
 

* Corresponding author.   
E-mail:  sh.hosseini@phd.pnu.ac.ir (S. M. H. Hosseini) 
 
© 2013 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2013.03.004 
 

 

 
 

International Journal of Industrial Engineering Computations 4 (2013) 393–416 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
Some heuristics for the hybrid flow shop scheduling problem with setup and assembly operations 

 

 
Parviz Fattahia, Seyed Mohammad Hassan Hosseinib* and Fariborz Jolaic 
 
 
 
 
aDepartment of Industrial Engineering, Bu-Ali Sina University, Hamedan, Iran 
bDepartment of Industrial Engineering, Payame Noor University, Tehran, Iran 
cDepartment of Industrial Engineering, University of Tehran, Tehran, Iran  

C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received January 2 2013 
Received in revised format            
March 14   2013 
Accepted March 14 2013 
Available online  
March 15 2013 

 This paper presents a two-stage hybrid flow shop scheduling problem with setup and assembly 
operations. The proposed study of this paper considers one kind of product with a quantity of 
demand where each product is made by assembling a set of different parts. At first, the parts are 
manufactured in a two-stage hybrid flow-shop and then the parts are assembled into products on 
assembly stage. Setup operations are needed when a machine starts processing the parts or it 
changes items. The considered objective is minimizing the completion time of all products. Since 
the problem is classified as NP-hard class, a combinatorial algorithm is proposed. The proposed 
algorithm is a three-step procedure where we use heuristic, genetic algorithm (GA), simulated 
annealing (SA), NEH and Johnson’s algorithm. Three lower bounds are presented and improved 
to evaluate the proposed algorithms. An extensive computational experiment is conducted to 
compare the performances of the proposed algorithms. 
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1. Introduction  
 
One of the most prominent tasks in service and manufacturing industries is to schedule arriving jobs 
such that some criteria hold (Hentsch et al., 2011). In a manufacturing system, scheduling procedure 
determines an exact production time and a machine assignment for each operation. In assembly 
scheduling problem, there is normally a preassembly stage followed by an assembly stage. When the 
preassembly stage is required prior to machining stage, the parts are processed independently and then, 
they are assembled into production during assembly stage and one important criterion for this kind of 
problem is to minimize the maximum job completion time (Koulamas et al., 2001). There are many 
industry applications where we face this kind of modeling formulation and many people are also 
interested in doing research in this area (Lee et al., 1993; Allahverdi et al., 2009; Naderi-Beni et al., 
2012). Lee et al. (1993) described an application for a fire engine assembly plant while Potts et al. 
(2009) described an application in personal computer manufacturing industry. In particular, 
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manufacturing of almost all items may be modeled as a two-stage assembly scheduling problem 
including machining operations and assembly operations (Allahverdi et al., 2009).  
 
Lee et al. (1993) are believed to be first who contributed on 3-machine assembly-type flow shop 
scheduling problem significantly and since then this area of research has attracted many other 
researchers. However, generally speaking, scheduling for parts machining and planning for assembly 
operations have been independently studied (Yokoyama et al., 2005). The preassembly stage is 
considered as a two-stage hybrid flow shop in this study where we first complete a set of parts in hybrid 
flow shop and assemble them into a final product. Setup operation and setup time are needed when a 
machine start processing the parts or it changes items. The hybrid flow shop is a generalization of the 
classical flow shop in which there are parallel machines for some operations (Blazewicz et al., 2007; 
Pinedo 2008; Quadt et al., 2007; Ying et al., 2006). In this system, generally a set of n jobs must be 
processed in a series of m stages. Ruiz et al. (2010) reviewed the hybrid flow shop scheduling (HFS) 
problem and presented its characteristics completely. 
 
The HFS is sometimes referred to as a flexible flow shop, compound flow shop, multi-processor flow 
shop, or flow shop with parallel machines (Pinedo 2008; Quadt et al., 2007; Ruiz et al., 2010). This 
generally comprises three sub-problems: Batching, loading, and sequencing. Batching occurs only if 
setup costs or times are not negligible and several jobs of the same product type have to be produced. A 
batching sub-procedure considers a number of units, which must be produced, consecutively, i.e. batch-
size calculation. The majority of scheduling research considers setup times as negligible or part of 
processing time and only a few studies explicitly consider setup times among jobs (Quadt et al., 2007; 
Lin et al., 2012). The loading sub-problem refers to the allocation of operations to the parallel machines 
(Blazsik et al., 2008). After calculating batch-sizes, the loading of sub-problem is used to assign the 
batches to machines. Finally, the sequencing sub-problem is used to sequence the jobs assigned to a 
machine. 
 
Garey and Johnson (1979) showed that the HFS problem with makespan objective is NP-complete, and 
for years, a large numbers of heuristics and approximation algorithms have been proposed for various 
HFS configurations (Ying et al., 2006; Ribas et al., 2010; Tseng et al., 2008; Jin et al., 2006). Gupta 
(1988) showed that HFS is limited to two processing stages, one stage contains at least two machines 
and the other one includes a single machine and the problem is NP-hard (Khalouli et al., 2010; Yang 
2010). Therefore, it is obvious that the considered problem of this paper, with a more complex 
structure, is NP-hard.  
 
There are two major types of studies in which both machining operations and assembly operations are 
treated: type I in which more complex models are built and priorities dispatching rules or heuristic 
methods are presented. Type II in which simpler models are considered and strict solution methods or 
theory associated with them is proposed (Yokoyama 2008). Lee et al. (1993) studied assembly-type 
flow-shop scheduling problem. They studied a two-stage assembly flow-shop scheduling problem with 
makespan objective function by assuming that each product is assembled in two types of parts. The first 
component of each product must be processed on the first machine and the second component is 
processed on the second machine. Finally, the third machine assembles the two parts into a product. 
They proved that the problem is strongly NP-complete and identified several special cases of the 
problem, which could be solved in polynomial time and suggested a branch and bound solution and 
also three heuristics (Lee et al., 1993).  
 
Potts et al. (1995) extended the problem for the case of multiple fabrication machines in which there 
are m machines and one machine at the first and the second stages, respectively. They developed a 
heuristic algorithm with a worst-case ratio bound to minimize the makespan. Hariri and Potts (1997) 
also studied the same problem as Potts et al. (1995) proposed a branch and bound algorithm. Cheng and 
Wang (1999) considered minimization of makespan for a two-machine flow-shop scheduling with a 
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special structure,  developed several properties of an optimal solution, and obtained optimal schedules 
for some special cases. In their model, the first machine produces two types of parts, unique 
components and common components. The unique components are processed individually, the 
common components are processed in batches, and a setup is required to form each batch. The second 
machine assembles components into products. 
 
