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 The use of saturated two-level designs is very popular, especially in industrial applications where 
the cost of experiments is too high. Standard classical approaches are not appropriate to analyze 
data from saturated designs, since we could only get the estimates of the main factor effects and 
we would not have degrees of freedom to estimate the variance of the error. In this paper, we 
propose the use of empirical Bayesian procedures to get inferences for data obtained from 
saturated designs. The proposed methodology is illustrated assuming a simulated data set. 
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1. Introduction  
 
Factorial designs have been extensively used by experimental researchers in many areas of interest 
such as agriculture, engineering, medical research, industrial research (Fisher, 1926,1935;  
Yates,1935,1937). Box et al. (1978) described the systematic exploration of factorial designs in 
industrial applications. Some important applications of factorial or fractional factorial experimental 
design techniques in manufacturing industries are presented in the literature. Philpott et al. (1996) 
employed a factorial design approach to identify key cost drivers of a process and to develop practical 
cost models from contract quotes. Kleijnen e Standridge (1988) used factorial designs to simulate a 
Flexible  Manufacturing  System. Feng et al. (2003) used a factorial design to  illustrate the goodness of  
Neural  Networks  Modeling of Honing Surface Roughness  Parameters  defined  by IS0 13565.  
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Pei et al. (2003) employed a factorial design to reveal the main effects and the interaction effects of 
four factors on the quality of starting silicon wafers. Chan e Chan (2003) presented a simulation 
modelling and analysis of a serial production line in a printed circuit board (PCB) factory. Factorial 
designs also have been applied in simulation techniques to evaluate the performance of existing 
manufacturing systems to find out active factors that have great impacts on the current operational 
problems. Nazzal et al. (2006) integrated simulation modeling, factorial design, and economic 
justification tools to build a comprehensive framework for strategic capacity expansion. Ayanso et al. 
(2006) used computer simulation and a full factorial experimental design to study and to define 
Inventory rationing policy. 

There are also other important applications of factorial designs in industrial engineering. Bagici and 
Işık (2006) employed factorial designs to investigate the surface roughness when orthogonal cutting 
tests were carried on unidirectional glass fibre reinforced plastics (GFRP). Lin et al. (2007) used 
fractional factorial experiments to propose an efficient approach to develop a robust plasma spraying 
coating process. Datta e Bandyopadhyay (2008) applied factorial designs to evaluate an optimal 
parameter combination to obtain acceptable quality characteristics of bead geometry in submerged arc 
bead-on-plate weldment on mild steel plates.  Nagesh e Datta (2008) proposed an integrated approach 
based on the use of Design of Experiments (DOE), Artificial Neural Networks (ANN) and Genetic 
Algorithm (GA) for modeling Gas Metal Arc Welding (GMAW) processes. Roy et al. (2010) presented 
a fractional factorial design approach for an inventory model (of a volume flexible manufacturing 
system for a deteriorating item with randomly distributed shelf life, continuous time-varying demand, 
and shortages over a finite time horizon) along with its practical implication.  
 
Zhang et al. (2010) investigated important operating variables in the electrochemical treatment of 
acrylic fiber manufacturing wastewater (AFMW) with boron-doped diamond (BDD) electrode. Jayabal 
et al. (2010) used factorial design methodology to evaluate mechanical and machinability 
characteristics of hybrid composites in India. Erginel (2010) applied factorial design to analyse several 
materials and methods used for packing of products in order to discover the optimum level of packing 
materials to minimize damage to the product. Galanis e Manolakos (2010) employed factorial design in 
the development of a surface roughness model for turning of femoral heads from AISI 316L stainless 
steel. Amari e Mohtashami (2011) presented a multi-objective formulation of the buffer allocation 
problem in unreliable production lines. Factorial designs also have been used to build a meta-model for 
estimating production rate based on a detailed, discrete event simulation model. Savic et al. (2012) 
applied the experimental design principles in pharmaceutical development and discussed the impact of 
these principles on pharmaceutical legislation. A special kind of factorial designs is given by saturated 
fractional factorial designs used in industrial applications when we have only a very small number of 
experiments due to time and costs. 
 
