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 In this paper, we develop a two-warehouse imperfect production model under two cases: (i) 
model starts with shortages (ii) model ends with shortages. Most of the researchers proposed the 
models for perfect items but we develop for imperfect quality items, which is very realistic. 
Demand is taken as time dependent and dependent on the production. Holding cost in rented 
warehouse (RW) is greater than own warehouse (OW). Deterioration is taken as Weibull 
distribution in both OW and RW. Shortages are allowed and partially backlogged. The effect of 
learning on production cost is also considered. Learning from one cycle to other cycle, improve 
the efficiency of the organization. A numerical example including the sensitivity analysis is given 
to validate the results of the production-inventory model. 
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1. Introduction  
 
The classical inventory models usually assume the available warehouse has unlimited capacity. In 
many practical situations, there exist many factors like temporary price discounts making retailers buy 
a capacity of goods exceeding their own warehouse (OW). In this case, retailers will either rent other 
warehouses or rebuild a new warehouse. However, from economical point of views, they usually 
choose to rent other warehouses. Hence, an additional storages space known as rented warehouses 
(RW) is often required due to limited capacity of showroom facility. In recent years, various 
researchers have discussed a two-warehouse inventory system. Therefore, due to the limited capacity of 
the available showroom facility (existing storage, own warehouse (OW)), an additional storage which 
is assumed to be available with abundant space is required to hold a large stock. This additional storage 
facility may be a rented warehouse (RW) with better preserving facility. This is first proposed by 
Hartely (1976). In this system, it is assumed that the holding cost in RW is greater than that in OW. 
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Hence, items in RW are first transferred to OW to meet the demand until the stock level in RW drops to 
zero and then items in OW are released.  

By assuming constant demand rate, Sarma (1987) developed a deterministic inventory model for a 
single deteriorating item with shortages and two levels of storage. Pakkala and Achary (1992) extended 
the two-warehouse inventory model for deteriorating items with finite replenishment rate and 
shortages. Besides, the ideas of time-varying demand for deteriorating items with two storage facilities 
were considered by Benkherouf (1997) and Bhunia and Maiti (1998). Singh et al. (2008) provided a 
two-ware inventory model for deteriorating items. In that model shortages are allowed and partially 
backlogged. Singh et al.(2009) offered a two-warehouse inventory model for deteriorating items with 
shortages under inflation and time-value of money. Recently, Jaggi and Verma  (2010) developed a 
two-warehouse inventory model with linear trend in demand under the inflationary conditions. 
Shortage was allowed and completely backlogged.  

Most of the existing EOQ models unrealistically ignored the presence of the imperfect production 
process and equipment. Porteus (1986) and Rosenblatt and Lee (1986) was the first who developed a 
model with imperfect quality items. Furthermore, various researchers have discussed a two-warehouse 
inventory system. Kimand Hong (1999) determined the optimal production run length in deteriorating 
production process. Salameh and jaber (2000) developed an economic production/ inventory quantity 
model for items with imperfect quality. They assumed that poor-quality items are sold as a single batch 
by the end of the 100% screening process. Goyal et al. (2002) extended the model of Salameh and 
Jaber (2000) to develop a practical approach to determine the EPQ for items with imperfect quality. 
Chung and Hou (2003) developed a model to determine an optimal run time for a deteriorating 
production system with shortages.  

Papachristos and Konstantaras (2006) developed economic ordering quantity models for items with 
imperfect quality and discussed many of the assumption of Salameh and Jaber (2000). Huang (2004) 
and Chung and Huang (2006) investigated the model of Salameh and Jaber (2000) in a two-level 
supply chain (vendor-buyer), while Wee et al. (2007) and Eroglu and Ozdemir (2007) independently 
extended it by allowing for shortages. In addition, Chan et al. (2003) develop an economic production 
model using similar assumptions as Salameh and Jaber (2000). Jaber et al. (2008) develop the model by 
using the assumption of Salameh and Jaber (2000) and discussed the effect of learning effects. In the 
classical economic production/order quantity models, the items produced/ received are implicitly 
assumed to be with perfect quality. However, it may not always be the case. Due to imperfect 
production process, natural disasters, damage or breakage in transit, or for many other reasons, the lot 
sizes produced/ received may contain some defective items.  

Goyal and Giri (2003) considered the production-inventory problem with time varying demand, 
production and deterioration rate. Salameh and Jaber (2000) developed an economic production/ 
inventory quantity model for items with imperfect quality. Goyal et al. (2002) extended the model of 
Salameh and Jaber (2000) to develop a practical approach to determine the EPQ for items with 
imperfect quality. Chun et al. (2009) developed a two warehouse model with imperfect quality. 
Recently Singh et al. (2012) proposed a warehouse imperfect fuzzified production model with 
shortages and inflation. 