Sung et al. (2008) studied a 2-stage assembly scheduling problem subject to component available time 
constraint where the objective function is minimization of makespan. In their problem, there are n jobs 
(products), each product consists of two components. One of the two components is outsourced subject 
to job-dependent lead-time and a single machine fabricates the other one. They showed that makespan 
minimization is equivalent to minimization of idle time of assembly (second) stage and the problem is 
NP-complete in the strong sense. Hence, some solution properties are characterized based on which 
three heuristic algorithms are derived. 
 
Yokoyama (2001) studied a hybrid scheduling for the production system including parts machining and 
assembly operations. In his study, several different products are ordered to be produced, parts for the 
products are manufactured in a flow shop, and each product is produced by hierarchical assembly 
operations from the parts. The parts are assembled into the first sub-assembly, and several other parts 
and the first sub-assembly are assembled into the second sub-assembly. These assembly operations are 
continued until the last sub-assembly that is the final product is obtained. In his model, the objective is 
minimum weighted sum of completion time and decision variables are the sequence of products to be 
assembled and the sequence of parts to be processed. He introduced a branch and bound with two lower 
bounds, which can solve problems for up to 10 products with 15 parts. 
 
Sun et al. (2003) studied 3-machine, assembly-type flow shop scheduling. They proposed some 
heuristics based on the basic idea of Johnson’s algorithm and Gupta’s idea. The heuristic algorithms 
can solve all of the worst cases, which cannot be solved by the existing heuristic. Yokoyama and 
Santos (2005) considered flow-shop scheduling with assembly operations. In their models, several 
different products are ordered. Each part for the products is processed on machine ܯଵ (the first stage) 
and then processed on machine ܯଶ (the second stage). Each product is processed (e.g., joined) with the 
parts by one assembly operation on assembly stage ܯ (the third stage). The objective function is the 
same as Yokoyama (2001). They developed a solution procedure to obtain an ߝ_optimal solution based 
on a branch-and-bound method.  
 
Allahverdi and Al-Anzi (2009) studied a two-stage assembly scheduling problem where there are m 
machines at the first stage and an assembly machine at the second stage. In their model, the setup times 
are treated as separate from processing times. They presented a dominance relationship and proposed 
three heuristics including a hybrid tabu search, a self-adaptive differential evolution (SDE), and a new 
self-adaptive differential evolution (NSDE). The results indicated that the NSDE performed the best 
heuristic for the problem even if setup times were ignored. 
 
Al-Anzi and Allahverdi (2009) also considered the same problem as Allahverdi et al. (2009) where 
setup times were ignored. They proposed some heuristics based on tabu search (Tabu), particle swarm 
optimization (PSO), and self-adaptive differential evolution (SDE) along with the earliest due date 
(EDD) and Johnson (JNS) heuristics to solve the problem. Computational experiment revealed that 
both PSO and SDE performed better than tabu. Moreover, it was statistically shown that PSO 
performed better than SDE. 
  
Fttahi et al. (2012) studied a HFS scheduling problem followed by an assembly stage. They studied this 
problem in condition that a number of products of different kinds are produced and for each kind just 
one product is needed and hence the setup time is ignored. They presented a mathematical model for 
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this problem and a series of heuristic algorithms based on the basic idea of Johnson’s algorithm. The 
result indicated that the proposed algorithms had good efficiency for solving the considered problems. 
 
To the best of our knowledge, there has been no study on assembly scheduling problem with hybrid 
flow shop for machining and setup time for the parts. Setup includes work to prepare the machine, 
process, or bench for product parts or the cycle. This includes obtaining tools, positioning work in 
process material; return tooling, cleanup, setting the required jigs and fixtures, adjusting tools, and 
inspecting material. Allahverdi et al. (1999) reviewed scheduling literature involving setup 
considerations. For a separable setup, two problem types exist. In the first type, setup depends only on 
the job to be processed; hence it is called sequence-independent. In the second, setup depends on both 
the job to be processed and the immediately preceding job; hence it is called sequence-dependent. 
Furthermore, treating setup time separately from processing time allows operations to be performed 
simultaneously and hence improves performance. This concept is inherent in recent production 
management philosophies and techniques such as just-in-time (JIT), optimized production technology 
(OPT), group technology (GT), cellular manufacturing (CM), and time-based competition (Allahverdi 
et al., 1999). 
 
The rest of this paper is organized as follows: In section 2, the problem is described completely and it is 
clarified with a numerical example. The solving approach and procedure consist of the solution 
methodology, the heuristics algorithms based on GA, and SA will be expression in section 3. Three 
lower bounds are presented and improved in section 4. Design of problems, computational experiment, 
results, and the performance evaluation of the proposed algorithms are given in section 5. Finally, in 
section 6, concluding remarks and summary of the work are given and direction for the future research 
are offered. 

2. Problem description 

In this paper, an assembly production system including machining operations and assembly operations 
is studied. In this system, one kind of product with a quantity of demand is considered. Each product is 
made by assembling a set of several different parts. At first, the parts are manufactured in a hybrid 
flow-shop consisting of a single machines in stage 1 and ݉ machines in stage 2. Setup operation and 
setup time are needed when a machine start processing the parts or it changes items. After 
manufacturing the parts, they are assembled into the products on an assembly stage. The assembly 
operation cannot be started for a product until the set of parts are completed in machining operations 
and the objective is to minimize the completion time of all products. 
 
Machining, setup and assembly operations are performed based on blocking approach. Each block 
consists of ‘‘the machining operations and the setup operations for the parts of one or several 
products’’ and ‘‘the assembly operation(s) to assemble those parts into product(s)’’. Therefore, the 
concept of a block is quite different from a lot. The parts of the same item in a block are processed, 
successively. In this problem, there are three decision variables as follow: 
 

 The number of blocks 
 Block sizes that define the number of parts set in each block 
 Sequencing the parts 

 
Since there is only one machine in stage 1, there is no loading problem in this stage. In stage 2, every 
machine, which becomes idle sooner, will start new arrival part. One of the applications of this problem 
is body making of car manufacturing industrials. As shown in Fig. 1, a car making manufactory 
generally contains of the production engine, chassis and body. The body making includes press shop, 
assembly and painting. The press shop, which produces some parts such as doors and roofs has usually 
a flow shop or hybrid flow shop format. 
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Fig. 1. A car making manufactory in generally 
 

Fig. 2 shows a schematic view of an assembly production system including machining operations 
followed by an assembly section. The inputs contain row material, parts or unfinished products are 
processed on hybrid flow shop stage. When the set of parts for a product complete, they joined at 
assembly stage. Typically, buffers are located among stages to store intermediate products (Quadt et 
al., 2007) and it is assumed that there is no limited in buffer storages. The number of machines at 
hybrid flow shop is 1 and m machines at first and second stage respectively. 
 