Inferences on the effects of the different factors on the response variable of interest have been explored 
in the literature using different approaches. Daniel (1959) introduced the graphical method (Q-Q plots) 
of the half-normal plot to explore the important factors on a response variable of interest; fractional 
replication was first discussed by Finney (1945).When we have primary interest only on the  main 
effects, we could use saturated factorial designs (e.g., Plackett &  Burman,1946). The use of saturated 
designs has become very popular for screening factors, especially in industrial applications where the 
observations usually  are  very expensive to obtain (see for example, Box et al., 1978; Daniel, 1959; 
Wu & Hamada, 2000 ; Cox & Reid, 2000).This is the case when the number of factors is too large or 
when we have destructive tests. A saturated design is a fractional factorial design in which the number 
of parameters in the main effect models is equal to the number of runs. In this paper, we consider 
saturated designs in which k = n – 1 main effects are considered in n experimental units or experiments 
without replicates. In such designs, all information is used to estimate the main effect parameter, 
leaving no degrees of freedom to estimate the error variance. The classical analysis allows only the 
estimation of main effects under the assumption that interactions are negligible. A well-known two-
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level saturated design is based on a work developed by Plackett and Burman (1946) where the 
constructed designs use Hadamard matrices of order n, where n is a multiple of 4. 
 
In this paper, we propose the use of empirical Bayesian methods to analyse data from a saturated 
design, since the use of saturated classical approach based on least squares estimation usually only 
permits the estimation of the main effects. According to Miguel (2006), methodologically this study 
can be classified as pure but with practical applications and objectively descriptive, and taking a 
quantitative approach. Bertrand and Fransoo (2002) defined quantitative research in production 
engineering where a problem is modeled whose variables present causal and quantitative relationships. 
In general, quantitative research uses mathematical, statistical, or computational modeling 
(simulation)—specifically in this paper, statistical modeling will be adopted.  
 
The paper is organized as follows: in section 2, we introduce a simulated data set from a saturated two-
level design to motivate our approach; in section 3, we introduce a classical analysis for data from a 
saturated design; in section 4, we introduce a Bayesian analysis assuming conjugated or other priors for 
the parameters of the model; in section 5, we introduce an empirical Bayesian approach; in section 6, 
we analyse the data from a saturated design introduced in section 2; finally, in section 7, we present 
some concluding remarks 
 
2. A simulated example 
 
Consider a 12-run Plackett-Burman design and a simulated data set from the model  

1 2 3Y =  2x + x + 1.5x + ε , where   ~ N(0,0.252) and, 
 

1

1 when factor A uses "low" level (-)

1 when factor A uses "high" level (+)
x


 


 
 

In the same way, we obtain the codes for factors B to K. From this model used to simulate the data, we 
observe that the factors A, B and C are active in the experiment. The simulated data are given in Table 
1 (data set introduced by Baba & Gilmour, 2006). The general model for the data from a two-level 
saturated design is given by, 
 

0 1 1 k kY x x         (1)
 

where ix  denotes the i-th factor main effect and  ε ~N(0, 2ߪ).The model can be expressed in matrix 

notation by, 
 

E[ ] =y X  (2)
 

where  X  is a n  p matrix showing the levels at which the factors are fixed,   is a p  1 vector of 

parameters and y  is n  1 vector of observations. 
 

