,0 ,1( ) ( ) exp( ( )) ,
rt

r r r
t

q t D u u t du t t tθ= − − ≤ ≤∫  (39)

1 1 1 ,0 ,0 ,1( ) exp{ ( )},r r r rq t W t t t t tθ= − ≤ ≤ (40)
,2

1 1 1 ,1 ,2( ) exp( ) ( )exp( ) ,
rt

r r r
t

q t t D u u du t t tθ θ= − < ≤∫  (41)

,2

1 ,2 1,0
1,0

( )( ) ,
1 ( )

rt

r r r
rt

D uq t du t t t
t uδ +
+

= < ≤
+ −∫  (42)

  
Now using the boundary condition qr2(tr, 0) = W2 implies that 

2 ,1 ,0 ,1 ,0 22 2
2 2 2 22 2

exp( ( ) ( ) ( )r r r r
a b b a b bt t t t Wθ
θ θ θ θθ θ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− − + − − + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

i.e.,        
2

2 2 ,0 2 2 2 ,1 ,0 2 2 ,1( ) exp{ ( )}r r r ra b t b W t t a b t bθ θ θ θ θ θ+ − + − − = + −  (43)
 
Like Eq. (28), Eq. (43) reduces to  
 (44)



  
A2tr,1

2 –B2tr,1 + C2 = 0                
 
where  
 

2
2 2 2 ,0 2 2rA a b t b Wθ θ θ= + − −  (45)

2
2 2 2 2 ,0 2 ,02{( )(1 ) }r rB a W t b tθ θ θ= + + +  (46)

2 2 2 3
2 2 2 ,0 2 ,0 ,0 2 ,0 2 ,0(2 2 ) 2 ( )r r r r rC W t t at b a t b tθ θ θ θ= + + + + + +  (47)

 
Hence the Eq. (44) gives only the admissible solution 
 

2
2 2 2 2

,1
2

4
2r

B B A C
t

A
− −

=    (48)

provided 2
2 2 24 0B A C− >  

 
Again, from the continuity of qr1(t) at t = tr,1, we have from (40) and (41) 

,1

,2

1 ,1 1 1 ,0 ,1( ) exp( ( )) exp( ( ))
r

r

t

r r r
t

D u u t du W t tθ θ− = −∫  

 which implies 

1 1 ,0 ,1 1 ,2 ,1 ,2 ,12 2
1 1 1 11 1

exp{ ( )} exp{ ( )}[( ) ] [( ) ]r r r r r r
a b b a b bW t t t t t tθ θ
θ θ θ θθ θ

− = − − + − − +    (49)

After simplification, then expanding the exponential functions and ignoring third and higher order 
terms of tr,2, Eq. (49) reduces to a quadratic Eq. in tr,2 as follows 
 
A3 tr,2

2 – B3tr,2 + C3 = 0        (50)
 
where 

2
3 1 1 ,1 1 1rA a b t b Wθ θ θ= + − +    (51)

2
3 1 ,1 1 ,1 1 1 1 ,02{ (1 ) (1 )}r r rB a t b t W tθ θ θ θ= + + + + +    (52)

2 2 2 3
3 1 1 ,0 1 ,0 1 ,1 1 ,1 1 ,1(2 2 ) 2 ( )r r r r rC W t t t a b t b tθ θ θ θ θ= + + + + + +    (53)

 
Hence the Eq. (50) gives only the admissible solution 

2
3 3 3 3

,2
3

4
2r

B B A C
t

A
− −

=    (54)

provided 2
3 3 34 0B A C− >  

The other expressions of Drw,r, Dow,r, SQL,r, BL,r, QL2,r, QTrw,r, QTow,r can be derived similarly like L21-
sysytem. Now, the net profit (Z) for the entire planning horizon is given by 
Z = <Sales revenue> - <purchase cost> - <carrying cost in OW and RW> - <backordering cost and 
penalty cost> -<ordering cost> - <transporting cost> 

