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 We study a location-inventory problem in a three level supply chain network under uncertainty, 
which leads to risk. The (r,Q)  inventory control policy is applied for this problem. Besides, 
uncertainty exists in different parameters such as procurement, transportation costs, supply, 
demand and the capacity of different facilities (due to disaster, man-made events and etc). We 
present a robust optimization model, which concurrently specifies: locations of distribution 
centers to be opened, inventory control parameters (r,Q), and allocation of supply chain 
components. The model is formulated as a multi-objective mixed-integer nonlinear programming 
in order to minimize the expected total cost of such a supply chain network comprising location, 
procurement, transportation, holding, ordering, and shortage costs. Moreover, we develop an 
effective solution approach on the basis of multi-objective particle swarm optimization for 
solving the proposed model. Eventually, computational results of different examples of the 
problem and sensitivity analysis are exhibited to show the model and algorithm's feasibility and 
efficiency.  

© 2013 Growing Science Ltd.  All rights reserved
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1. Introduction  
 
Supply chain consists of a network of suppliers, manufacturers, warehouses, distributors and customers 
who plan at changing raw material to final products, distributing them to customers and fulfilling their 
demand while minimizing (maximizing) cost (profit) of total chain. Commodities pass through 
different stages to be transferred from suppliers to customers, which may include different facilities 
(Min & Zhou 2002). In this regard, supply chain management plays an essential role in the cost 
reduction of companies and improvement of their competitive conditions. Supply chain network 
planning includes strategic, tactic and operational decisions. Meanwhile, strategic design of supply 
chain network, which is one of the most important elements of supply chain and can affect all of its 
decisions is very important and considerably affects chain planning and finally performance of 
companies.   
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One of the main decisions for designing a supply chain network is the issues related to location, which 
has a major part in investments. In a supply chain, a company seeks to locate facilities (such as plants, 
distribution centers and retailers) such that it can maximize (minimize) its total profit (cost). In the 
literature of this field, decisions of different strategic, tactical and operational levels are separately 
made due to the absence of accurate information about parameters of inventory cost and distribution at 
the time of making location decisions. For example, some researchers such as Zipkin (2000) studied 
and evaluated inventory policies in components of the chain by assuming that location decisions are 
clear or some researchers like Melo et al. (2009) developed retailers' locating models  by ignoring the 
current tactical decisions.   
 
But, the necessity of making high investments in these issues helped them convert to long-term 
(strategic) projects and, as mentioned above, they have long-term effects on the future costs and profits; 
as a result, it is very important that decisions of operational and tactical levels be considered while 
determining location decisions (Shen et al., 2003). In recent years, some researchers such as Shen and 
Qi (2007) showed that failure to consider the location and inventory costs at the same time of making 
decisions about location of facilities generally results in the generation of optimal sub-answers. As a 
result, the importance of making simultaneous decisions at different levels has led to development of 
integrated inventory –location models in recent years (Sourirajan et al., 2007) and many studies have 
been conducted to integrate tactical and strategic decisions and develop inventory-location models 
(Daskin et al., 2002;  Shen et al., 2003). However, integration of these decisions at three levels has been 
less considered than the supply chain management attitude, majorly due to the consequences in 
operational levels and problems (Melo et al., 2009).   
 
In addition, increase in competition in today’s business environment, there are uncertainty associated 
with trade globalization and change in various factors of supply chain such as demand, supply and 
price. However, most of the available models assume fixed parameters and do not consider uncertainty. 
Change of location decisions is more difficult than that of inventory decisions which are more flexible. 
Therefore, location models should be able to include existing uncertainty in decision-making 
environment (Snyder, 2006). As mentioned, inventory-location models have been considered recently. 
One of the main assumptions of inventory-location decisions integration is the benefits resulting from 
risk pooling. In this case, inventories are kept in one place instead of storage in some different places, 
which causes reduction of inventory costs (Eppen 1979; Berman et al., 2012).  
 