Table 1  
A twelve-run Plackett-Burman design 

Factor 
A B C D E F G H I J K Response 
+ + - + + + - - - + - 1.7502  
+ - + + + - - - + - + 2.7130 
- + + + - - - + - + + 0.4377 
+ + + - - - + - + + - 4.4825 
+ + - - - + - + + - + 1.4302 
+ - - - + - + + - + + -0.5429 
- - - + - + + - + + + -4.4129 
- - + - + + - + + + - -1.4384 
- + - + + - + + + - - -2.4942 
+ - + + - + + + - - - 2.5350 
- + + - + + + - - - + 0.8998 
- - - - - - - - - - - -4.6797 
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3. A classical analysis 
 
The use of least square estimation permits to obtain estimates for the main effects, but there are no 
degrees of freedom to estimate the error. This is a great difficult to get inferences from data of a 
saturated design, that is, the usual analysis of variance (ANOVA) cannot be used. Assuming that the 
matrix X´X  is nonsingular, as is the case of Plackett-Burman design, the least squares estimates of the 
main effects are given by, 
 

- 1β = (X ´X ) X ´y .  (3)
 

From the simulated data of Table 1, we get: 0ߚ෢= 0.057; 1ߚ෢= 2.005; 2ߚ	෢ 10෢ߚ ;9෢= - 0.010ߚ ;8෢= - 0.069ߚ ;7෢= 0.021ߚ ;6෢= 0.071ߚ ;5෢= 0.091ߚ ;4෢= 0.031ߚ ;3෢= 1.548ߚ ;1.028 = = - 0.011 and 11ߚ෢ = 0.031. The the 
least squares estimates were obtained using the MINITAB® software. In practical work, usually the 
researches consider the use of normal plots to decide by the important factors, but the interpretation of 
the normal plots depends on how strongly the experimenter believes in factor sparsity. A possible 
alternative to analyse data from saturated two-level designs is the use of Bayesian methods. 
 
4. A Bayesian analysis 
 
The likelihood function for β  and 2  is given by, 
 

f (y| β, 2ߪ) = (2π2ߪ)-n/2exp{ - (y-Xβ)’(y-Xβ) /2(4)               (2ߪ
 

Expanding the quadratic form (y-Xβ)’(y-Xβ) in (4) , we have,  
 

f (y| β, 2ߪ) = (2π2ߪ)-n/2exp{ - (- β̂ )’X’X(- β̂ Q)           (5) +2ߪ2/ (
 

where β̂  is given by Eq. (3) and  Q =(y-Xβ)’(y-Xβ) is the residual sum of squares. 
 

Note that for saturated designs, we can estimate the vector of parameter  , but the quantity Q is always 
zero, which means that the error variance cannot be estimated from the likelihood and the analysis used 
in the general linear model is not appropriate for saturated designs. In this way, we assume a Bayesian 
approach to analyse data from a saturated design. 
 
Different priors could be considered to analyse data from saturated designs (see Baba and Gilmour, 
2006), but since data from saturated designs provide only limited information, the interpretation of 
these data depends heavily on the prior assumptions. 
Among the different priors considered by these authors, a conjugate prior is given (from(5) ) by, 

 
f (β, 2ߪ) = (a/2)d/2 (2ߪ) –(d+p+2)/2 / ((2π)-1/2 |V|1/2Γ(d/2).exp{-(β-m)’V-1(β-m)/22ߪ + a) 
 

(6)

with hyperparameters a > 0, d > 0, m є Rp and V is a p p positive definite matrix (a Normal - Inverse 
Gamma distribution). Assuming different values for the hiperparameters of the prior (6) , the use of 
conjugate priors are very inflexible since very informative priors can lead to the posterior being very 
vague and centered in the wrong place (see Baba & Gilmour, 2006). 
 
Other priors as a finite mixture of densities or non-conjugate priors are also considered in the literature, 
but the obtained posterior summaries are heavily dependent of the choice of the prior for βand 2 . 
Observe that in a saturated design, we are using n observations to estimate n + 1 parameters, that is, in 
absence of any prior knowledge, the data do not provide any information. 
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5. Use of empirical Bayesian methods 
 
To get some information for the variance 2ߪ of the error for data of a saturated design, let us assume the 
following procedure: among the g experiments considered in the saturated two-level design, we have 
for each factor, g/2 values in the “high” level (+) and g/2 values in the “low” level (-). From these g/2 

values in each level “+” or “-”, we get its standard deviations denoted by s l and s l , l = 1, 2, . . . , K. 

