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 This study presents optimization of performance characteristics in unidirectional glass fiber 
reinforced plastic composites using Taguchi method and Grey relational analysis. Performance 
characteristics such as surface roughness and material removal rate are optimized during rough 
cutting operation. Process parameters including tool nose radius, tool rake angle, feed rate, 
cutting speed, cutting environment and depth of cut are investigated using mixed L18 orthogonal 
array. Grey relation analysis is used to optimize the parameters and Principal Component 
Analysis is used to find the relative significance of performance characteristics. Depth of cut is 
the factor, which has great influence on surface roughness and material removal rate, followed by 
feed rate. The percentage contribution of depth of cut is 54.399% and feed rate is 5.355%. 
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1. Introduction  
 
Environmental FRPs are an important class of materials in advanced structural applications due to their 
light weight, high modulus and specific strength. In addition, many fiber reinforced plastic composites 
boast excellent fatigue strength/weight ratios (Davim & Mata, 2004). The fiber reinforced plastic 
industry, which is one of the fastest growing industries in the world concentrates on the single piece 
design of complex shapes. However, there are events when the best design calls for the manufacture of 
a product in parts prior to assembly. The FRP machining methods now in use, utilize the existing 
machines and tools developed for machining conventional materials. Machines and tools exclusively 
designed for FRP machining are yet to be developed (Santhanakrishnan, 1989). The machining of FRP 
is different from that of metal working in many respects, because the behaviour is not only 
inhomogeneous, but also depends on the fiber and matrix properties, fiber orientation and type of 
weave (Konig, 1985). It brings about many undesirable results, such as rapid tool wear, rough surface 
finish, defective sub surface layer with cracks and delamination. Glass fiber reinforced plastic(GFRP), 
an advanced composite material, is widely used in variety of applications including aircrafts, hose 
buildings, storage tanks, robots, machine tools and piping. Glass fiber reinforced plastics are extremely 
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abrasive, thus proper selection of the cutting tool and cutting parameters is very important for a perfect 
machining process.    
              
Grey theory can provide a solution to a system in which the model is unsure or the information is 
incomplete (Deng, 1990). It also provides an efficient solution to the uncertainty, multi-input and 
discrete data problem. Fu et al. (2012) investigated the optimization problem of cutting parameters in 
high-speed milling on NAK80 mold steel. An experiment based on the technology of Taguchi was 
performed. Three parameters such as cutting speed, feed rate and depth of cut were selected to 
minimize the cutting forces. The optimum cutting parameters were obtained by the grey relational 
analysis. The principal component analysis was applied to evaluate the weights so that their relative 
significance could be described properly and objectively. Huang and Liao (2003) applied grey 
relational analysis to determine the optimal selection of machining parameters for the Wire Electrical 
Discharge Machining (Wire-EDM) process. Kao and Hocheng (2003) developed the application of the 
grey relational analysis for optimizing the electro polishing of 316L stainless steel with multiple 
performance characteristics. The processing parameters (temperature, current density, and electrolyte 
composition) were optimized for multiple performance characteristics (surface roughness and 
passivating strength). 
 
Sadasiva Rao et al. (2012) work was focused to study the effect of process parameters such as speed, 
feed and depth of cut and approach angle of the cutter on cutting force, tool life and surface roughness 
in face milling of Inconel 718. The experiments were designed based on L9 orthogonal array and 
carried out under dry conditions.  Grey relational analysis was used to optimize the multi performance 
characteristics to minimize the cutting force and surface roughness and maximize the tool life criteria. 
Refaie et al. (2010) used Taguchi method grey analysis to determine the optimal combination of control 
parameters in milling. The measures of machining performance were material removal rate and surface 
roughness. Wang et al. (2006) utilized a hybrid algorithm combining Genetic algorithm (GA) and the 
Simulated Annealing (SA) to optimize multicriteria high speed milling process.  
 