Melo et al. (2009) performed a comprehensive review on the literature of supply chain management. 
Nozick and Turnquist (1998) studied how to include inventory costs (contingency reserve) in the 
classic problem of locating facilities of the plant and showed that these costs change almost linearly 
proportion to the number of distribution centers and, as a result, they can be regarded as fixed costs. 
Erlebacher and Meller (2000) had a broader view and studied a nonlinear integer inventory-location 
model by considering fixed costs, transportation and inventory costs. They presented a heuristic method 
to solve this class of problems using continuous space estimation and they applied it for 16 customer 
points. Shen et al. (2003) studied facility location problem in which facilities manage their inventory 
through policy of (r,Q). They developed location problem with fixed cost using EOQ approximation 
such that it included inventory costs.  
 
The advantage of this model was that it benefits from integrative risk, which was mentioned by Eppen 
(1979) and the contingency reserve can be reduced to prevent from any potential shortage. This model 
is known as Location Model with Risk Pooling (LMRP) in literature and they used Column Generation 
method.  Daskin, et al. (2002) presented an efficient solution based on Lagrangian relaxation approach, 
which solves the model at shorter time than the method of Shen et al. (2003) does. Teo and Shu (2004) 
studied the problem of logistic network considering inventory costs for multilevel locations of 
inventory storage. Of course, uncertainty of supply or demand was not been considered in their models. 
In another model, Romeijn et al. (2007) studied the previous model by adding term of contingency 
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reserve (considering potential demand). Snyder et al. (2007) studied potential state of this model. In the 
literature of supply chain network design, there are few models, which have considered uncertainty in 
other parameters, except demand. Snyder et al. (2007) used scenario approach to include uncertainty of 
parameters. In fact, they formulated a potential planning problem to minimize the expected costs. 
 
In addition, Qi et al. (2010) studied the effect of disorder in facilities for two-leveled supply chain, a 
supplier and several retailers, and sought to locate retailers optimally and allocate customers to them. In 
this model, disorder compensation periods followed exponential distribution and the lost sale was 
included. Chen et al. (2011) studied a reliable inventory –location model to optimize facility location 
decisions, allocation of customers and management of inventory in case distribution centers are at risk 
of disorder. They presented an integer planning model, which minimized total costs of their 
construction, expected value of customers and inventory holding costs under two normal scenarios and 
minimized confrontation with failure and used Lagrangian relaxation approach to solve the resulted 
model.  
 
Üster et al. (2008) studied single facility location, which includes location decisions, inventory 
completion (reordering periods), ordering costs, transportation and holding of inventory and presented 
three recursive heuristic methods as solution procedure. Park et al. (2010) presented a design model for 
three-level network by considering the contingency reserve. They also considered lead times depending 
on each pair of distribution center and supplier and location decisions of supplier/distribution center 
and inventory in an integrated way. Yazdani and shahanaghi (2010) presented a multi-objective 
probabilistic programming approach for locating distribution centers and allocating customers demands 
in supply chains, which considers risk in locating DCs, shipping products and also in arcs linking plant 
to DCs and DCs to customers though fuzzy parameters. The proposed model was solved by a 
probabilistic programming approach.  
 
Tancrez et al. (2012) considered inventory-location problem for three-level supply chain in which 
distribution decisions of distribution centers, allocation and amount of the transported commodity were 
made altogether and they were modeled as nonlinear continuous model. The proposed problem 
included costs of transportation, processing and holding of inventory. Berman et al. (2012) studied an 
inventory–location model in which distribution centers had inventory control policy (R,S) and found 
that its goal was to locate active distribution centers, allocate retailers to them and determine 
parameters relating to inventory policies while minimizing total costs.  
 
Tsao et al. (2012) studied the allocation-inventory–location integrated problem for designing a 
distribution network with several local distribution centers and retailers. Their modeling formulation 
located local distribution centers optimally and allocated retailers to them. The model also determined 
suitable inventory policy for each location while minimized total costs of the network and used 
Continuous Approximation (CA) and nonlinear planning for solving optimization problem.  
 