 
Fig. 2. A schematic view of the considered problem 

2.1. Notations 

The following notations are considered for this problem: 
H The number of products, 
j Item index of part (j = 1, 2, . . . ,/J/), 
J The set of item indices of parts, 
l Stage index (l =1,2), S୪୨ Setup time of a part of item j on stage l (l=1, 2), P୪୨ Processing time of a part of item j in stage l (l=1, 2), 
m Number of parallel machine in stage 2, 
k Machine index in stage 2, A୦ Assembly time of a product, C୦  Completion time of the hth product (h =1, 2, …, H ). 
 
Also decision variables of the problem are as follow: 
 

B The total number of blocks (parameter b will be item index of block), ψୠ Block size, that is, the number of products included in the bth block, 
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398Pୠ Sequence of item indices of parts in the bth block (we represent the sequence as a vector whose 
elements are item indices of parts) 

 
The problem is to decide above three decision variables, and the objective function of problem is 
expressed as:  Z = max(C୦) 
2.2. Assumptions 

Basic assumptions of this paper are provided as follows, 
 A number of a kind product is produced. A product is made by assembling a set of several 

different parts. 
 All parts are available at time zero to process. 
 The parts are manufactured in a two-stage hybrid flow-shop consisting of 1 machine in stage 1 

and m uniform machines in stage 2.  
 Setup operation and setup time are needed when a machine starts processing the parts or it 

changes items. 
 Machining operations, setup operations and assembly operations are partitioned into several 

blocks. Each block consists of ‘‘the machining operations and the setup operations for the parts 
for one or several products’’ and ‘‘the assembly operation to assemble those parts into 
products’’. The parts of the same item in a block are processed successively. 

 Sequencing of the parts is the same in all blocks. 
 Each kind of part in each block is processed only by one machine in stage 2 of hybrid flow 

shop. 
 Assembly operation for a product will not start until the set parts are completed. 
 When assembly operation of a product is started, it doesn't stop until completed. 
 There is no limited in buffer storages. 

 

2.3. A numerical example 

In order to clarify the problem, consider a simple numerical example as Table 1. Assume there is one 
machine in stage 1 and two machines in stage 2 in the hybrid flow shop. In addition, there is an 
assembly stage at the end of production system. Total number of products is ܪ = 4 and the number of 
items of parts is /J/ = 3. At first, each part is processed in the hybrid flow shop. Then, the three parts are 
assembled into a product on assembly stage. The data for processing time of machining operation, 
assembly and setup time are given in Table 1.  
 
Four solutions are shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 for this problem. As shown in Fig. 3, the 
operations are partitioned into four blocks and each block consists of the machining operations, the 
setup operations and the assembly operations for one products. The completion time of products is 54 
in this plan. In Fig. 4, the operations are partitioned into two blocks. Each block consists of the 
machining operations, the setup operations and the assembly operations for two products. The 
completion time of products is 50 in this plan. Fig. 5 shows another schedule of this problem. 
According to this schedule, the operations are partitioned into two blocks. The first block consists of 
the machining operations, the setup operations and the assembly operations for three products. In 
addition, the second block consists of the machining operations, the setup operations and the assembly 
operations for one product. The completion time of products is 49 in this plan. Fig. 6 shows the best 
schedule in which the blocks are the same as Fig. 5 but the scheduling of parts in blocks are different 
from Fig. 5. The completion time of products is 44 in this plan. The yellow color in Table 1 and Figs. 
3-6 denote setup operations, the gray cells denote assembly operations and the other colors denote 
process operations of the parts. 
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Table 1  
Processing time of machining and assembly and setup time 

Operation and 
stages 

j=1 j=2 j=3 

Setup time Process time Setup time Process time Setup time Process time

Hybrid 
flow shop 

Stage 1 2 4 1 1 1 2 

Stage 2 1 2 2 3 2 4 

Assembly 6 

 

 
Fig. 3. A schedule for numerical example with C max = 54 

 

 
Fig. 4. A schedule of the numerical example with C max = 50 

 

 
Fig. 5. A schedule for numerical example with C max = 49 
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Fig. 6. The best schedule for numerical example with C max = 44 

 
Table 2  
Four schedules of the numerical example 

Parameters 
 Figures 
 3  4  5  6 

Total number of blocks (B)  4  2  2  2 
Index of block (b)  1 2 3 4  1 2  1 2  1 2 
Block size (߰)  1 1 1 1  2 2  3 1  3 1 
Sequence of parts ( ܲ)  1-2-3  1-2-3  1-2-3  2-3-1 
The amount of Z  54  50  49  44 
 
The results of Figs. 3 to 6 indicate that we can improve the objective function of this problem by 
changing three factors. 1. The number of blocks, 2.The size of blocks, and 3.The sequence of parts in 
every block. In Fig. 4 and Fig. 5, there are two blocks and so the objective function is better than Fig. 3 
in which there are four blocks. Both Fig. 4 and Fig. 5 have two blocks, but the schedule of Fig. 5 is 
better because of the sizes of blocks. Finally, Fig. 6 with Z=44 is the best. The difference between Fig. 
5 and Fig. 6 is in the sequence of the parts. These comparisons are performed under the condition that 
the sequence of the parts are the same in all blocks and also each block is processed only by one 
machine in stage 2 of hybrid flow shop.  
 
The solutions show that in Fig. 6, the completion time has been improved more than 18.5% compared 
with Fig. 3. In addition, the idle time of machines in hybrid flow shop has been decreased more than 
27.7% and the idle time of assembly stage has been decreased more than 33.3%. 

3. The proposed solving approach and procedure 

A taxonomy for flexible flow shop scheduling procedures is presented by Daniel et al. (2007), which is 
the first segmentation between optimal and heuristic procedures. The majority of optimal procedures 
for scheduling flexible flow lines are based on Branch & Bound algorithm. The heuristic algorithms are 
divided into holistic and decomposition approaches. In holistic approach, the complete scheduling 
problem is considered in an integrated and in decomposition approach; the overall scheduling problem 
is divided into segments, which are considered, consecutively. While the decomposition allows a 
simplification of the overall problem, it neglects the interdependencies among different segments. 
Therefore, decomposition approaches require strategies to effectively handle these interdependencies. 
 
As mentioned before, the considered problem is strongly NP-hard and the computational time increases 
exponentially as the problem size increases, and hence, it is unlikely to find an optimal solution in 
reasonable amount of time. Therefore, some heuristics and metaheuristics are developed and justified in 
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holistic approach for the considered problem. Metaheuristic search methods include local search or 
neighborhood search algorithms, which are iterative procedures and start with an initial solution and 
browse through the search space, picking up better solutions on the way, which could give good, or 
eventually optimal, solutions (Schneider 2011). Therefore, this study considered the application of a 
genetic algorithm (GA), a simulated annealing (SA) and a heuristic algorithm to solve the considered 
problem with minimization of the makespan. Both GA and SA have been successfully used in solving 
scheduling problems (Gaafar et al., 2005). 