= 1 1, 2 2, 1 ,
1 1 1

( ) ( ( )
m n n

d r L i d r t L j d r L i
i j m i

P C C Q P C C C Q P C C B
= = + =

− − + − − − + − −∑ ∑ ∑  

, , , 1 2 1
1 1 11 2

( ) ( ) ( ) ( )
n n n

ow rw
ow i t rw j s L i l r r t

i j m i

C C
P D P C D C SQ nC n m W C C C

θ θ= = + =

− + − + − − − + − − +∑ ∑ ∑  

 
(55)

 
The above profit function Z is a function of three variables n, K1 and γ of which n is discrete and γ , K1 
are continuous variables. We denote this as Z(n, γ, K1). Our objective is to determine the optimal values 
of γ , n and K1 by maximizing the profit function Z(n, γ, K1). 
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Hence our problem is  

1max ( , , )Z n Kγ  
 1subject to 0 , 1K and nγ< ≤ is an integer  (56)

 
 For a particular n, the corresponding m and m1 can be determined before the calculation of net profit 
for the entire planning horizon. The values of m (number of cycles under L1-system) and m1(number of 
cycles under L21-system) can be obtained from the following: 
m = max{j: qj1(tj,0) ≤W1},       j∈NL1 

and   m1= max{j-m: qj2(tj,0) ≤W2},   j∈NL21                          
 

(57) 
 
The problem (56) can be solved by any classical method (gradient or direct search method) or by an 
well known soft computing method like Genetic Algorithm. As the gradient method or direct search 
method does not stuck to the global optimum, so we shall solve the problem by Genetic Algorithm. For 
this purpose, we shall develop an algorithm for determining the optimal values of m, m1, n, γ  and K1 
with the net profit of the proposed inventory system by a real-coded Genetic Algorithm (RCGA) for 
two different types of variables( discrete and continuous). The stepwise procedure of RCGA is shown 
in Algorithm -1, 
 
Algorithm -1 
Step-1:  Initialize the parameters of RCGA, bounds of variables and different parameters of the 

proposed model. 
Step-2:  t = 0 [t represents the number of current generation]. 
Step-3:  Initialize P(t) [P(t) represents the population with real coding of genes at t-th generation]. 
Step-4:  Evaluate the fitness function of P(t). 
Step-5:  Find best found result from P(t). 
Step-6:  t = t + 1 
Step-7:  If(t> maximum generation number) go to Step-14. 
Step-8:  Select P(t) from P(t – 1) by any selection process ranking selection. 
Step-9:  Alter P(t) by crossover and mutation operations. 
Step-10: Evaluate the fitness function of P(t). 
Step-11: Find the best found result from P(t). 
Step-12: Compare the best found results of P(t) and P(t – 1) and store better one. 
Step-13: Go to Step-6. 
Step-14: Print the best found result. 
Step-15: Stop.   
 
To implement the above GA for the proposed model, the following basic components are considered. 
 

• Parameters of GA. 
• Chromosome representation. 
• Initialization. 
• Evaluation function. 
• Selection process. 
• Genetic operators(crossover and mutation)  

 
3.1  Parameters of GA  
 
Genetic Algorithm (GA) depends on different parameters like population size (POPSIZE), probability 
of crossover (PCROS), Probability of mutation (PMUTE), maximum number of generation 
(MAXZEN). According to the existing literature, there is no clear indication about the population size 



  
of GA. However, there arise some difficulties in storing the data, if the population is too large. But if it 
is so small, there may not be enough populations for good crossovers.  
 
3.2   Chromosome representation and Initialization  
 
A main problem in applying a GA is to design an appropriate chromosome representation of solutions 
of the problem with genetic operations. Generally, traditional binary coding are used to represent the 
chromosome. This is not effective in many physical non-linear problems.  As our proposed model is 
non-linear containing two different types of variables (discrete and continuous), a real number 
representation is used here. A real row matrix Vj = [Vj1,Vj2, Vj3] is used to represent a chromosome 
where Vj1, Vj2 and Vj3 represent n , γ and K1 respectively. 
 