Jean et al. (2004, 1999) solved the optimization problem with multiple performance characteristics 
using grey relational analysis. The corresponding weighting value was calculated using fuzzy logics. 
Lua et al. (2009) found optimization design of the cutting parameters for rough cutting process in high-
speed end milling on SKD61 tool steel. The major characteristics indexes for performance selected to 
evaluate the processes were tool life and metal removal rate and the corresponding cutting parameters 
were type of milling, spindle speed, feed per tooth and radial depth of cut and axial depth of cut. In this 
study, Grey relational grade as performance index was specially adopted to determine the optimal 
combination of cutting parameters. The principal component analysis was applied to evaluate the 
weighting values corresponding to various performance characteristics so that their relative importance 
could be properly and objectively described. 
 
Chakradhar and Venu Gopal (2011) investigated the parametric optimization of process parameters for 
Electrochemical machining of EN-31 steel using grey relation analysis. The process parameters 
considered were electrolyte concentration, feed rate and applied voltage and were optimized with 
considerations of multiple performance characteristics including material removal rate, over cut, 
cylindricity error and surface roughness. Tarang et al. (2002) reported the use of fuzzy logic in the 
Taguchi method to optimize the submerged arc welding process with multiple performance 
characteristics. Tsao (2009) proposed the application of Grey–Taguchi method to optimize the milling 
parameters of aluminium alloy. It was concluded that the grey-Taguchi method is very suitable for 
solving the flank wear and surface roughness quality problem in milling A6061P-T651 aluminium 
alloy. In attempt to offer a more adequate treatment to the optimization problems with multiple 
correlated responses, the Principal Component Analysis (PCA) was considered as a good alternative 
Wang and Du & Rossi (2000, 2001). 
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This paper investigates optimization problem of the cutting parameters in turning of unidirectional 
glass fiber reinforced plastic (UD-GFRP) composite rods. The surface roughness and material removal 
rate are the response variables. The experiments are performed using Taguchi L18 orthogonal array. The 
grey relational analysis is used to find the optimum process parameters. Principal component analysis is 
used to find the weight corresponding to different performance characteristics. 

2.    Experimental Procedure 

2.1   Work Material 

The work material used for the present investigation is unidirectional glass fiber reinforced plastic 
(UD-GFRP) composite rods. The workpiece material having size of 840 mm in length with 42 mm 
diameter is used. The material used for the experiments is pultruded unidirectional glass fiber 
reinforced plastics composite having E-glass as fiber and epoxy as resin. The properties of material 
used are shown in Table 1. 
 
 Table 1  
Properties of UD – GFRP 
Sr. No                Particular           Value       Unit 

1 Glass Content (by weight) 75±5 % 
2 Epoxy Resin content (by weight) 25±5 % 
3 Reinforcement, unidirectional  ‘E’ Glass Roving ---- 
4 Water absorption 0.07 % 
5 Density 1.95-2.1 gm/cc 
6 Tensile Strength 6500 Kgf / cm.sq. 
7 Compression Strength 6000 Kgf/ cm.sq.  
8 Shear Strength 255 kgf Kgf / cm.sq.   
9 Modulus of elasticity 3200 10 Kg/ cm.sq.  

10 Thermal Conductivity 0.30 Kcal /Mhc° 
11 Weight of Rod 840 mm 2.300 Kgs 
12 Electrical strength (Radial):           3.5  KV / mm 
13 Working Temperature Class:  Class ‘F’ (155 ) Centigrade 
14 Martens Heat Distortion  210  Centigrade 
15 Temperature 

Test in oil : (1) At 20 C:  
                   (2) At 100 C: 

20 KV/cm 
20 KV/cm (50 KV / 25 mm) 

KV/cm 

 
Table 2  
Properties of PCD tool 

 
2.2    Experimental setup 

The experimental work is carried out on a high-precision NH–22 HMT lathe of 11 kW spindle power 
with maximum speed 3000 rpm. The cutting tool used for the experimentation is polycrystalline 
diamond tool of different tool rake angle and tool nose radius. The detail of the PCD tool is shown in 

Clearance angle 7º 
Grade  M10 
Density 3.80-4.50 g/cm3 
Hardness 1600 Vickers kg/mm2 
Transverse Rupture strength 1200-1700 N/mm2 
Thermal conductivity 150-550 W/mK 
Compressive Strength 7000-8000 N/mm2 
Thermal Expansion coefficient 3.2-4.6  10%C 
Young's modulus 800-900 GPa 
Cutting edge inclination angle Top  7º 
Front Clearance 10º 
Tool rake angle  -6°, 0°, +6° 
Tool nose  radius 0.4 mm, 0.8 mm 
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Table 2. The surface roughness of the turned surface is measured using a Tokyo Seimitsu Surfcom 
130A type instrument. The instrument is set to a cutoff length of 0.8 mm with a transverse length of 4 
mm. A tool holder SVJCR steel EN47 is used during the turning operation. 
 