3.1. Solution methodology classification: N/S/Q 

The main decision variables of the considered problem are the number of blocks, the size of each block 
and sequence of the parts considered fixed in all blocks. The assignment parts to machines are ignored 
because in stage 1, there is only one machine and in stage 2, it is assumed that the first idle machine 
will process the first part that arrives from stage 1. The notation ܰ/ܵ/ܳ	of Kumar et al. (2000) is 
modified for the considered problem. This notation is used throughout this paper to indicate the 
decision methodology used in each of three variables where:  
 
N is method used for deciding the number of blocks, 
S is method used for sizing each block, 
Q is method used for sequencing the parts in each block. 
 
For example, Fixed/SA/NEH indicates that there are fixed numbers of blocks, SA is used to obtain the 
size of blocks, and lastly, the sequence of the parts is determined by the NEH algorithm.  As regards 
the size of blocks is dependent on the number of blocks, the size of blocks has to be determined after 
deciding the number of blocks. Therefore, a sweep method is used to obtain the best amount for 
number of blocks. Figure 7 shows an overview of solution methodology and its steps are explained in 
this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. An overview of the proposed solution methodology 
 

Hence the SH heuristic algorithm described below is used to obtain the initial value for the number of 
blocks and improved it. 
 
 

Obtain the number of blocks 
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3.2. SH heuristic algorithm for determining the number of blocks 

In order to determine the number of blocks, a new heuristic algorithm is proposed. This algorithm 
named SH heuristic algorithm, scan the scope of the possible number of blocks with search and test less 
than 15 percent of total possible number. This algorithm is described step by step as below: 
 

Step1: consider ܤଵ = 1 and ܤଶ =  are two amounts for number of blocks and calculate the ܪ
makespan according them that is called ܯଵand ܯଶ respectively. 

Step 2:  While (round	|ܤଵ − (|ଶܤ > 1 do the following. 
If ܯଶ ≥  ଵܯ
ଶܤ  = ଵܤ) + 3 × (ଶܤ 4⁄  

  Calculate the new amounts of ܯଶ  
Else 

ଵܤ   = (3 × ଵܤ + (ଶܤ 4⁄  
  Calculate the new amounts of ܯଵ 
 End 

Step 3:  Return the best number for blocks ൫ܤ)݊݅ܯଵ,  .ଶ)൯ܤ	
 
The initial values for the number of blocks are 1 and H. It is clear that when we have only one block, 
that block will contain all parts, which must be processed one by one in two-stage of hybrid flow shop. 
On the other hand, when the number of blocks is H, each block contains a set of parts that is needed for 
one product. It is clear that the size of each block will be 1. Each time, SH algorithm is run and finds a 
new number for blocks, two algorithms based on SA and GA are used. The implementation is 
illustrated in section 3.3 to determine the size of each block and after that two algorithms based on 
NEH and Johnson is used as it is stated in section 3.4 for sequencing the parts for all blocks. 
 
3.3 The proposed algorithms for sizing each block 
 
In order to determine the size of each block, we propose two algorithms based on SA and GA.  
 
3.3.1 The proposed SA algorithm 
 
Simulated annealing (SA) is a neighborhood search technique and it has produced good results for 
combinatorial problems. A standard SA procedure begins by generating an initial solution, randomly. 
At each stage, the new solution taken from the neighborhood of the current solution is accepted as the 
new current solution if it has a lower or equal cost; if it has a higher cost, it is accepted with a 
probability that decreases as the difference in the costs increases and as the temperature of the method 
decreases. This temperature, which is simply a positive number, is periodically reduced by a 
temperature scheme, so that it moves gradually from a relatively high value to near zero as the method 
progresses. Thus, at the start of SA, most deteriorating moves are accepted, but at the end only 
ameliorating ones are likely to be accepted. The method converges to a local optimum as the 
temperature approaches zero, but because SA has performed many perturbations at higher 
temperatures, which have pushed the search path into new areas, a better local optimum solution should 
hopefully be reached. In this paper, the entire SA procedure is terminated when the temperature reaches 
a pre-specified value T. In this section, a simulated annealing algorithm is presented to find good 
solutions for the block sizing problem. Therefore, we use a matrix Sଵ× to represent the size of blocks. 
The members of this matrix are ψଵ, ψଶ, ψଷ, … , ψ with two below conditions: ψୠ = H
ୠୀଵ  ψୠ ≥ 1			for	b = 1, 2, 3, … , B 
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The initial block sizing is performed with a random operator that assigns a size to each block 
considering two above conditions. 
 
Assignment algorithm 

Step 1: Initialization 
Step 1.1: Obtain an initial block sizing (ܨ and ܨ∗). 
Step 1.2: Initiate the initial temperature ( ܶ, ܶ = ܶ), final temperature ( ܶ), cooling 
rate (r), and iteration number in each temperature (L). 

Step 2: While not yet frozen ( ܶ ≻ ܶ), do the following. 
Step 2.1: Perform the following loop L times. 

Step 2.1.1: Done neighborhood search algorithm and select a neighbor ܨᇲof ܨ. 
Step 2.1.2: Compute △= ܴிᇲ − ܴி (done the computation of makespan) 

Step 2.1.3: If  △≤ 0 Then ܨ =  .ᇲܨ
Compute △= ܴி − ܴி∗. 
If  △< 0 set ܨ∗ =  .ܨ

Step 2.1.4: If  △> 0 select a random variable ܲ ∽ ܷ(0,1). 
If  ݁ି△ ்⁄ > ܲ set ܨ =  ᇲܨ

Step 2.2: Set ܶ = ݎ × ܶ 
Step 3: Return the best solution found for F∗. 

 
Neighborhood search algorithm 
 
A neighborhood search is proposed in this section. This algorithm has two steps as follow: 
 
Step 1: select three blocks from B exist blocks. We call these three blocks as ߙ	, ,	ߚ  ߛ

  
… 

 
…  … 

 
…  

 
Step 2: change the size of blocks ߙ	, ,	ߚ  :and define the new size as below ߛ
 

1. Select ߰ఈᇲ 1 ≤ ߰ఈᇲ ≤ ߰ఈ + ߰ఉ + ߰ఊ − 2 
2. Select ߰ఉᇲ 1 ≤ ߰ఉᇲ ≤ ߰ఈ + ߰ఉ + ߰ఊ − ߰ఈᇲ − 1 
3. determine ߰ఊᇲ ߰ఊᇲ = ߰ఈ + ߰ఉ + ߰ఊ − ߰ఈᇲ − ߰ఉᇲ 

 
Now we have new three new blocks that different with their old only in size.   