3.3    Initialization 
 
After representation of chromosomes, the next step is to initialize the chromosomes that will take part 
in artificial genetics. In this process, first of all we have to find the independent variables and their 
bounds for the given problem. Then GA, POPSIZE number of chromosomes V1, V2, …,VPOPSIZE are 
generated randomly, where every component for each chromosome is randomly generated within the 
boundary of the component. This set of chromosomes is taken as initial population. 
 
3.4   Evaluation function 
 
After getting a population of potential solutions, we need to see how good they are. Therefore, we have 
to calculate the fitness for each chromosome. In our problem, the value of the profit function for 
chromosome Vj (j =1,2, …, POPSIZE) is taken as the fitness of Vjand it is denoted by eval (Vj).In the 
above mentioned algorithm, evaluation of P(t) in Step-4 and Step-10 in Algorithm – 1 is done by 
function subprogram. In this function subprogram, generally population size numbers of objective 
function values are computed corresponding to the initialized values of independent variables. For 
different problems, this function subprogram is written differently. For our problem, the objective 
function values along with γ , K1, m (number of cycles under L1-system) and m1(number of cycles 
under L21-system) will be computed in the function subprogram. The corresponding algorithm for 
determining the optimal values of γ , K1, m and m1 along with objective function value for a particular 
values of n and K1 is as follows: 
 
Algorithm – 2 
 
Step-1: Set i = 1, Z = 0 [Z stands for net profit of the system] 
Step-2: Compute ti,0 and ti,2. 
Step-3: Compute qi1(ti,0) 
Step-4: If qi1(ti,0) >W1, go to Step-8. 
Step-5: Compute the profit Zi for the i-th cycle. 
Step-6: Z = Z + Zi. 
Step-7: i = i + 1 and go to Step-2. 
Step-8: m = i – 1. 
Step-9: Set j = m + 1. 
Step-10: Compute tj,0, tj,1 and tj,2. 
Step-11: Compute qj2(tj,0). 
Step-12: If qj2(tj,0) ≥W2, go to Step-15. 
Step-13: Compute profit Zj, BL,j for j-th cycle. 
Step-14: Z = Z + Zj, j = j + 1 and go to Step-9. 
Step-15: m1 = j – 1 – m. 
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Step-16: Set k = m1 + m + 1. 
Step-17: Compute tk,0, tk,1 and tk,2. 
Step-18: Compute the profit Zk for the k-th cycle. 
Step-19: Z = Z + Zk. 
Step-20: k = k + 1. 
Step-21: If (k≤n) go to Step-16. 
Step-22: Stop. 
 
3.5      Selection Process 
 
Here, the selection process is based on the ranking selection where the population is sorted from the 
best to the worst with selection probability assigned to of each individual according to their ranking. 
The process is explained precisely in the algorithm given below. 
Step-1: Calculate the fitness fi, (i= 1,2, …, POPSIZE) 
Step-2: Sort all fi’s in decreasing order for maximization problem and increasing order for minimization 

problem.                          
Step-3: Generate a random number c∈[0,1]. 
Step-4: Calculate the probability pi of selection for each chromosome Vi by pi = c ( ) 11 ic −−  

Step-5: Compute the cumulative probability iq for each chromosome iv  using 
1

i

i j
j

q p
=

= ∑  

Step-6: Generate another random real number d in [0,1].  
Step-7: Obtain the minimal k such that iq d>  and select the k-th interval. 
Step-8: Repeat Step-6 and Step-7 until the number of selected individuals becomes population size. 
 