2.3   Process Parameters of Turning Operation 

In order to identify the process parameters that affect the quality of the turned parts, an Ishikawa cause-
effect diagram is constructed as shown in Fig. 1. The Ishikawa cause-effect diagram depicts that the 
following process parameters may affect the quality of the turned parts: 
 
                                                          Cutting Tool Material  

Cutting Parameters 
 
                                                  Cutting Speed                                                 Tool Material 
                                                       

                                                                                                        Type of Coating 
                                                             Feed Rate 
        Flow &                                                                                                                 Tool Geometry 
 Type of Coolant  
                                                                     Depth of Cut              

                                                                                                                                                         Quality of 
                                                                                                                                                       Turned Parts 

 
                                                Dry                                                                                           Type of material                                                                                                  
 
 
                                                                                                                                Diameter 
                                                                            Cooled 
 
                                 Wet                                                                                                 Mechanical Properties  
   
              
 
 
                              Cutting Environment                  Workpiece Parameters 
 

Fig. 1. Ishikawa Cause-Effect Diagram of a Turning Process 
 

 Cutting parameters: cutting speed, feed rate, depth of cut 

  Environment parameters: dry, wet, cooled 

  Cutting tool parameters: tool geometry, tool material 

  Work piece material: metals, composite materials 

2.4   Selection of the Machining Parameters and their Levels 

In this study, the experimental plan has tool nose radius, tool rake angle, feed rate, cutting speed, 
cutting environment (dry, wet and cooled) and depth of cut as the controllable variables. On the basis of 
preliminary experiments conducted by using one variable at a time approach, the feasible range for the 
machining parameters is selected Table 3 shows the cutting parameters and their levels considered for 
the experiments. Table 4 shows the L18 orthogonal array employed for the experimentation. The 
Taguchi’s mixed level design is selected as it is decided to keep two levels of tool nose radius. The rest 
five parameters are studied at three levels – denoted by 1, 2 and 3, respectively. Two level parameter 
has 1 DOF, and the remaining five three level parameters have (5×2=10) DOF, i.e., the total DOF 
required is 11 [= (1*1+ (5*2)]. Orthogonal array chosen is L18 (21 * 37) OA with 17 [= 18-1] DOF. 
Parameters are assigned using linear graphs. The unassigned columns are treated as error.  
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Table 3  
Process Parameters with Different Operating Levels 
Input Parameters Levels 

Level 1 Level 2 Level 3 
Tool nose Radius / mm 0.4 0.8 NIL 
Tool  Rake angle / Degree -6 0 +6 
Feed rate / (mm/rev.) 0.05 0.1 0.2 
Cutting speed / (m/min.) & rpm (55.42) 420 (110.84) 840 (159.66) 1210 
Cutting environment Dry (1) Wet (2) Cooled (3) 
Depth of cut / mm 0.2 0.8 1.4 

 
 

  Table 4  
Orthogonal Array L18 of Taguchi along with Assigned Value 
Expt.  
No. 

Tool Nose 
Radius /mm (A) 

Tool Rake Angle / 
Degree (B) 

Feed Rate / 
(mm/rev.) (C) 

Cutting Speed / 
(m/min) & rpm (D) 

    Cutting 
Environment (E) 

Depth of 
Cut/ mm (F) 