There are lots of real life problem where the defective rate, ordering cost are decreases from one cycle 
to other. Such as automotive manufacturing for shipments of raw material where the percentage of 
defective items per lot decreases with cumulative number of shipments conforming to a learning curve 
and the demand of raw material is highly uncertain due to inflation and market complexities. We 
developed the models where percentage of defective items in each lot, production cost are follows 
learning effects. Most of the papers are develop for perfect quality items. But In this paper, we 
developed a two warehouse model with imperfect quality items with learning effect which is more 
realistic. We consider the two models (i) shortages at the end and, (ii) starts with the shortages. We 
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assume that demand is time- dependent and deterioration is taken as Weibull for both OW and RW. 
Shortages are also allowed in this model.  

2. Assumptions and Notations 

2.1 Assumptions 

In developing the mathematical models of the inventory system the following assumptions are used: 

1. The demand rate ( )D t is deterministic and is a known function of time; the function ( )D t  is 
given by:    

           ( ) btD t ae , where a and b> 0.      

2. Production rate is dependent on the demand rate i.e. btP kd kae   

3. Shortages are allowed and partially backlogged where tB e  ,  is a backlogging parameter,
0  . 

4. Salvage value is associated to deteriorated units during the cycle time. 

5. The time horizon of the inventory system is infinite. 

6. Replenishment rate is infinite, and lead-time is zero. 

7. The owned warehouse (OW) has a fixed capacity of W units, the rented warehouse (RW) has 
unlimited capacity. 

8. The goods of OW are consumed only after consuming the goods kept in RW. 

9. The unit inventory costs (including holding cost and deterioration cost) per unit time in RW are 
higher than those in OW. 

10.  The deterioration rate is taken as weibull in both OW and RW. 

In addition, the following notations are used throughout this study: 

2.2 Notations 

W Fixed capacity level of OW 

 Scale parameter of the deterioration rate in OW 

 Shape parameter of the deterioration rate in OW  

a, b Parameters of the demand rate 

0( )p
CC
n  Production cost with learning effect  

CRW Present worth of Holding cost in RW 

COW Present worth of Holding cost in OW 

C3 Present worth of Deterioration cost 

C4 Present worth of Opportunity cost 
Cs Present worth of Shortage cost 

C5 Present worth of Rework cost 
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f(X) Probability density function of X 

Ii1 Inventory level in OW at time t with 1[0, ]t t  

Ii2 Inventory level in RW at time t with 1 2[ , ]t t t  

Ii3 Inventory level in RW at time t with 2 3[ , ]t t t  

Ii4 Inventory level in OW at time t with 1 3[ , ]t t t  

Ii5 Inventory level in OW at time t with 3 4[ , ]t t t  

Ii6 Inventory level in OW at time t with 4 5[ , ]t t t  

Ii7 Inventory level in OW at time t with 5[ , ]t t T  

3. Formulation of the model 

In Fig.1, the inventory level during a production cycle in which both OW and RW are used. Initially, 
the inventory level is zero. The production starts at time t = 0 and items accumulate from 0 up to W 
units in OW in t1 units of time. After time t1 any production quantity exceeding W will be stored in 
RW. After this production stopped and the inventory level in RW begins to decrease at t2 and will reach 
0 units at t3 because of demand and deterioration. The inventory level in OW comes to decrease at t1and 
then falls below W at t3 due to deterioration. The remaining stocks in OW will be fully exhausted at t4 
owing to demand and deterioration, the inventory becomes zero. At this time shortage starts developing 
and at time t5 it reaches to maximum shortage level, at this time fresh production starts to clear the 
backlog by the time T. 