3.6      Crossover Operation 
 
After the selection process, other genetic operators, like crossover and mutation are applied to the 
resulting chromosomes i.e., those which have survived. Crossover is an operator that creates new 
individuals/ chromosomes (offspring) by recombining the features of both parent solutions. It operates 
on two or more parent solutions at a time and produces offspring for the next generation.  In this 
operation, expected N (the integral value of PCROS*POPSIZE) numbers of chromosome will take part. 
Hence, in order to perform the crossover operation, select N numbers of chromosome. After selection 
of chromosomes, the whole arithmetic crossover is applied here. In our problem, each chromosome Vi 
has three genes Vi1, Vi2 and Vi3,  of which first one is discrete and other two are continuous variables. 
Different steps of crossover operation is given below: 
Step-1: Find the integral value of  PCROS*POPSIZE and store it in N. 
Step-2: Select two chromosomes Vj and Vk randomly from the population for crossover  
Step-3: Generate a proper fraction λ by the formula 
 λ = pmax / (pmax + pmin) 
             where pmax = max[ pi, i =1,2, …, POPSIZE] 
 and   pmin = min[ pi, i =1,2, …, POPSIZE] 
Step-4: Compute the components jl V′ and klV′ of two offspring jV′ and k V′ by  
 Vjl

/ =  λVjl + (1-  λ) Vkl 
 Vkl

/ = λVkl + (1-  λ) Vjl 
Step-5: Compute the components 1jV ′  and 1kV ′  of two offspring by either 1 1j jV V g′ = +  and 1 1k kV V g′ = −  if 

1 1j kV V<  or 1 1k kV V g′ = +  and 1 1j jV V g′ = −  where g is a random integer number between 0 and 

1 1j kV V− .  
Step-6: Repeat the Step-2 to Step-5 for N/2 times. 
 



  
3.7    Mutation Operation 
 
This operation is responsible for fine-tuning capabilities of the system. It is applied to a single 
chromosome. Here, we shall use uniform and non-uniform mutation for discrete and continuous 
variables respectively. The action of non-uniform mutation depends on the age of the population. If the 
element Vik of Vi chromosome is selected for this mutation and domain of Vik is [lk, uk], then the reduced 
value of Vik is given by 

( , ), 0.5
( , ),

ik k ik
ik

ik ik k

V t u V when r
V

V t V l othere wise
+ Δ − ≤⎧

′ = ⎨ −Δ −⎩
 

where k∈[1,2,3], Δ (t,y) returns a value in the range [0,y] and r is a uniformly distributed random 
number in [0,1]. 
 
In our study, we have taken   
Δ (t, y) = a random integer between [0,y] for discrete variable. 

           =
b

1yr 1- t
T

⎛ ⎞
⎜ ⎟
⎝ ⎠

, for a continuous variable. 

where 1r is a uniformly distributed random number in [0,1] , t, T and b represent  the current generation, 
MAXGEN and  the constant respectively. 
 
3.8     Ellitism 
 
As GA technique is a stochastic optimization technique, sometimes, the best chromosome may be lost 
when a new population is created by crossover and mutation. To overcome this situation the worst 
individual/chromosome of the current generation is replaced by the best individual/chromosome of 
previous generation. Instead of single chromosome one or more chromosomes may take part in this 
operation. This is called elitism. 
 
4.     Numerical Examples 
 
To illustrate the developed model, four examples have been considered. The values of different 
parameters are given in the Table 2. For these numerical examples, the model parameters values have 
not been collected from any case study, but these values considered here are realistic.  
 
Table 2  
Input values of parameters for different examples 

Parameters Example-1 Example-2 Example-3 Example-4 
C1 100 170 50 100 
a 150 150 50 50 
b 10 5 10 10 
Cd 10 8 10 10 
α  0.05 0.05 0.05 0.05 
β  0.03 0.03 0.03 0.03 
W1 100 100 100 100 
W2 100 150 150 100 
H 15 10 8 15 

Cr1 1.00 1.00 1.00 1.00
Cr2 1.5 1.5 1.5 1.5 
Cs 4 4 4 4 
Ct 0.3 0.3 0.3 0.3 
δ  0.8 0.9 0.8 0.9 
P 15 15 20 15 

Cow 1.00 1.5 1.5 1.00 
Crw 2.5 1.5 1.00 2.5 
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This RCGA has been coded in C Programming language. The computational work has been done an a 
PC with Intel Core-2-duo 2.5 GHz Processor in LINUX environment. Solving the non-linear 
constrained optimization problem (55) by RCGA method, the optimum values of m, m1, γ , K1, n and 
the corresponding profits for all examples have been obtained. The computational results have been 
shown in Table 3. 
 