In real supply chain systems, if the support facilities are considered for customers, reliability of supply 
chain and its general performance would be considerably improved. Rezaei et al. (2012) studied 
emergency response network design for hazardous materials transportation with uncertain demand, 
which is considered as fuzzy random parameter. They formulated the problem as a non-linear non-
convex mixed integer programming model. NSGA(ІІ) algorithm is applied to solve this model. 
Roghanian and Kamandanipour (2012) presented a closed-loop logistics network design based on 
reverse logistics models. A mixed integer linear programming is used to formulate this model. The 
problem considered single product and multi-stage logistics network for the new and return products 
and demand and rate of return are stated as fuzzy random parameters. 

 
 
 



  96

Table 1  
Characteristics of reviewed articles about facility location under uncertainty 

author 

year
 

no. of 
commodities 

relation of 
levels in 

SC 

type of 
decision uncertain parameters modeling approach 

m
ultiple

 

single
 

horizontal(back 
up coverage

 

vertical
 

routing
 inventory
 

location
 shortage cost

capacity
 transportation 

cost
 

availability
 price(exchange 

rate)
( supply

 

rate of return
 

dem
and

 integrated
 

separable
 

fuzzy
 robust
 

probabilistic
 

Tsiakis et al. 2001                  
Daskin et al. 2002                
Berman et al.  2003                  
Shen et al. 2003                
Laguna& Velarde  2004                  
Snyder & Daskin 2005                
Santoso et al. 2005                  
Snyder &  Daskin  2005                 
Snyder &  Daskin 2006                
Shen  2006                
Shen & Qi  2007              
Snyder  et al.  2007                
Wen & Iwamura 2008                 
Azaron et al.  2008             
Ozsen et al. 2008                
Wagner et al. 2009                 
Wang et al.  2009                 
Cui et al.  2010                  
Jafari Rad  2011                 
Chen et al. 2011               
Mahootchi  2011                  
Noyan  2012                
Wang, Watada  2012                 
Rezaei et al.  2012                  
Roghanian & 
Kamandanipour 2012                 

Bozorgi Amiri  et al.  2012                   
Gharegozloo Hamedani 
et al. 2012                

 
The rest of this paper is arranged as fallows. In section 2, a brief description of robust optimization is 
presented. In section 3, the given problem is formulated as a robust optimization model. In section 4, a 
solution approach based on meta-heuristic algorithm is explained. Section 5 presents the numerical 
examples and sensitivity analysis for the most important parameters. Conclusion and future research of 
this study is provided in section 6. 

2. Robust optimization  

Despite the fact that there are many applications of stochastic programming, routine stochastic 
programming models acutely are restricted because of disability in managing risk aversion or decision 
makers' preferences directly. Here, we used a robust programming, introduced by Mulvey et al. (1995), 
which is an improved stochastic programming to deal with the preferred risk aversion of decision 
makers, which was not possible to use in routine stochastic programming (Bozorgi Amiri et al., 2012; 
Azaron et al., 2008) to locate distribution facilities in a three levels supply chain network under 
uncertainty. 
 
In this method, the variability term was supplemented to the main objective function by a related 
weighting parameter in order to show the tolerance of modelers' risk. In the remaining, a concise 
description of robust optimization is presented. Let x be first stage (design) variable vector and ys be 
the second stage control variable vector. Let M, N, O be matrices of parameter and p, q be vectors of 
parameters. Let M, p be certain parameters and N, O, q be uncertain ones. Let S be the set of scenarios 
to model uncertainty with associated probability of occurrence of each scenario (ps): S={1,2,…,s} and 
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∑ps=1 so we have Ns, Os, qs. The possible infeasibility of model is presented by δs.(if model is feasible 
0, otherwise a positive value is calculated by Eq. (3) model formulation is as follows (Bozorgi Amiri et 
al. 2012):  

 
1 s 1min  (x,y ,...,y )+ p( ,..., )sσ ω δ δ  (1) 

subject to:  
Mx=p , (2) 

s s sN x+O y +    s Ss sqδ = ∀ ∈  (3) 

sx,y ,  0.sδ ≥  (4) 
 