3.1. Model I:  When shortages at the end 

 

Fig. 1.  Two warehouse model with the shortages at the end 

' 1
1 1( ) ( )I t t I t P D         10 t t    

(1) 
' 1
2 2( ) ( )I t t I t P D         1 2t t t   

(2) 
' 1
3 3( ) ( )I t t I t D         2 3t t t   

(3) 
' 1
4 5( ) ( ) 0I t t I t         1 3t t t   

(4) 
' 1
5 4( ) ( )I t t I t D         3 4t t t   

(5) 
'
6 ( )I t BD         4 5t t t   

(6) 
'
7 ( )I t P D         5t t T   

(7) 
 

with these boundary conditions 
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Present worth of rework cost 

RC= C5 E(N)  (24) 

Present worth of Total cost 

 1
RW OW s LTC PC H H D I I RC SV

T
         (25) 

3.2. Model 2: When model starts with the shortages 

In Fig.2, the inventory level during a production cycle in which both OW and RW are used. Initially, 
the inventory level is zero. At this time shortages starts developing and at time t1 it reaches to 
maximum shortage level, at this time fresh production starts to clear the backlog by the time t2.The 
production starts at time t = t2 and items accumulate from 0 up to W units in OW in t3 units of time. 
After time t3 any production quantity exceeding W will be stored in RW. After this production stopped 
and the inventory level in RW begins to decrease at t4 and will reach 0 units at t5 because of demand 
and deterioration. The inventory level in OW comes to decrease at t3 and then falls below W at t5due to 
deterioration. The remaining stocks in OW will be fully exhausted at T owing to demand and 
deterioration, the inventory becomes zero. 
 

'
1( )I t Bd         10 t t   (26) 
'
2 ( )I t P d         1 2t t t   (27) 
' 1
3 3( ) ( )I t t I t P d         2 3t t t   (28) 
' 1
4 4( ) ( )I t t I t P d         3 4t t t   (29) 
' 1
5 5( ) ( )I t t I t d         4 5t t t   (30) 
' 1
6 6( ) ( )I t t I t d         5t t T   (31) 
' 1
7 7( ) ( ) 0I t t I t                    3 5t t t   (32) 

 
Fig. 2. Two warehouse model which is starts from shortages. 
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Salvage value for Deteriorated Items 
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Numerical Example 
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Fig. 3. Convexity of t4* and T w.r.t TC Fig. 4. Convexity of t2* and T* w.r.t. TC 
 

Table 1 
Sensitivity analysis of model 1 

Parameter Change in Parameter t1* t2* t3* t4* t5* T* TC 
a 260 

270 
280 
290 
300 

0.17714 
0.171478 
0.166172 
0.161191 
0.156504 

0.261657 
0.262508 
0.263299 
0.264034 
0.264721 

1.54058 
1.54194 
1.5432 

1.54437 
1.54547 

2.92889 
2.92908 
2.92925 
2.92942 
2.92957 

9.1884 
9.18842 
9.18844 
9.18844 
9.18848 

11.2367 
11.2367 
11.2367 
11.2367 
11.2367 

13922.2 
14457.2 
14992.3 
15527.4 
16062.4 

b 
 
 