Denoting by y

l i  and the g/2 values in the “high” level + for factor l, we have,  

 
2/ 2

2 *

1

1
( )

0.5 1

g

l li
I

s y U
g






        
  

where,  
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U y l K
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



 
  
 

   

 

(7)

In the same way, denoting by 
 - yl i  the g/2 values in the “low” level (-) of factor l, 

   
/ 2

22 **

1

1

0.5
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where,  
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1
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



 
  
 

   

(8)

In this way, we have K values 
2s l and 

2s -l , that is, a total of  2K sample variances, or 2K quantities. 

From these 2K quantities, we get the sample mean denoted by A  and the sample variance denoted 
byB2, which can be used to find appropriated values for the hiperparameters of the prior distribution for 
the variance 2  of the error in Eq. (1). Assuming a gamma prior distribution for 2 , that is, 
Gamma(a,b)                                                (9) ~2ߪ 
 

where E[2ߪ] =a/b and var[2ߪ] =a/b2 , we get values for the hyperparameters a and b by solving the 
following equations: 
 

a/b = A, 
a/b2 = B2. (10)
 

6. Analysis of the data of Table 1 - Discussion 
 

Let us assume the simulated data of  Table 1 considering a 12-run Plackett-Burman design with model 

1 2 3Y =  2x + x + 1.5x + ε , where   ~ N(0,0.252). 

Considering the g = 12 observations in factor A, we have 6 observations in level “high” or “+” given by 

1.7502, 2.7130, 4.4825, 1.4302, - 0.5429 and 2.5350, from where we get 1s  = 1.661 (see (7) ). In the 

same way, considering the 6 observations in factor A in the level “low” or “-” we have 0.4377, - 

4.4129, - 1.4384, - 2,4942, 0.8998 and – 4.6797, and 1s  = 2.362 (see (8)). With the same approach, we 

get for other factors B to K the values s l and s l ,    l = 2, 3, . . . , 11. In Table 2, we have these 22 

quantities ( s l , s l ) for the 11 factors. 
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Table 2  

Estimated quantities s l  and s l  

A B C D E F G H I J K 
1.661 2.252 2.073 2.920 1.984 2.600 3.260 1.857 3.380 3.010 2.450 
2.362 3.220 2.820 3.070 3.740 3.350 2.710 3.810 2.560 2.990 3.460 
 
Considering the squares for the 22 quantities given in Table 2, we get a sample mean A = 8.311 and a 
sample variance 2B  = 3.260. From Eq. (10) , we get the values of the hyperparameters of the gamma 

prior distribution given in Eq. (9)  for the variance 2ߪ of the error in Eq. (1) , given by a = 6.4994 and 

b = 0.7820. Also assuming normal N(0,106) priors for the regression parameters l  = 0, 1, . . . , 11 in 

Eq. (1)  (that is, very non-informative priors), we use Markov Chain Monte Carlo (MCMC) methods to 
get the posterior summaries of interest (see for example, Chib & Greenberg, 1995 or Gelfand & Smith, 
1990). 
 
Using the Winbugs software (Spiegelhalter et al., 2004)  we simulated 5,000 Gibbs samples (taking 
every 10th sample) of the joint posterior distribution for   and 2ߪ, after a “burn-in period” of size 
5,000. Convergence of the Gibbs sampling algorithm was monitored by observing the traceplots of the 
simulated samples for each parameter. In Table 3, we have the posterior summaries of interest. In Table 
4, we have the observed and predicted values 0 1 1 11 11