  
… 

 
…  … 

 
…  

  
In this neighborhood structure, all blocks have a chance to be selected and changed. Also all neighbors 
are placed in a feasible region. Through some experiments the best parameter for SA were obtained as 
follow: 
 

 The initial temperature ܶ = 1000 
 The final temperature ܶ = 10 
 The cooling rate ݎ = 0.95 
 The number of iteration in each temperature ܮ = 25 

 
 

 2ߚ  1 ߙ ߛ  ܤ

 ᇱ2ߚ  ᇱ 1ߙ ᇱߛ  ܤ
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3.3.2 The proposed GA algorithm 
 
A GA (Holland, 1975) is a search technique that imitates the natural selection and biological 
evolutionary process. GA has been used in a wide variety of applications, particularly in combinatorial 
optimization problems and they were proved to be able to provide near optimal solutions in reasonable 
time (Anandaraman, 2011; Luo et al., 2011; Chakrabortty et al., 2013). A GA starts with a population 
of randomly generated candidate solutions (called chromosomes). A chromosome is represented by a 
string of numbers called genes. Each chromosome in the population is evaluated according to some 
fitness measure, which reflects the objective function value and the satisfaction of problem constraints. 
The better the fitness value, the more chances are given for the individual to be selected as a parent. 
New chromosomes are built of a reproduction operator that usually consists of crossover and mutation 
procedures. The crossover procedure produces the offspring from two parent individuals by combining 
and exchanging their elements. Certain pairs of chromosomes are selected on the basis of their fitness. 
Each of these pairs combines to produce new chromosomes (offspring) and some of the offspring are 
randomly modified. The mutation procedure adds small random changes to a chromosome (Maniezzo 
et al., 2009). 
 
A new population is then formed replacing some of the original population by an identical number of 
offspring and the process is repeated until a stopping criterion is met. 
 
In this paper, detail of the proposed GA with necessary illustrations is considered as follow. Each 
solution (chromosome) is represented as a vector 1 × B	whose elements (genes) are item indices the 
size of bth block. An initial population of chromosomes is randomly generated. After some 
experiments, the best population size is obtained 20. The evaluation parameter f(c) is the value of 
objective function. This value is used to measure the fitness of a chromosome. For each partial 
(chromosome), block sizing is constructed and the makespan of jobs is calculated. The roulette wheel 
selection and tournament selection without replacement are used to select two chromosomes for 
crossover. Marimuthu et al. (2008) illustrated this selection method in a genetic algorithm for 
scheduling m-machine flow shop with lot streaming. In this paper, initially, the probability of choosing 
each chromosome p(c) is estimated as follows, (ܿ) = 	 ݂∗(ܿ)∑ ݂∗(ܿ)_௦௭ୀଵ 	 where ݂∗(ܿ) = 1 ݂(ܿ)⁄  

Then, the cumulative probability ܿ(ܿ) for all chromosomes is found out. 

c(ܿ) = ∑ ୀଵ(ܿ)  

Then the random number ‘r’ between 0 and 1 is spun and a chromosome ‘c’ is selected, satisfying the 

following condition: 

c(ܿ − 1) ≤ ݎ < c(ܿ) 
This selection process is repeated as many times as the number of parents. The two-point crossover 
operator is applied to each pair of parent chromosomes with a probability of pୡ (probability of 
crossover). From sensitivity analysis, probability of crossover is arrived as 0.85. According to the 
results of experiments, two kinds of mutations are used in this algorithm. According to the first one, the 
gene being considered is removed from its position and put into another randomly chosen position of 
the same chromosome with a probability p୫ 2ൗ , where p୫ is mutation probability. According to the 
second one, two genes (blocks) α	, β are chosen randomly from each chromosome with a probability p୫ 2ൗ  and their sizes are changed as below: 1 ≤ ߰ఈᇲ ≤ ߰ఈ + ߰ఉ − 1 , 
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405߰ఉᇲ = ߰ఈ + ߰ఉ − ߰ఈᇲ . 
For the considered problem, this mutations scheme work better than other mutations methods. The 
probability of mutation p୫ is arrived as 0.20 through trials. For each chromosome, a random number is 
generated (0 < ݎ < 1). If the random number is less than 0.1 the chromosome is selected for mutation 
kind 1 and if the random number is between 0.1 and 0.2, the chromosome is selected for the second 
type of mutation. Seventy percent of chromosomes are selected from the present population and thirty 
percent of chromosomes are chosen from children (offspring) as new population and generation. These 
chromosomes are selected on the basis of their fitness (minimum evaluation makespan). Finally, the 
stopping criterion is based on the number of iteration without improvement that is considered up to 15 
iterations. Fig. 8 shows a view of the proposed GA for determination the size of blocks. 

3.4. NEH and Johnson’s algorithm for sequencing the parts in each block 

Two methods are used for sequencing the parts and it is supposed that the sequence of parts is the same 
in all blocks. One method is Johnson’s algorithm and the other method is NEH. Based on Johnson’s 
algorithm, the parts are sorted into two sets. Set U sorts the parts whose processing time on stage 1 is 
less than stage 2 in non-decreasing in Pଵ୨ and set V sorts the parts whose processing time on stage 1 is 
not less than stage 2 in non-increasing order in Pଶ୨. The sequence of the parts is the set of U followed 
by V [8, 28]. According to algorithm NEH (Nawaz et al., 1983), the parts are sorted in non-increasing 
order of processing time. Table 3 summarizes these four heuristics, 
  
Table 3  
Four algorithms with their parameters 

Algorithm 	ܪ  Determination  
the number of blocks 

Determination  
the size of blocks 

Scheduling the partsܪଵ	(SH/SA/Johnson) SH SA Johnson ܪଶ (SH/SA/NEH) SH SA NEH ܪଷ (SH/GA/ Johnson) SH GA Johnson ܪସ	(SH/GA/NEH) SH GA NEH 
 

4. Three proposed lower bounds 

In order to evaluate the heuristic solutions, three lower bounds of the makespan are introduced and 
improved for the considered problem. These lower bounds are improved in three conditions: a. when 
assembly stage is bottleneck, b. when the first stage of hybrid flow shop is bottleneck and c. when the 
second stage of hybrid flow shop is bottleneck. It is known that the SPT rule minimizes the total 
completion time in the case of parallel machines (Pinedo, 2002; Kadipasaoglu, 1997; Walter, 2011). 
Thus in order to present and improving the lower bounds, the SPT rule is used in this section. 