2.3 
2.4 
2.5 
2.6 
2.7 

0.182018 
0.180868 
0.179743 
0.178644 
0.17757 

0.26215 
0.263546 
0.264915 
0.266253 
0.267555 

1.52991 
1.52142 
1.51354 
1.50622 
1.49939 

2.90771 
2.88707 
2.86839 
2.85095 
2.83461 

9.18374 
9.17945 
9.17548 
9.17178 
9.16834 

11.2321 
11.2278 
11.2238 
11.2201 
11.2166 

13939.4 
14491.1 
15042.4 
15593.4 
16144 

Cp 2.3 
2.4 
2.5 
2.6 
2.7 

0.183053 
0.182922 
0.182902 
0.182694 
0.182595 

0.224436 
0.191502 
0.161598 
0.134457 
0.109881 

1.51869 
1.50015 
1.48331 
1.46801 
1.45412 

2.92593 
2.92345 
2.92122 
2.91921 
2.91739 

9.1886 
9.18882 
9.18903 
9.18923 
9.18941 

11.237 
11.2374 
11.2377 
11.2381 
11.2382 

13388.5 
13389.6 
13390.6 
13391.3 
13391.9 

α 0.06 
0.07 
0.08 
0.09 
0.1 

0.186096 
0.189041 
0.192033 
0.195074 
0.198165 

0.247408 
0.234358 
0.221596 
0.209128 
0.196963 

1.52553 
1.51212 
1.49886 
1.48575 
1.47279 

2.9298 
2.93101 
2.93229 
2.93365 
2.93508 

9.18853 
9.18869 
9.18884 
9.18899 
9.18914 

11.2368 
11.2368 
11.2369 
11.237 
11.237 

13384.7 
13382.2 
13379.7 
13377.1 
13374.4 

β 0.04 
0.05 
0.06 
0.07 
0.08 

0.182885 
0.182583 
0.182292 
0.18201 

0.181738 

0.262414 
0.264029 
0.265586 
0.267089 
0.268539 

1.53973 
1.54033 
1.5409 

1.54144 
1.54196 

2.92885 
2.92901 
2.92917 
2.92932 
2.92948 

9.18834 
9.18831 
9.18828 
9.18825 
9.18823 

11.2366 
11.2366 
11.2365 
11.2365 
11.2365 

13387.2 
13387.2 
13387.3 
13387.3 
13387.3 

W 52 
54 
56 
58 
60 

0.189424 
0.195591 
0.201701 
0.207755 
0.213754 

0.259787 
0.258834 
0.257881 
0.256928 
0.255973 

1.53758 
1.53604 
1.53451 
1.53298 
1.53144 

2.92847 
2.92826 
2.92805 
2.92784 
2.92762 

9.18835 
9.18832 
9.1883 
9.18827 
9.18825 

11.2366 
11.2366 
11.2366 
11.2366 
11.2366 

13387.5 
13888 

13388.4 
13388.8 
13389 

CRW 2.0 
2.1 
2.2 
2.3 
2.4 

0.183356 
0.183513 
0.183667 
0.183818 
0.183967 

0.297961 
0.334343 
0.37064 
0.406504 
0.441881 

1.55288 
1.5667 
1.5805 

1.59427 
1.60795 

2.91725 
2.90626 
2.8957 

2.88554 
2.87578 

9.18781 
9.18725 
9.18669 
9.18614 
9.18559 

11.2368 
11.2368 
11.2369 
11.237 
11.237 

13403.9 
13420.3 
13436.2 
13451.6 
13466.6 

C3 6 
7 
8 
9 
10 

0.183075 
0.182953 
0.182833 
0.182713 
0.182595 

0.262842 
0.264914 
0.266954 
0.268964 
0.270946 

1.53997 
1.54083 
1.54167 
1.5425 

1.54332 

2.92868 
2.92867 
2.92866 
2.92865 
2.92863 

9.18834 
9.1883 
9.18827 
9.18824 
9.1882 

11.2366 
11.2366 
11.2366 
11.2366 
11.2366 

13387.4 
13387.7 
13387.9 
13388.2 
13388.5 

Cs 6 
7 
8 
9 
10 

0.18322 
0.183236 
0.183248 
0.183257 
0.183264 

0.266389 
0.270407 
0.273408 
0.275735 
0.277591 

1.54812 
1.55451 
1.55928 
1.56297 
1.56591 

2.94099 
2.94971 
2.95621 
2.96123 
2.96523 

9.07451 
8.99171 
8.92881 
8.87941 
8.83958 

11.0474 
10.9114 
10.8088 
10.7287 
10.6645 

15323.5 
17267.8 
19217.3 
21170.1 
23125.4 

CL 4 
5 
6 
7 
8 

0.183326 
0.183457 
0.183591 
0.183726 
0.183865 

0.293247 
0.326279 
0.359894 
0.394166 
0.429186 

1.59061 
1.64211 
1.69372 
1.7456 
1.7979 

2.99876 
3.06825 
3.13734 
3.20623 
3.27512 

9.41126 
9.62541 
9.8309 
10.0278 
10.2162 

11.6076 
11.9737 
12.3347 
12.6907 
13.0413 

14532 
15714.7 
16933.3 
18185.5 
19469.3 

r 0.022 
0.024 
0.026 
0.028 
0.03 

0.183036 
0.182887 
0.182749 
0.182624 
0.182511 

0.218916 
0.180084 
0.144287 
0.111599 

0.0822342 

1.47151 
1.40714 
1.34611 
1.28851 
1.23445 

2.83615 
2.74741 
2.66259 
2.58172 
2.50479 

8.69963 
8.24577 
7.82609 
7.43902 
7.08244 

10.7537 
10.2924 
9.85503 
9.44255 
9.05498 

12146.1 
11050.6 
10083.4 
9228.73 
8472.11 

2
2.2

2.4
2.6

2.8
3 10

10.5

11

11.5

12

13500
14000
14500
15000

2
2.2

2.4
2.6

2.8

1.6
1.8

2
2.2

2.4 9

9.5

10

10.5

11

1800
1900
2000
2100

1.6
1.8

2
2.2

2.4
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Table 2 
Sensitivity analysis of model 2 
Parameter Change in Parameter t1* t2* t3* t4* t5* T* TC 
a 102 