Table 3 
Optimal results for different examples 
 Example-1 Example-2 Example-3 Example-4 
No. of cycles under L1-

system (m) 7 0 10 10 

No. of cycles under L21-
system (m1) 

20 12 0 6 

No. of cycles under L22-
system (n-m-m1) 

0 0 0 0 

Optimal no. of cycles 27 12 10 16 
K1 0.6968325 0.6952205 0.8394946 0.7462106 
γ 0..218582 0.0181895 0.2984824 0.0360834 

Profit (Z) ( in $) 9699.21 7188.60 5478.35 4772.47 
 
5. Sensitivity Analysis 
 
Using the numerical Example-1 mentioned earlier, the effect of under or over estimation of various 
parameters on replenishment policy and maximum net profit is studied. Here, we employ,                  
Δn = (n/ - n)/n× 100%, ΔZ = (Z/ - Z)/ Z× 100% as measure of sensitivity, where n and Z are the true 
values and n/, Z/ the estimated values. The sensitivity analyses are shown by increasing or decreasing 
the parameters by 5%, 10% and 20%, taking one or more at a time and keeping the others at their true 
values. The results are presented in Table 4, which are self-explanatory. 
 
Table 4  
Sensitivity analysis of the proposed model 
Changing of 
Parameter(s)  -20% -10% -5% 5% 10% 20% 

H Δ n 
ΔZ 

-25.93 
-25.99 

-14.81 
-13.38 

-7.41 
-6.77 

3.70 
6.97 

11.11 
14.13 

11.11 
28.63 

W1, W2 
Δ n 

ΔZ 
3.70 
-3.24 

0.0 
-1.49 

0.0 
-0.71 

0.0 
0.63 

-3.70 
1.26 

-7.41 
2.29 

a Δ n 
ΔZ 

-11.11 
-15.21 

-7.41 
-7.61 

-3.70 
-3.80 

0.0 
3.82 

3.70 
7.64 

11.11 
15.29 

b Δ n 
ΔZ 

-7.41 
-7.47 

-3.70 
-3.73 

-3.70 
-1.87 

0.0 
1.87 

0.0 
3.75 

3.70 
7.50 

a, b Δ n 
ΔZ 

-18.52 
-22.63 

-11.11 
-11.34 

-7.41 
-5.68 

3.70 
5.69 

7.41 
11.39 

11.11 
22.82 

α  Δ n 
ΔZ 

-3.70 
0.55 

-3.70 
0.27 

0.0 
0.14 

0.0 
-0.14 

0.0 
-0.27 

0.0 
-0.54 

β  Δ n 
ΔZ 

0.0 
0.01 

0.0 
0.0005 

0.0 
-0.00015 

0.0 
-0.005 

0.0 
-0.007 

0.0 
-0.0101 

 
 
 
 



  
5. Concluding Remark 
 
In the present day competitive marketing situation, when the area of existing warehouse (Owned 
warehouse, OW) in an important market place (like, super market, corporation market, etc.) is 
relatively small, then the inventory management authority is bounded to hire a separate warehouse on 
rental basis. Considering this situation, we have developed a deterministic inventory model for 
deteriorating items over a finite time horizon. In the model formulation, we have also removed the 
unrealistic assumption regarding the storage capacity of rental warehouse in the existing models 
developed by Hartely (1976), Sarma (1983), Dave (1988) and Bhunia and Maiti (1994) and others. The 
replenishment cost is taken to be dependent on the lot size of the current replenishment. This model is 
applicable for foodgrains like paddy, wheat, rice, etc., as the demand of the foodgrains increases with 
time for a fixed time horizon i.e., for a calendar year. It is also applicable for other items whose 
demands increase linearly with time. On the other hand, the case of decreasing demand is also of great 
importance for a finite horizon model. The results available in this work are also valid for linearly 
decreasing demand. For further research, one can extend the model developed in this paper for multiple 
items, quantity discount policies and imprecise demand. 
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