1 0.4 -6° 0.05 (55.42) 420 Dry (1) 0.2 
2 0.4 -6° 0.1 (110.84) 840 Wet (2) 0.8 
3 0.4 -6° 0.2 (159.66) 1210 Cooled (3) 1.4 
4 0.4 0° 0.05 (55.42) 420 Wet (2) 0.8 
5 0.4 0° 0.1 (110.84) 840 Cooled (3) 1.4 
6 0.4 0° 0.2 (159.66) 1210 Dry (1) 0.2 
7 0.4 +6° 0.05 (110.84) 840 Dry (1) 1.4 
8 0.4 +6° 0.1 (159.66) 1210 Wet (2) 0.2 
9 0.4 +6° 0.2 (55.42) 420 Cooled (3) 0.8 
10 0.8 -6° 0.05 (159.66) 1210 Cooled (3) 0.8 
11 0.8 -6° 0.1 (55.42) 420 Dry (1) 1.4 
12 0.8 -6° 0.2 (110.84) 840 Wet (2) 0.2 
13 0.8 0° 0.05 (110.84) 840 Cooled (3) 0.2 
14 0.8 0° 0.1 (159.66) 1210 Dry (1) 0.8 
15 0.8 0° 0.2 (55.42) 420 Wet (2) 1.4 
16 0.8 +6° 0.05 (159.66) 1210 Wet (2) 1.4 
17 0.8 +6° 0.1 (55.42) 420 Cooled (3) 0.2 
18 0.8 +6° 0.2 (110.84) 840 Dry (1) 0.8 

     
3.   Taguchi Method  

Taguchi’s technique allows us to study the variation of process and ultimately to optimise the process 
variability as well as target, using Signal-to-Noise ratio, which presents the ratio between response 
mean control factors effect and variation. The Taguchi method is very popular for solving optimization 
problems in the field of production engineering. The ratio depends on the quality characteristics of the 
product/process to be optimized. The standard S/N ratios generally used are as follows: - Nominal-the-
Best (NB), lower-the-better (LB) and Higher-the-Better (HB). The optimal setting is the parameter 
combination, which has the highest S/N ratio (Ross, 1988). 
 
Lower-the-better       −10 Log ଵ

௡
 ෌ݕଶ, (1) 

Higher-the-better    −10Logଵ
௡
	∑ ଵ

௬మ
, (2) 

Nominal-the-best   ௌ
ே

= ݃݋10݈ ௬ത
ௌ೤మ

, (3) 

where ݊ is the number of observations and y is the observed data.  
 
4.   Grey Relation Analysis  

Grey relation is the certainty of association among things, or the uncertainty between system factors 
and the main behavioral factors (Wang et al., 2001). The grey relational analysis is primarily a 
quantitative analysis on dynamic process of system. It measures the degree of proximity according to 
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similarity or difference among the development situations of factors (Fung, 2003). In order to optimize 
two machining characteristics simultaneously, GRA is utilized. After selecting process parameters and 
their ranges, experimental results are obtained using taguchi’s design of experiment method. For 
multiple performance characteristics optimization using GRA, following steps are followed: (1) 
Conduction of experiments at different setting of parameters based on OA (2) Normalization of raw 
data of experimental results for all performance characteristic (3) Calculation of quality loss function 
(4) Calculation of grey relational coefficient (5) Principal component analysis to optimize the 
corresponding weighting value for each performance characteristics (6) Calculation of grey relational 
grade using weighting factor for performance characteristics  
 

4.1    Data Normalization 

 It is the first step in the grey relational analysis. In a data sequence, the original data requires 
normalization to get a comparable sequence because of different scope and dimension. In this study, a 
linear normalization of surface roughness and material removal rate is performed in range of 0 to 1. A 
linear data preprocessing method for raw data can be expressed as 
 

(݇)∗௜ݔ = ௠௔௫௫೔(௞)ି௫೔(௞)
௠௔௫௫೔(௞)ି௠௜௡௫೔(௞)

, ݅	 = 	1, 2, … . . ,݉; 	݇	 = 	1, 2, … … , ݊  
 

(4) 

where ݉ is the number of experiments, ݊ is the number of response variables. Where ݅ݔ(݇) is the 
original sequence of the surface roughness and material removal rate, ٭݅ݔ(݇) is the comparable 
sequence after data normalization, max xi(k) and min xi(k) are the largest value and smallest value of 
xi(k). In this paper, m =18, n = 2 is taken. 
 