4.1. When the first stage of hybrid flow shop is bottleneck 

In case that the amount of processing time and/or set up time on the first stage is more than the second 
and assembly stage, the first stage will be bottleneck. In this condition, the second and assembly stage 
will always be waiting and the majority of makespan is depended on the first stage. Thus, the SPT that 
is computed as (1) is a good lower bound for problem in this case. ܤܮଵ = ଵܵ//

ୀଵ + ܪ ∗ ( ଵܲ//
ୀଵ ) + ݆݉݅݊ ( ଶܲ) +  (1)ܣ
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Fig. 8. GA model for determination the size of blocks 

4.2. When the second stage of hybrid flow shop is bottleneck 

Like before, when the second stage is bottleneck, the jobs will always have idle times to start at this 
stage (exception the first parts that is assign in primary positions) and assembly stage will always be 
waiting. In this condition, the majority of makespan is depended on the second stage of the hybrid flow 
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shop. Thus, the SPT that is computed as Eq. (2) is a good lower bound for the considered problem in 
this case. ܤܮଶ = ݔܽ݉ ൝ቆு∗ቀ∑ మೕ//ೕసభ ቁା∑ ௌమೕ//ೕసభ ቇ , ݆݉݅݊ ൫ ଵܵ + ଵܲ൯ + ு∗∑ మೕ//ೕసభ ൩ൡ + . (2)ܣ

4.3. When the assembly stage is bottleneck 

When the assembly stage is bottleneck, the total completion time at the assembly stage can be 
considered as a lower bound. In other words, the processing time of the pre-assembly stage is not 
considered, and the total completion time at the assembly stage is always no larger than the total 
completion time of any feasible schedule (Sung et al., 2008). This time is shown as Eq. (3). 
 ܣு
ୀଵ = ܪ ∗  (3)ܣ

 
It is clear that there is always an idle time in the assembly stage to ready the first set of parts in 
preassembly stage. Therefore, in order to improve the lower bound by considering this idle time, a 
modified SPT rule is proposed. In other word, the minimum idle time for assembly stage is equal to 
minimum completion time of a set of parts for one product. So, this shortest process time can be 
computed as Eqs. (4-6) whichever is maximum dependent on condition: 
 

 
Therefore, the third lower bound will be obtained by adding the assembly time of all products to the 
maximum of  ܵܲ ܶ as below: ܤܮଷ = ሼܵܲݔܽ݉ ଵܶ, ܵܲ ଶܶ, ܵܲ ଷܶሽ + ܪ ∗  (7)ܣ

If the assembly stage is bottleneck, then the parts always have some idle times to start at the assembly 
stage (exception the set of parts of the first product) and assembly stage will be always busy during 
flow time after completion all parts of the product on the first position. So, the total completion time of 
optimum solution can be close to the ܤܮଷ. Therefore, three lower bounds ܤܮଵ, ܤܮଶ, and ܤܮଷ are used to 
cover all conditions and various process times and assembly times and the final lower bound (LB) will 
be defined as (8): ܤܮ = ,ଵܤܮሼݔܽ݉ ,ଶܤܮ ଷሽ (8)ܤܮ

5. Computational experiment and results 

In this section, the computational experiment is carried out in order to evaluate the performance of the 
proposed heuristic algorithms. The tests have been performed on various condition of problem. 

ܵܲ ଵܶ = ∑ ଵܵ//ୀଵ + ∑ ଵܲ//ୀଵ + ݆݉݅݊ ( ଶܲ)  (4)

ܵܲ ଶܶ = ݆ݔܽ݉ ቀ݉ܽݔ ቀ൫ ଵܵ + ଵܲ൯, ܵଶቁ + ଶܲቁ  (5)

ܵܲ ଷܶ = ݔܽ݉ ൭݆݉݅݊ ൫ ଵܵ + ଵܲ൯ + ∑ మೕ//ೕసభ ൱ , ∑ ௌమೕ//ೕసభ ା∑ మೕ//ೕసభ ൩  (6)
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Therefore, first, the problems are designed and then comparison results of the proposed heuristic 
algorithms are presented. The present algorithms and lower bounds are coded in MATLAB 7/10/0/499 
(R2010a). The experiments are executed on a Pc with a 2.0GHz Intel Core 2 Duo processor and 1GB of 
RAM memory. 

5.1. Design of problems 

In order to evaluate the proposed algorithms, 36 problems are designed in various conditions. For this, 
the following parameters are considered to generate randomly the test problems: 
 
Numbers of jobs (H): 50, 100, 200, 500 
Setup time of stage 1 (Sଵ୨): generated from the discrete uniform distribution with range [50, 150]. 
Setup time of stage 2 (ܵଶ): generated from the discrete uniform distribution with range [100, 200]. 
Processing times of parts on stage 1 ( ଵܲ): generated from the discrete uniform distribution with range 
[0, 100]. 
Processing times of parts on stage 2 ( ଶܲ): generated from the discrete uniform distribution with range 
[200, 400]. 
Assembly times of a product (ܣ): generated from the discrete uniform distribution with range [500, 
700]. 
Number of a set parts (/J/): generated from the discrete uniform distribution with three ranges [3, 7], [7, 
13], [10, 20]. 
Number of machine in second stage of HFS (m): 3, 5, 7 
 
The distributions of parameters provide a good scope for problems and heuristic algorithms can be 
tested and evaluated under various conditions. According to the above parameters, 36 types of 
problems are generated and these problems are grouped into three classes. Class A contains the 
problems in which fabrication stage (hybrid flow shop) is bottleneck. Class B presents problems in 
which assembly stage is a bottleneck workstation. In problems of class C, there is no bottleneck and the 
setup and process time in stages 1 and 2 of hybrid flow shop are approximately equal to assembly 
times. These three classes of problems and other information about generated problems are considered 
and they demonstrated in Table 4. 

5.2. Comparisons of results 

This section presents the results of the heuristic methods described in Section 3. Each problem of Table 
4 has been run ten times by each algorithm. Then computational experiments are carried out to evaluate 
the effectiveness of the proposed heuristic algorithms. In order to evaluate the performance of heuristic 
algorithms, we use the lower bounds of C୫ୟ୶ derived in Section 4. Based on the lower bounds of ܥ௫, 
the percentage of deviation is defined as below: 
ܦ%	  = ሼሾܥ௫(ܪ) − ሿܤܮ ⁄ܤܮ ሽ ∗ %100,	
where ܥ௫(ܪ) denotes the makespan of the schedule generated by heuristic algorithm ܪ, for i= 1, 2, 
3, 4 as described in section 3. Also ܤܮ presents the maximum of ܤܮ in each problem as described in 
section 4. The average results obtained of ten runs for each problem is presented in Table 6 of each 
problem and algorithm. The performances of each algorithm are presented in Fig. 9 and Table 5. As we 
can observe in panel I of Fig. 9, algorithm ܪଶ has the best performance with 2.82 deviation percentage 
from lower bound. That is GA is better than SA in sizing the blocks and the Johnson’s algorithm is 
better than NEH in sequencing the parts for two stages of hybrid flow shop. Panel II shows that this 
rule is current for all three classes of problems, unless in class C. In class C of problem where there is a 
balance condition in production system, algorithm ܪଵ  that uses GA for sizing the blocks and NEH for 
sequencing the parts has a better performance than algorithm ܪସ that uses SA for sizing the blocks and 
Johnson’s algorithm for sequencing the parts. Performances of four algorithms are presented in Table 
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5. Table 5 shows that the performance of algorithms is kept during changing the size of problems. As 
seen from the Fig. 10, ܤܮଷ depends on assembly time and it is constant approximately because the 
assembly time is supposed to be fixed in uniform distribution of range [500 , 700]. Two lower bounds ܤܮଵ and ܤܮଶ depend on process time of the first and the second stage of hybrid flow shop, respectively. 
In other word, the main amount of ܤܮଵ depends on process time of parts in the first stage and the main 
amount of ܤܮଶ depends on process time of parts in the second stage. It is clear that when the hybrid 
flow shop (fabrication stage) is bottleneck, ܤܮଵ or ܤܮଶ will be effective lower bound (class A). When 
assembly stage is bottleneck, the ܤܮଷ is effective lower bound (class B). Finally, in balance condition, 
three lower bounds are equal approximately. 
 