ˆ ˆ ˆŷ x x      , where l̂  are the Monte Carlo 

estimates of the posterior means for , 0, ,11l l    based on the 5000 simulated Gibbs samples given 

in Table 3, assuming a Gamma (6.4994; 0.7820) prior for  and normal N(0,106) priors for βl, l = 0, 
2, . . . , 11 (use of the empirical Bayesian method). Let us denote this model as “model 1”. From the 
results of Table 4, we observe very good predictions assuming “model 1”, that is, good inferences for 
the data from a saturated two-level design. In Table 4, we also have the predicted values considering 
other priors for2ߪand  normal N(0,106) priors for βl also considering the use of the Winbugs software 
(5,000 Gibbs samples after a “burn-in period” of size 5,000). Another possibility is to assume a uniform 
U(0, 1000) prior for  and  normal N(0,106) priors for . Let us denote this model as “model 2”. A 

third model denoted as “model 3”, is considered assuming a uniform U(0, 1000) prior for 2ߪ and N( l , 

0.01) priors for l , where  l  are the least squares estimates for βl, l = 0, 2, . . . , 11 (see section 3), that 

is, very informative priors for the regression parameters, but very non-informative prior for 2ߪ. From 
the results of Table 4, we observe that the predicted values assuming “model 2” and “model 3” are very 
different of the observed values, that is, we get  bad  predictions.  
 
Table 3  
Posterior summaries (use for empirical Bayesian methods) 

parameter posterior mean S.D 95% cred.interval 
β0 0.0694 0.8030 (- 1.5270 ; 1.6810) 
β1 2.0180 0.8290 (0.3696 ; 3.7140) 
β2 1.0270 0.8262 (- 0.6176 ; 2.6250) 
β3 1.5490 0.8387 (- 0.1182; 3.2030) 
β4 0.0291 0.8174 (- 1.5900 ; 1.6920) 
β5 0.1135 0.8308 (- 1.5220 ; 1.7120) 
β6 0.0488 0.8408 (- 1.6250 ; 1.6880) 
β7 0.0153 0.8458 (- 1.6420 ; 1.7150) 
β8 - 0.0729 0.8198 (- 1.7390 ; 1.5540) 
β9 - 0.0248 0.8231 (- 1.6570 ; 1.6090) 
β10 - 0.0320 0.8441 (- 1.7390 ; 1.5870) 
β11 0.02595 0.8245 (- 1.6180 ; 16650) 
σ2 0.14370 0.0701 (0.0634 ; 0.3151) 

 

2

2 l
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Table 4  
Observed and predicted values 

Observed Predicted “model 1” Predicted “model 2” Predicted “model 3” 
  1.7502   1.7810   - 4.3830 - 4.6797 
  2.7180   2.7940     6.7420 - 4.4129 
  0.4377   0.4249   - 0.5821 - 2.4942 
  4.4825   4.4770   11.7900 - 1.4384 
  1.4302   1.4160   11.7500 - 0.5429 
- 0.5429 - 0.4920 - 15.5700   0.4377 
  4.4129 - 4.5030 - 11.0800   0.8998 
- 1.4384 - 1.4640   12.0600   1.4302 
- 2.4942 - 2.4530   12.1200   1.7502 
  2.5350   2.5470     8.6140   2.5350 
  0.8998   0.9318 - 13.9600   2.7130 
- 4.6792 - 4.6270   10.1800   4.4825 

 
From these results, we observe that the use of the proposed empirical Bayesian method could be a 
powerful methodology for applications of saturated two-level designs. It is also important to point out 
that the obtained 95% credible intervals considering “model 1” (empirical Bayesian model) show that 
the factors 1 2,x x  and 3x are active in the experiment (in agreement to the true values of  ,  and   

given by the model 1 2 3  2 1 5E[Y] x x . x    used to simulate the data) and very accurate posterior 

means for β1,β2 and β3. 
 

7. Concluding Remarks 
 

The use of saturated factorial designs has been extensively used by industrial researchers and engineers 
as a powerful methodology for screening factors, especially in the presence of a great number of 
factors. Usually, we get some information about important factors on the response variable of interest 
using normal Q-Q plots. The use of these normal plots in the interpretation of factorial two-level 
experiments usually could be very subjective and in many cases where we are in trouble to find the 
active factors on the response of interest. The use of the empirical Bayesian approach introduced in this 
paper could be of great interest in applications. We also observed very good predictions and inferences 
for the parameters of interest using our proposed methodology. 
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