4.2    Calculation of Quality Loss Function 

Δoi (k) is called the quality loss function, which is the absolute value between the reference sequence 
xo

and the comparability sequence xi (k)٭
  ,as follows (k)٭

 
Δoi (k) =  xo

xi– (k)٭
 (5) (k)٭

 
4.3     Calculation of Grey Relational Coefficient  

After normalization of the original sequence, the grey relational coefficient is calculated (Ho & Lin, 

2003). It can be expressed as 

,(݇)∗௢ݔ൫ߛ ௜∗(݇)൯ݔ =
∆௠௜௡ + .ߞ Δ୫ୟ୶

Δ୭୧(k) + ζ. Δ୫ୟ୶
 (6) 

where ζ is the distinguishing coefficient and ζ Є[0,1]. ζ is set at 0.5. 
Δmin = min	 min Δoi (k) 
               ∀i      ∀k       
Δmax = max	 max Δoi (k) 
               ∀i        ∀k 
 
4.4    Calculation of Weights According to Principal Component Analysis 

The procedure for finding the weights is denoted as follow 
 
(a) Calculation of correlation coefficient 
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Cke =  ஼௢௩(௫೔
∗(௝),			௫೔

∗(௞))
ఙ௫೔(௝)×ఙ௫೔(௞)

, (7) 

 
where j= 1, 2, …, n 
           k=1, 2, …, n  
where	ݒ݋ܥ(ݔ௜∗(݆),			ݔ௜∗(݇))	 is the covariance of sequence ݔ௜∗(݆)	and		ݔ௜∗(݇), ݔߪ௜(݆)	and	ݔߪ௜(݇) are the 
standard deviations of sequence of ݔ௜∗(݆)	ܽ݊݀		ݔ௜∗(݇) respectively. 
 

(b) Determination of Eigen value and Eigen vector 
 
(c) Calculation of contribution of the performance characteristics to principal component. The Eigen 
value is arranged in descending order. Only the Eigen value greater than 1 is taken into consideration. 
Sequence of the Eigen vector corresponding to first principal component gives the contribution of the 
corresponding performance characteristics to the principal component.  Square of elements of eigen 
vector gives the contribution of each performance characteristics. 
 
4.5    Calculation of Grey Relational Grade 

The grey relational grade represents the level of correlation between the reference sequence and 
Comparability sequence. The grey relational grade is a weighted average of the grey relational 
coefficients of multi-objective (Tosun & Pihtili, 2003). It is determined as 

Ψ(ݔ௢∗ , (∗௜ݔ = ෍߱௞ݔ)ߛ௢∗(݇), ((݇)∗௜ݔ
௡

௞ୀଵ

, 
 

(8) 

 where ߱k is the weight of the kth performance characteristics and ∑ ߱௞
௡
௞ୀଵ 	=1. 

 
5.   Results and Discussion 

Experiments are performed on turning machine according to L18 orthogonal array shown in Table 4. 
Experimental results are listed in Table 5. Table 6 shows the normalized data after preprocessing 
according to Eq. (4). 

Table 5  
Test Data Summary for Surface Roughness and Material Removal Rate 
               Responses                    Responses 
 Raw Data Average Ra (µm) Raw Data Average 

MRR (mm3/sec) Expt. No. Surface Roughness (µm) Material Removal Rate (mm3/sec) 
 R1 R2 R3  R1 R2 R3  
1 1.38 1.46 1.35 1.397 8.60 8.50 8.70 8.60 
2 1.67 1.36 1.33 1.453 145.00 145.02 144.95 144.99 
3 3.00 2.79 3.44 3.076 327.58 347.03 347.23 340.61 
4 1.31 1.47 1.32 1.366 36.24 36.24 36.24 36.24 
5 1.70 1.24 1.65 1.530 249.90 249.96 249.88 249.91 
6 2.05 2.93 2.22 2.400 106.02 105.86 105.90 105.93 
7 1.61 1.33 1.60 1.513 125.00 124.98 124.98 124.99 
8 1.67 1.79 1.45 1.636 52.96 52.99 52.97 52.97 
9 2.43 2.20 2.16 2.263 144.97 144.97 145.02 144.99 
10 1.38 1.83 1.43 1.547 104.42 104.38 104.40 104.40 
11 1.52 1.43 1.87 1.606 125.00 125.00 125.00 125.00 
12 2.24 1.90 1.76 1.966 73.57 73.58 73.55 73.57 
13 1.57 1.57 1.65 1.597 18.39 18.39 18.39 18.39 
14 1.40 1.86 1.63 1.630 208.72 208.92 208.92 208.85 
15 2.14 1.80 2.77 2.237 250.09 250.09 250.05 250.08 
16 2.12 1.80 1.90 1.940 180.00 180.04 180.00 180.01 
17 1.23 1.53 1.70 1.486 18.38 18.38 18.38 18.38 
18 1.98 1.66 2.28 1.973 275.93 275.87 275.75 275.85 
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Table 6  
Sequence after Data Preprocessing 