  
 

Table 4  
Four generated classes of test problems 

Problem  H /J/ m ଵܵ ଵܲ ܵଶ ଶܲ ܣ Class

H-A1 50 [3 , 7] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A2 50 [3 , 7] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A3 50 [3 , 7] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A4 50 [7 , 13] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A5 50 [7 , 13] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A6 50 [7 , 13] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A7 50 [10 , 20] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A8 50 [10 , 20] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A9 50 [10 , 20] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A10 100 [3 , 7] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A11 100 [3 , 7] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A12 100 [3 , 7] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A13 100 [7 , 13] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A14 100 [7 , 13] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A15 100 [7 , 13] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A16 100 [10 , 20] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A17 100 [10 , 20] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A18 100 [10 , 20] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A19 200 [3 , 7] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A20 200 [3 , 7] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A21 200 [3 , 7] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A22 200 [7 , 13] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A23 200 [7 , 13] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A24 200 [7 , 13] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A25 200 [10 , 20] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A26 200 [10 , 20] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A27 200 [10 , 20] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A28 500 [3 , 7] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A29 500 [3 , 7] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A30 500 [3 , 7] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] B 
H-A31 500 [7 , 13] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A32 500 [7 , 13] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A33 500 [7 , 13] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] C 
H-A34 500 [10 , 20] 3 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A35 500 [10 , 20] 5 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
H-A36 500 [10 , 20] 7 [50, 150] [0, 100] [100, 200] [200, 400] [500, 700] A 
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Panel I. Performance of algorithms in totality 

 

 
Panel II. Performance of algorithms in three classes of problems 

Fig. 9. Totally performance of four algorithms in scheduling the parts 
 
Table 5  
Comparison of results (%D) in problems with various sizes 

Number of jobs (H) 
Algorithm ܪଵ ܪଶ ܪଷ ܪସ 

50 7.4% 6.4% 8.5% 6.9% 
100 5.4% 4.4% 6.6% 5.3% 
200 3.2% 2.6% 4.5% 3.6% 
500 2.8% 2.2% 3.4% 2.5% 

 

 

Fig. 10. Variations of lower bounds in three condition of bottleneck 
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Fig. 10 shows that when fabrication stage (hybrid flow shop) is bottleneck, the ܤܮଶ is more active than ܤܮଵ. Table 7 presents the amount of lower bounds and the best solution with details. In this table, the 
red cells show the maximum lower bound (active lower bound).  As seen from this table, in 79% of 
problem with class A the ܤܮଶ presented better amount than ܤܮଵ and only in 21% problem ܤܮଵ is better. 
Orange cells show the worst result of the best algorithm in four sizes of problem. This table also shows 
that the worst performance of algorithms is obtained in condition that ܤܮଵ is active lower bound. These 
results state that ܤܮଵ was a weak lower bound and so it will be a good study to improve this lower 
bound. 
 

 

Table 6   
Deviation percentage (%D) of solutions from lower bound in 36 problems 

Problem name H /J/ m Class ܪଵ ܪଶ ܪଷ ܪସ 

H-A1 50 [3 , 7] 3 B 3.6% 3.2% 4.3% 3.5% 
H-A2 50 [3 , 7] 5 B 1.2% 1.0% 1.6% 1.2% 
H-A3 50 [3 , 7] 7 B 1.2% 1.2% 1.4% 1.4% 
H-A4 50 [7 , 13] 3 A 7.6% 6.1% 8.6% 6.4% 
H-A5 50 [7 , 13] 5 C 10.8% 9.5% 12.5% 10.8% 
H-A6 50 [7 , 13] 7 C 10.1% 9.2% 11.7% 10.5% 
H-A7 50 [10 , 20] 3 A 5.8% 4.6% 6.2% 4.5% 
H-A8 50 [10 , 20] 5 A 12.0% 9.7% 13.8% 10.8% 
H-A9 50 [10 , 20] 7 A 12.9% 11.7% 14.7% 12.9% 
H-A10 100 [3 , 7] 3 B 1.8% 1.6% 2.3% 2.3% 
H-A11 100 [3 , 7] 5 B 0.6% 0.6% 0.9% 0.7% 
H-A12 100 [3 , 7] 7 B 0.5% 0.4% 0.5% 0.5% 
H-A13 100 [7 , 13] 3 A 5.5% 4.6% 6.6% 5.4% 
H-A14 100 [7 , 13] 5 C 7.7% 6.2% 9.9% 8.4% 
H-A15 100 [7 , 13] 7 C 8.1% 7.0% 10.2% 8.8% 
H-A16 100 [10 , 20] 3 A 3.5% 2.7% 4.0% 2.8% 
H-A17 100 [10 , 20] 5 A 7.5% 4.9% 9.3% 5.6% 
H-A18 100 [10 , 20] 7 A 12.8% 11.4% 14.9% 13.5% 
H-A19 200 [3 , 7] 3 B 2.2% 2.4% 3.8% 3.4% 
H-A20 200 [3 , 7] 5 B 0.7% 0.4% 0.8% 0.7% 
H-A21 200 [3 , 7] 7 B 0.3% 0.2% 0.4% 0.4% 
H-A22 200 [7 , 13] 3 A 3.6% 2.7% 4.6% 3.3% 
H-A23 200 [7 , 13] 5 C 4.2% 3.6% 6.4% 5.5% 
H-A24 200 [7 , 13] 7 C 3.9% 3.6% 6.2% 5.9% 
H-A25 200 [10 , 20] 3 A 2.2% 1.6% 2.7% 1.9% 
H-A26 200 [10 , 20] 5 A 4.8% 3.5% 6.8% 4.5% 
H-A27 200 [10 , 20] 7 A 6.2% 5.4% 9.0% 7.7% 
H-A28 500 [3 , 7] 3 B 3.6% 3.0% 4.0% 3.2% 
H-A29 500 [3 , 7] 5 B 1.3% 0.8% 0.5% 0.4% 
H-A30 500 [3 , 7] 7 B 0.7% 0.3% 0.3% 0.2% 
H-A31 500 [7 , 13] 3 A 3.1% 2.2% 3.5% 2.5% 
H-A32 500 [7 , 13] 5 C 4.0% 3.4% 5.5% 4.0% 
H-A33 500 [7 , 13] 7 C 2.9% 3.0% 3.5% 2.9% 
H-A34 500 [10 , 20] 3 A 1.5% 0.8% 1.6% 0.8% 
H-A35 500 [10 , 20] 5 A 3.6% 2.6% 5.0% 3.3% 
H-A36 500 [10 , 20] 7 A 5.7% 5.4% 7.8% 6.8% 
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Table 7  
The performance of lower bounds and the best solution in 36 problems 