The first term in Eq. (1) shows the solution robustness, which seeks for less cost and risk aversion 
degree. The second term indicates the model robustness, which gives penalty solutions by unmet 
demands or exceeding from each physical constraint. ω is a weight measuring the trades-off  between 
the first and the second term of Eq. (1). According to Bozorgi amiri et al.'s work, we use υs=z(x,ys) as 
the main objective function under scenario s. The solution is a high-risk decision when the variance of 
υs is high. Mulvey et al. (1995) used a quadratic form of variance, which is nonlinear and complicated. 
To handle this difficulty, here we use an absolute deviation as Yu and Li (2000) proposed, which is as 
follows, 

( ) s s s s ss
s S s S s S

o p p pσ ν λ ν ν
′

′

′
∈ ∈ ∈

= + −∑ ∑ ∑  (5)

 
where λ is the weight of the less sensitive-solution to data changing in all scenarios. For minimizing the 
Eq. (5), Yu and Li (2000) presented an effective method, which is modeled as follows, 

 

min 2s s s s s s s
s S s S s S

p p pν λ ν ν θ′ ′
′∈ ∈ ∈

⎡ ⎤+ − +⎢ ⎥⎣ ⎦
∑ ∑ ∑  (6)

subject to: 
0      s Ss s s s

s S

pν ν θ
∈

− + ≥ ∀ ∈∑  (7)

0                            s SSθ ≥ ∀ ∈  (8)
 
If υs is bigger than ∑psυs, θs is equal to 0, otherwise θs=∑psυs- υs. In this study, We use Yu and Li's 
method but as the expected value of costs and their variance are in contrast, we form a two-objective 
model, which separates the two presented terms in Eq. (6) in order to enhance the model efficiency and 
find Pareto solutions. This provides a good condition for decision makers to make decision according 
to their preference. 

    
3. Problem description 
 
In this section, an integrated two-objective robust inventory–location model is presented to design 
three-level supply chain network including suppliers, distribution centers and customers as integer 
nonlinear programming in case of uncertainty, which integrates location, inventory and allocation 
decisions. The presented model's assumptions are as follows:  

 
3.1. Assumptions  
 
1- More than one product can be supplied in the chain, each one of the products has different volume, 

procurement, shortage, holding, ordering, and transportation cost.  
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2- Capacity of the suppliers and distribution centers is subject to uncertainty due to events such as fire, 
earthquake, etc.  

3- There is uncertainty in parameters such as demand, supply, purchase price and costs and some 
discrete scenarios belonging to the set of possible scenarios S are used for showing this problem.   

4- There are some candidate points for establishment of distribution centers, which are selected for 
each location's fixed cost.  

5- Each distribution center can be constructed only in one of the available sizes (small, medium and 
large).  

6- Each distribution center can be supplied from suppliers and other distribution centers (logistic 
cover) if possible.  

7- There is no limitation of single-facility supply for customers and distribution centers.  
8- Inventory is kept only in distribution centers. In this case, this inventory is fined.  
9- Remaining inventory holding cost is different depending on whether the remaining inventory is 

related to supplier or logistic distribution center.   
10- The package shortage cost differs depending on whether shortage results from failure to select 

customer for providing services because there is uneconomical or insufficient distribution center to 
provide services while the model is as the lost sale.  

11- In this model, there is inventory ordering policy (r,Q) and EOQ approximation approach has been 
used to determine its parameters based on the work of Axsater (2006). It has also risk pooling 
property.  

 
The goal of this model is to design a distribution network, which is solved to specify location and 
number of distribution centers, inventory order amount in each one of the distribution centers, the 
allocation of customers to distribution centers as well as distribution centers to suppliers by aiming at 
minimizing the expected value of costs and variance of these costs. Variables of the first stage (design) 
and the related fixed location cost were final but variables of the second stage (control) and its related 
parameters such as demand, supply, etc. are assumed uncertain. Uncertainty is captured by some 
specific discrete scenarios. In the remaining, the symbols relating to this problem are presented.  
 