No.  Surface Roughness, (µm) MRR, (mm3/sec.) 
Reference Sequence 

Comparability Sequence 
1.000 1.0000 

1 0.0181 0 
2 0.0509 0.4108 
3 1.0000 1.0000 
4 0 0.0833 
5 0.0959 0.7268 
6 0.6047 0.2932 
7 0.0860 0.3506 
8 0.1579 0.1336 
9 0.5246 0.4108 

10 0.1058 0.2885 
11 0.1404 0.3506 
12 0.3509 0.1957 
13 0.1351 0.0295 
14 0.1544 0.6031 
15 0.5094 0.7273 
16 0.3357 0.5163 
17 0.0702 0.0295 
18 0.3550 0.8049 

 

Table 7 gives the quality loss function according to Equation 5. The grey relation coefficient is 
calculated according to Eq. (6) and it is shown in Table 8.  

Table 7                                                                     Table 8 
Quality Loss Function                                             Grey Relational Coefficients for 18 Comparability Sequence 
Comparability 

 sequence  
Surface 

Roughness, 
(µm) 

Material Removal 
Rate, (mm3/sec.) 

   Comparability 
Sequence, No. 

Surface 
Roughness, (µm) 

Material 
Removal Rate, 

(mm3/sec.) 
No. Δoi (1) Δoi (2)  1 0.3374 0.3333 
i=1 0.9819     1.0000  2 0.3450 0.4591 
i=2 0.9491     0.5892  3 1.0000 1.0000 
i=3 0 0  4 0.3333 0.3529 
i=4 1.0000     0.9167  5 0.3561 0.6467 
i=5 0.9041     0.2732  6 0.5585 0.4143 
i=6 0.3953     0.7068  7 0.3536 0.4350 
i=7 0.9140     0.6494  8 0.3726 0.3659 
i=8 0.8421     0.8664  9 0.5126 0.4591 
i=9 0.4754     0.5892  10 0.3586 0.4127 

i=10 0.8942     0.7115  11 0.3678 0.4350 
i=11 0.8596     0.6494  12 0.4351 0.3833 
i=12 0.6491     0.8043  13 0.3663 0.3400 
i=13 0.8649     0.9705  14 0.3716 0.5575 
i=14 0.8456     0.3969  15 0.5047 0.6471 
i=15 0.4906     0.2727  16 0.4294 0.5083 
i=16     0.6643     0.4837  17 0.3497 0.3400 
i=17 0.9298 0.9705  18 0.4367 0.7194 
i=18 0.6450 0.1951  

 
Table 9  
Eigen Values, Eigen Vectors and Accountability Proportion  
No. 1ST Principal Component 2nd  Principal Component 
Eigen values 1.7613 0.2387 
Eigen vectors -0.7071, 0.7071 0.7071, 0.7071 
Accountability Proportion  (AP) 0.88065 0.11935 
Cumulative Accountability Proportion  (CAP) 0.88065 1.000 
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Table 10  
Contribution of Response Variables for the First Principal Component 
Response variables Contribution 
Surface Roughness 0.5 
Material Removal Rate 0.5 

 
Table 11  
Grey Relational Grades for 18 Comparability Sequence 

Expt. No Overall Grey Relational Grade S/N 
1 0.3353 -9.4900 
2 0.4021 -7.9144 
3 1.0000 0 
4 0.3431 -9.2916 
5 0.5014 -5.9963 
6 0.4864 -6.2601 
7 0.3943 -8.0835 
8 0.3692 -8.6536 
9 0.4859 -6.2700 

10 0.3856 -8.2761 
11 0.4014 -7.9285 
12 0.4092 -7.7613 
13 0.3532 -9.0408 
14 0.4646 -6.6594 
15 0.5759 -4.7931 
16 0.4688 -6.5793 
17 0.3448 -9.2474 
18 0.5780 -4.7607 