Problem 
name 

H /J/ m Class  ଷܤܮ ଶܤܮ ଵܤܮ
The best 
solution 

%D of the 
best 

algorithm 
H-A1 50 [3 , 7] 3 B 15565 27504 30604 31583 3.2% 

H-A2 50 [3 , 7] 5 B 11383 12630 31252 31564 1.0% 

H-A3 50 [3 , 7] 7 B 13928 11167 30056 30416 1.2% 

H-A4 50 [7 , 13] 3 A 26140 53559 30514 56826 6.1% 

H-A5 50 [7 , 13] 5 C 27584 27293 35303 38657 9.5% 

H-A6 50 [7 , 13] 7 C 27882 22968 32868 35892 9.2% 

H-A7 50 [10 , 20] 3 A 41449 74062 32460 77395 4.5% 

H-A8 50 [10 , 20] 5 A 42230 43081 32749 47259 9.7% 

H-A9 50 [10 , 20] 7 A 39965 32180 32747 44641 11.7% 

H-A10 100 [3 , 7] 3 B 23861 49141 59291 60240 1.6% 

H-A11 100 [3 , 7] 5 B 33459 33638 62934 63311 0.6% 

H-A12 100 [3 , 7] 7 B 26479 21222 60854 61097 0.4% 

H-A13 100 [7 , 13] 3 A 56268 94093 62347 98421 4.6% 

H-A14 100 [7 , 13] 5 C 49409 67520 59072 71706 6.2% 

H-A15 100 [7 , 13] 7 C 43239 37846 63277 67706 7.0% 

H-A16 100 [10 , 20] 3 A 77542 156961 62837 161199 2.7% 

H-A17 100 [10 , 20] 5 A 81847 99420 63888 104292 4.9% 

H-A18 100 [10 , 20] 7 A 78537 69334 64749 87491 11.4% 

H-A19 200 [3 , 7] 3 B 50530 100015 126206 128983 2.2% 

H-A20 200 [3 , 7] 5 B 63304 66319 122221 122710 0.4% 

H-A21 200 [3 , 7] 7 B 53378 41842 121036 121278 0.2% 

H-A22 200 [7 , 13] 3 A 99606 186509 124095 191545 2.7% 

H-A23 200 [7 , 13] 5 C 122771 135087 116323 139950 3.6% 

H-A24 200 [7 , 13] 7 C 105122 91184 130578 135279 3.6% 

H-A25 200 [10 , 20] 3 A 151690 314375 122893 319405 1.6%

H-A26 200 [10 , 20] 5 A 176524 195048 121541 201875 3.5%

H-A27 200 [10 , 20] 7 A 161244 138384 123115 169952 5.4%

H-A28 500 [3 , 7] 3 B 103811 220072 317557 327084 3.0% 

H-A29 500 [3 , 7] 5 B 159324 186445 312845 314097 0.4% 

H-A30 500 [3 , 7] 7 B 125871 99991 307107 307722 0.2% 

H-A31 500 [7 , 13] 3 A 272655 467929 310330 478224 2.2% 

H-A32 500 [7 , 13] 5 C 304253 342018 311689 353646 3.4% 

H-A33 500 [7 , 13] 7 C 258529 221554 318939 328188 2.9% 

H-A34 500 [10 , 20] 3 A 396255 839458 291265 846173 0.8% 

H-A35 500 [10 , 20] 5 A 411886 460671 307346 472648 2.6% 

H-A36 500 [10 , 20] 7 A 377336 316431 306353 397713 5.4% 

 
 
Fig. 11 with 5 panels shows the amount of four algorithms in terms of lower bound under different 
conditions. The algorithms have kept their good performances in all conditions. Panel I shows the result 
in condition that the assembly stage is bottleneck. In this case, all algorithms show the best 
performance. Panel II and III show the result of algorithms and lower bound situation when the hybrid 
flow shop is bottleneck and balance condition, respectively. Panel II is decomposed in two case. First, 
when the first stage of hybrid flow shop (single machine) is bottleneck and when the second stage 
(parallel machines) is bottleneck. These two cases are presented in panel IV and V, respectively. 
 
 
 



P. Fattahi et al.  / International Journal of Industrial Engineering Computations 4 (2013) 
 

 

413

 
 

 

 
Panel I. The results when the assembly stage is bottleneck 

 
Panel II. The results when the hybrid flow shop is bottleneck 

 
Panel III. The results in balance condition 
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Panel IV. The results when the first stage of hybrid flow shop is bottleneck 

 
 Panel V. The results when the second stage of hybrid flow shop is bottleneck 

Fig. 11. The performance of algorithms in comparison of lower bound in 5 conditions of bottleneck 

6. Concluding remarks and directions for future research 

In this paper, an assembly production system including machining operations and assembly operations 
has been considered. The machining stage is a hybrid flow shop with two stages. All parts have to be 
processed on stage 1 and 2, respectively and when a set of parts is complete, the assembly of product is 
started. A number of products of the same kind have to be produced. Because of the setup times, it is 
better to process the parts in batches instead of individual. Each set of parts is called a block. Three 
decision variables of the problem are: the number of blocks, the size of each block, and sequencing the 
parts. So a three steps approach was considered to solve this problem. A heuristic is used for deciding 
the number of blocks, Johnson’s and NEH algorithm for sequencing the parts and finally GA and SA for 
sizing the blocks. Four algorithms are presented by combination of this method. Three lower bounds 
presented and improved to evaluate the performance of algorithms.  
 
Various problems in different condition design have been considered and four algorithms have applied 
to each problem, several times. The results have shown that SH/GA/John′s performed the best 
performance in all circumstances. Deviation of this algorithm from lower bound is 2.82% in average. 
After that SH/SA/John′s with 3.36% deviation came in the second position. 
 
The worst result happened when the first stage of hybrid flow shop was bottleneck and it maintained 
low performance in terms of the lower bounds. Therefore, building some lower bounds for this problem 
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under the condition that the first stage is bottleneck could be considered as a good future study. It is a 
good idea, in each block, that the first part be the same as the last part in previous block to eliminate its 
setup. Therefore, a new modeling formulation by considering this issue could be considered as a new 
study.  
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