104 
106 
108 
110 

1.57369 
1.5679 
1.56515 
1.56251 
1.55996 

2.39014 
2.38209 
2.37828 
2.3746 
2.37105 

2.53839 
2.5252 
2.51895 
2.51292 
2.5071 

6.65712 
6.6554 
6.65458 
6.6538 
6.65304 

8.82671 
8.82409 
8.82285 
8.82166 
8.82051 

10.635 
10.6306 
10.6286 
10.6266 
10.6247 

1801.75 
1836.13 
1870.5 
1904.86 
1939.23 

C3 5.2 
5.4 
5.6 
5.8 
6.0 

1.57406 
1.57443 
1.5748 
1.57518 
1.57555 

2.39065 
2.39117 
2.39169 
2.3922 
2.39272 

2.53923 
2.54006 
2.5409 
2.54173 
2.54257 

6.65723 
6.65727 
6.65773 
6.65788 
6.65789 

8.82688 
8.82705 
8.82721 
8.82738 
8.82754 

10.6352 
10.6354 
10.6355 
10.6357 
10.6359 

1767.45 
1767.55 
1767.65 
1767.75 
1767.85 

Cs 5.2 
5.4 
5.6 
5.8 
6.0 

1.45436 
1.3453 
1.24482 
1.15156 
1.06439 

2.22143 
2.0666 
1.92335 
1.78983 
1.6645 

2.37725 
2.23002 
2.09444 
1.96874 
1.85141 

6.64029 
6.62487 
6.61057 
6.59721 
6.58458 

8.8097 
8.79407 
8.77957 
8.76958 
8.75313 

10.6181 
10.6024 
10.5876 
10.5735 

10.56 

1776.85 
1785.09 
1792.28 
1798.58 
1804.11 

CL 4 
5 
6 
7 
8 

1.50156 
1.43724 
1.37934 
1.32684 
1.27892 

2.31125 
2.24092 
2.17762 
2.12022 
2.06782 

2.46294 
2.39579 
2.33547 
2.28086 
2.23109 

6.64747 
6.63885 
6.63108 
6.62403 
6.6176 

8.81691 
8.80813 
8.80023 
8.79304 
8.78648 

10.624 
10.6142 
10.6054 
10.5974 

10.59 

1770.47 
1773.22 
1775.7 
1777.7 
1779.92 

r 0.022 
0.024 
0.026 
0.028 
0.03 

1.30904 
1.32511 
1.34888 
1.37346 
1.39911 

2.09852 
2.13369 
2.16748 
2.20234 
2.23866 

2.25131 
2.28271 
2.3105 
2.33988 
2.37114 

6.32867 
5.6715 
5.29331 

4.962 
4.66914 

8.28486 
7.79891 
7.40159 
7.05203 
6.74171 

10.25 
9.59038 
9.18875 
8.83589 
8.52317 

1627.36 
1492.31 
1381.16 
1283.53 
1196.83 

 

Observations 

1. With increase in demand parameter *
1,a t  decrease and 2 3 4 5, , , , ,a t t t t T      and total cost increases. 

2. With increase in demand parameter *
2,b t  decrease and 1 3 4 5, , , ,t t t t T     and total cost increases. 

3. With increase in production cost 1 2 3 4 5, , , , ,pC t t t t t     decreases and 5 ,t T  and total cost slightly increases. 
4. With increase in warehouse capacity 3 4 5, , ,W t t t   decreases and 1 2,t t  increases and T  and total cost 

slightly increases. 
5. With increase in holding cost of 4 5, ,RW t t  decreases and 1 2 3, , ,t t t T    and total cost increases. 
6. With increase in deterioration cost 3 1 4 5, , ,C t t t    decreases and 2 3, ,t t T    and total cost increases. 
7. With increase in shortage cost of 5, ,sC t T   decreases and 1 2 3 4, , ,t t t t    , and total cost increases. 
8. With increase in lost sale cost of 1 3 4 5, , , , ,LC t t t t T     and total cost increases. 

4. Conclusion 

In this paper, we developed an imperfect quality items with learning and inflation under two storage 
capacity. We assumed two cases in this paper (i) model ends with shortages (ii) model starts with 
shortages. Demand is taken as time dependent and dependent on the production. Deterioration is taken 
as Weibull distribution in both OW and RW. Shortages are allowed and partially backlogged. The 
effect of learning on production cost is also considered. Learning from one cycle to other cycle, 
improve the efficiency of the organization. Fig 3 shows the convexity of total cost function for model I. 
Fig 4 shows the convexity of total cost function for model II. Table 1 and Table 2 show the sensitivity 
analysis for model 1 and 2, respectively. This paper can be further extended in so many ways: 
permissible delay, fuzzy environment etc. 
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