 
To find out the relative importance of each performance characteristics, the weights are found 
according to Principal component analysis. Correlation coefficient matrix is found out according to 
Equation 7. Eigen values and corresponding Eigen vector are calculated. Table 9 shows the eigen 
values, eigen vector, accountability proportion and Cumulative accountability proportion for two 
quality indicators according to Equation 8. Table 10 shows the contribution of surface roughness and 
material removal rate as 0.5 and 0.5 respectively. So the weights for surface roughness and material 
removal rate are considered as 0.5 each. Table 11 shows the overall grey relational grade and S/N ratio 
for eighteen experiments. The higher the value of grey relation grade, optimal is the corresponding 
factors combination. The S/N ratio for overall grey relational grade is calculated using higher the better 
criteria. It is clear from the experiments that experiment no. 3 has large value of grade. Therefore, it 
provides best combination for multiple performance characteristics. In order to separate out of effects 
of each process variable on grey relational grade at different levels using Taguchi methodology. Grey 
relational graph is plotted as shown in Fig. 2. 

  
Fig. 2. Effects of Process Parameters on Ra and MRR 

(Raw Data) 
Fig. 3. Residual Plots for Ra and MRR (Raw Data) 
 



  

       

556

Mean value of Grey relational grade is 0.46107. Basically, the larger the Grey relational grade, the 
better is the multiple performance characteristics. Combination of A1B1C3D3E3 and F3 showed larger 
value of Grey relational grade for factors A, B, C, D, E and F, respectively. Therefore, A1B1C3D3E3F3 is 
optimal parameter combination for two performance characteristics. However, significant contributions 
of process parameters still need to be known to predict optimal values of performance characteristics.  
 
Residual plots for machining parameters (a) Normal probability plot of residuals for grey raw data (b) 
Residuals vs. the order of the data, (c) Plot of residuals vs. the fitted values for grey, (d) Histogram are 
shown in Fig. 3. It can be seen from Fig. 3(a) that all the points on the normal plot lie close to the 
straight line (mean line). This implies that the data are fairly normal and a little deviation from the 
normality is observed. It is noticed that the residuals fall on a straight line, which implies that errors are 
normally distributed. In addition, Figs. 3(b), (c) and (d) revealed that there was no noticeable pattern or 
unusual structure present in the data. Table 12 shows the average of each response characteristic (raw 
data) for each level of each factor. The delta statistic is the highest minus the lowest average for each 
factor. Minitab assigns ranks based on delta values; rank 1 to the highest delta value, rank 2 to the 
second highest and so on. The ranks indicate the relative importance of each factor to the response. The 
difference of a factor of a response variable is the change in the response when the factor goes from its 
level 1 to level 3. The mean response refers to the average value of the performance characteristic for 
each parameter at different levels. The difference of raw data between level 1 and 3 indicates that feed 
rate has the highest effect ( = max-min = 3.486) followed by depth of cut ( = max-min = 2.845) and 
cutting speed ( = max-min = 1.765). 
  
Table 12  
Response Table for Means 

 
Level 

Tool nose 
Radius, (mm) 

Tool Rake 
Angle, (°) 

Feed Rate, 
(mm/rev) 

Cutting Speed, 
(m/min) 

Cutting  
Environment 

Depth of Cut, 
(mm) 

Level 1 -6.884 -6.895 -8.460 -7.837 -7.197 -8.409 
Level 2 -7.227 -7.007 -7.733 -7.259 -7.499 -7.195 
Level 3 ---- -7.266 -4.974 -6.071 -6.472 -5.563 

Delta (max-min) 0.343 0.371 3.486 1.765 1.027 2.845 
Rank 6 5 1 3 4 2 

 