3.2 Indices  
 
I : set of suppliers  
J: set of distribution centers  
K: set of customers  
L: set of the assumed sizes for distribution center (small, large, medium) 
S: set of possible scenarios  
C: set of all demanded commodity  
 
3.3. Deterministic Parameters 

fjl: fixed cost of opening distribution center j with size l  

Fjc: fixed ordering cost of any distribution center j for each commodity c  

Ps: probability of occurrence of scenario s  

πkc   : shortage cost in distribution centers for one unit of commodity C resulting from demand of 
customer k (the penalty of un-met demand of assigned customer to a DC due to uncertainty of supplier) 

π̒kc : shortage cost resulting from failure to allocate some of the customer’s demand k for each 
commodity unit C (lost sale) 

υc: per unit required space for each commodity C  
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Sic: amount of commodity c which supplier i can supply  

Capl: different type of opened DCs' capacities (in cubic meters) 

hjc: holding cost of  a commodity unit c in distribution center j (in case it receives commodity only from 
suppliers)  

h̒jc: holding cost of a commodity unit c in distribution center j (in case it receives commodity from 
supporting distribution centers in addition to suppliers)  

α  :  in case the support is not used, it equals 0 and in case the support is used, it equals 1  

M: a large number  

3.4. Nondeterministic Parameters 

qjs: a percent of capacity j which remains active under scenario s  

qis: a percent of capacity i which remains active under scenario s  

φics: purchase cost of a commodity unit c from supplier i under scenario s 

φj'cs: purchase cost of a commodity unit c from supplier j under scenario s 

Cijcs: transportation cost from supplier i to distributor j for each commodity unit c under scenario s 

Cj'jcs: transportation cost from logistic distributor j' to distributor j for each commodity unit c under 
scenario s 

Cjkcs: transportation cost from distributor j to customer k for each commodity unit c under scenario s 

dkcs  : demand of customer k for commodity c under scenario s 

3.5. Continuous and Binary Variables  

Xijcs: amount of commodity c transported from supplier i to distribution center j under scenario s 

Yjkcs: amount of commodity c transported from distribution center j to customer k under scenario s 

Ijcs: inventory of commodity c which is stored in distribution center j under scenario s 

bjkcs: shortage of commodity c resulting from demand of customer k in distribution center j under 
scenario s 

b̒kcs: shortage of commodity c for customer k under scenario s which has not been allocated to any 
distribution center because of limitation and uncertainty of capacity of distribution center  

Zjl: it is 1 in case distribution center is opened with size L in location j; otherwise, it is 0.  

njcs: number of orders for commodity c by distribution center j under scenario s 

sθ  : the variable applied for linearization of absolute deviation of costs  

3.6. Mathematical Formulation  

In this section, a new robust mathematical model is presented in which uncertainty is expressed using a 
finite number of discrete scenarios. As mentioned before, EOQ approximation approach was applied 
here to use policy of (r, Q)  and determine the number of order of distribution center per year.  
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On the other hand, considering that shortage was permissible but irrecoverable, it was proved that, in 
the presence of inventory system in this state, economic order was calculated through Wilson relation. 
Economic order equaled: 

jcs
jcs jcs* *

2  F
2 D  F

Q ,   Q
jkcs jj cs

k j j
jcs jcs jkcs jj cs jcs

k j jjc jc

y y
D y y

h h

′
′≠

′
′≠

⎛ ⎞
+⎜ ⎟

⎝ ⎠= = + ⇒ =
∑ ∑

∑ ∑  

(9)  

Reordering point was obtained as follows, considering that demand was specified in each scenario:  

 (10) LT=  LTjcs jcs jkcs jj cs
k j j

r D y y ′
′≠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑  

Of course, since the number of ordering was optimized in the model presented in this thesis, economic 
order can be calculated through the following formula by having optimal number of ordering:  

(11)*
*
jcs

jcs
jcs

D
Q

n
=  

In this regard, ordering policy parameters (r,Q) can be calculated. Then, mathematical model of the 
problem and a scheme of inflows and outflows are presented for one node of distribution centre j, 
according to Fig. 2 in order to understand the problem. 
 