Table 13  
Analysis of Variance for Grey Relational Grade 
Source SS DOF V F ratio P value SS/ P (%) 
Tool nose radius  0.529    1 0.529    Pooled 0.604 --- --- 
Tool rake angle  0.434    2 0.217    Pooled 0.887 --- --- 
Feed rate 40.586   2 20.293   11.48* 0.009 6.806 54.399 
Cutting speed  9.722    2 4.861    Pooled 0.142 --- --- 
Cutting  Environment  3.344    2 1.672    Pooled 0.440 --- --- 
Depth of cut  24.464   2 12.232    6.92* 0.028 0.670 5.355 
T 89.691 17    89.691 100.00 
e (pooled) 10.611   6 1.768   3.731 29.821 
S = 1.32982   R-Sq = 88.17%   R-Sq (adj) = 66.48% 
Tabulated F-ratio at 95% confidence level F0.05; 1; 6 = 5.99, F0.05; 2; 6 = 5.14        

Analysis of variance (ANOVA) of the overall grade is done to show the significant parameters. If the P 
value for a factor becomes less than 0.05 then that factor is considered as significant factor at 95% 
confidence level. Statistical software with an analytical tool of ANOVA is used to determine which 
parameter significantly affects the performance characteristics. The results of ANOVA for the grey 
relational grades are listed in Table 13. It shows that the two parameters C and F are found to be the 
major factors with the selected multiple performance characteristics, because their corresponding P 
ratio is less than 0.05. The percentage error can be used to evaluate if an experiment possesses 
feasibility and sufficiency or not, since it is related to the uncertain or uncontrollable factors. The 
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percentage error for contribution is 29.821% as shown in Table 13 that indicates that the proposed 
method as well as the outcome in this study is proven to be highly acceptable. 

6.   Predicting Optimal Value 
 
The optimal grey relational grade (µGRG) is predicted at the selected optimal setting of process 
parameters. The significant parameters with optimal levels are already selected as: C3 and F3. The 
estimated mean of the response characteristic is computed as (Ross, 1988). 

(9)  GRG GRG 3 GRG 3 GRGµ  = T  + (C  - T ) + (F  -T )  

where overall mean of grey relational grade = 0.46107 GRGT  TGRG = overall mean of grey relational 
grade = 0.46107. C3 and F3 are the mean values of grey relational grade with parameters at optimum 
levels. From figure 2, 3 34.974, 5.563C F    , Hence 11.920GRG  . A confidence interval for the 
predicted mean on a confirmation run is calculated using the Eq. 10 (Ross, 1988). 

1 1(1, )CE e e
eff

CI F f V
n R

 
  

  
, 

 
(10) 

where Fα; (1, fe) = F0.05; (1, 6) = 5.99 (Tabulated).  
α = risk = 0·05, 
fe = error DOF = 6 (Table 13) 
N = total number of experiments = 18 
Ve = error variance = 1.768 (Table 13) 
Total DOF associated with the mean (µGRG) = 11, Total trial =18, N=18×3 = 54 
neff = effective number of replications = N/{1 + [Total DOF associated in the estimate of mean]} = 54 / 
(1 + 11) = 4.5 
R = number of repetitions for confirmation experiment = 3 
A confidence interval for the predicted mean on a confirmation run is ± 2.424  
The 95% confidence interval of the predicted optimal grey relational grade is: [µGRG − CI] < µGRG < 
[µGRG + CI] i.e. 9.496 < µGRG < 14.344 
Predicting value for multiple performance characteristics at optimal setting of process parameters are 
confirmed through experimental results as shown in Table 14. 
 
Table 14  
Predicted and Experimental Values at Optimal Setting 

Performance 
Characteristics 

Optimal Combination Predicted Grey 
Relational Grade 

Predicted Mean Experimental Value 

Surface Roughness 
A1B1C3D3E3F3 11.920 

2.989 3.076 

MRR 345.39 340.61 
 

7.   Conclusions 

GRA is applied to determine optimal process parameters for optimization of multiple performance 
characteristics (surface roughness and material removal rate), which are investigated during rough 
cutting operation with polycrystalline diamond cutting tool. Using GRA, optimal setting of process 
parameters for multiple performance characteristics is A1B1C3D3E3F3. Corresponding predicted values 
are confirmed experimentally. Surface roughness (3.076 µm) is achieved with a material removal rate 
of 340.61mm3/sec., which is quite acceptable for rough cut. By the average of grey relational grade 
analysis using Taguchi method, feed rate followed by depth of cut found to be the most influential 
factors for surface roughness and material removal rate in turning process. 
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