 

 

 

 

 

Fig. 2. Input and output flows of DC 
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Eq. (12) is the first objective function, which includes minimization of fixed location costs and 
expected value of costs of purchase, transportation, inventory holding, shortage in distribution centers, 
lost sale and ordering along the one-year planning horizon. Eq. (13) is the second objective function of 
this problem, which is variance of purchase, transportation, inventory holding, shortage and ordering 
costs. This has been considered as absolute magnitude and it is linearized based on the available 
literature in this field, like what was referred to in the study by Yu and Li ( 2000). Constraints of the 
problem were as follows: 
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)14(     j,c,sijcs j jcs jl jkcs jj cs j l jcs jkcs
i j j l k j j l k

X y Z y y Z I b′ ′ ′

′ ′≠ ≠

+ − − = − ∀∑ ∑ ∑ ∑ ∑ ∑ ∑  

)15(  
jc

 
  j,c,s, 0

2  F

jj cs jkcs
j j k

jcs jj cs jkcs
j j k

jj cs jkcs
j j k

jkcs
kjc

y y
n y y

y y
b

h

′
′=

′
′=

′
′=

⎛ ⎞
+⎜ ⎟

⎛ ⎞⎝ ⎠= ∀ + >⎜ ⎟
⎛ ⎞ ⎝ ⎠

+⎜ ⎟
⎝ ⎠ +

∑ ∑
∑ ∑

∑ ∑
∑

 

)16(  j,j (j j ),c,s                                                   jj cs jl
l

y M Z′ ′ ′≠≤ ∀∑ 

)17(  jl
                                                        j j,c,sj jcs

l
ZX M′ ′∀ ≠≤ ∑ 

 
                                                    j,c,s

i l
Xijcs M Zjl≤ ∀∑ ∑  (18)  

                                                       j,c,s jl

k l

yjkcs M Z≤ ∀∑ ∑  (19)  

jkcs  js jl
, ,

     j,s y + y q   Z           c c jj cs l
k c j j c l

capν ν ′
≠′

∀≤∑ ∑ ∑  (20)

ic S                                                        i,c,sijcs is
j

X q≤ ∀∑  (21)  

1                                                                         j 
l

Zjl ≤ ∀∑  (22)

                                 j,c,s

(1 )                          j,c,s

1     if 

0     if 

ijcs jj cs jkcs
i j j k

ijcsjj cs jkcs
j j k i

ijcsjj cs jkcs
j j k i

jj cs jkcs
j j k

X y y M

y y X M

y y X

y y

α

α

α

α

′
′≠

′
′≠

′
′≠

′
′≠

− − < ∀

+ − < − ∀

= + >

= +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ijcs
i

X

⎧ ⎫
⎪ ⎪
⎨ ⎬

≤⎪ ⎪
⎩ ⎭

∑ ∑

 

(23)

                                         k,c,sjkcs jkcs kcs kcs
j j

y b b d′− + = ∀∑ ∑  (24)



  102

{ }0,1                                                                       j,l
0                                                                          i,j,c,s
0                       

jl

ijcs

jkcs

Z
X
y

∈ ∀

≥ ∀
≥                                                   j,k,c,s
0                                                                            j,c,s
0                                              

jcs

jkcs

I
b

∀
≥ ∀
≥                              j,k,c,s∀

 (25) 

( )

ijcs j jcs ijcs jkcs j jcs
, , , , , ,

 jkcs kcs jkcs jcs
, , , , , ,

(  X +  y  X +  y +  y

  1  b + b b   + n )

 (  

ics j cs ijcs jkcs jj cs
i j c j j i j c j k c j j

jcjc jcs jc jcs kc kc
j c j c j k c k c j j c

s ics
s S

C C C

h I h I F

P

φ φ

α α π π

φ

′ ′ ′ ′

′ ′≠ ≠

′ ′
′∈

+ +

⎛ ⎞
′ ′ ′+ − + −⎜ ⎟

⎝ ⎠
−

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑

( )

ijcs ijcs j jcs jkcs j j jcs
, , , , , ,

 jkcs kcs jkcs jcs
, , , , , ,

X +  X +  y +  y  y +

  1  b + b b   + n ) 0   

ijcs j cs jkcs jcs
i j c i j c j j j k c j j

jcjc jcs jc jcs kc kc s
j c j c j k c k c j j c

C C C

h I h I F

φ

α α π π θ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
′ ′≠ ≠

′ ′ ′ ′ ′ ′

+

⎛ ⎞
′ ′ ′+ − + − + ≥⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑  s∀

(26)

s 0                                                                          sθ ≥ ∀  (27)
 
Eq. (14) is inventory balance equation in distribution center for any kind of commodity. Eq. (15) is 
included to calculate the number of ordering along the planning horizon. Constraint (16) shows that 
distribution center j provides services to other distribution centers as supporting center when it has been 
established with size of l in location j. Constraint (17) also reveals that other distribution centers (j̒) 
provide service to distribution center j as a logistics center when location j of distribution center with 
size l is constructed. Constraints (18) and constraint (19) show dependency of supplier i and customer k 
on distribution j. Constraint (20) depicts that total volume of the commodities, which distribution center 
j can deliver to customers and other distribution centers is the same as its accessible (active) capacity. 
Constraint (21) is constraint of capacity of supplier i considering its active capacity. Constraint (22) 
indicates that, at most, one with any possible size is constructed for the distribution center. Constraint 
(23) shows that if the amount of the commodity suppliers deliver to distribution center j is lower than 
its demand, it will receive service from logistic distribution centers shown using binary parameter of α. 
Constraint (24) is a balance equation for node k (customer). Constraint (25) is constraint of the problem 
variables and constraints (26) and (27) are the constraints resulting from linearization of costs variance. 

  
4. Solution procedure  
 
In this paper, first, the model is solved using Lingo 9 software and using Epsilon Constraint Method; 
then, MOPSO meta-heuristic algorithm is used to solve the resulted problem for larger problems. Each 
one of them is briefly explained below.   

 
4.1. Epsilon Constraint Method 
 
Epsilon Constraint Method is one of the well-known approaches for handling multi-objective problems, 
which solve such problems by transferring all objective functions into constraints and keeps only one of 
them in each phase as objective function (Ehrgott & Gandibleux, 2002). In this case, Pareto Border can 
be created with ε constraint method (Bérubé et al. 2009).  
 

{ }*
2 21 x X, ( ) , ,min  f (x) ( )n nf xx f xε ε= ∈ ≤ ≤L  

 
The following summarizes the necessary steps of ε -constraint method,  
 
1- One of the objective functions is selected as the main objective function.  
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2- Considering one of the objective functions, the problem is solved and optimal values of each 
objective function are obtained considering one of the objective functions.  

3- The interval between two optimal values of objective sub-functions is divided into the 
predetermined number and a schedule of values is obtained for ε2,..., εn.  

4- The problem is solved at any time with main objective function with each value of ε2,..., εn.  
5- The found Pareto’s answer is reported.  
 
In order to study the reason for considering this model as bi-objective, problem 3 is considered with the 
problem codes of 2-1-3-2-3. Based on steps of the problem, 10 sub-problems are generated in which 
optimal value of z2 is determined at any time by selecting the second objective function as the main 
objective function and putting the first objective function in constraint based on ε2,..., εn.. The results 
obtained from these calculations are given in Table 2.  

4.2. MOPSO Algorithm  
 

Considering the fact that the proposed model can be solved in the simplest state as an allocation-
location form without capacity constraint, which is NP-hard based on the work of Megiddo and 
Supowit (1984), this model, which is the development of the mentioned basic model is NP-hard. For 
this reason, meta-heuristic algorithm of multi-objective particle swarm optimization (MOPSO) with 
had high convergence speed is used.  

 
4.2.1 Introduction of PSO Algorithm  
 
PSO is one of the population based optimization algorithms, which was presented by Kennedy and 
Eberhart (1995). First, the set of particles is placed in the response space and starts moving with initial 
velocity. Then, these particles move in response space and are evaluated according to special criteria in 
each stage. Over time, these particles accelerate with specified velocity towards other particles 
available in their communication group in multidimensional search space, which have higher fitness 
value. Any position of particles shows a solution for the problem. Notion of the algorithm are 
introduced in Table 2.  
 
Table 2 
Notations of PSO algorithm 

G :fitness value function Vmax :maximum velocity that each particle can 
take. if V> Vmax THEN V= Vmax. 

vid(t)  : velocity of particle i in dth dimension in tth 
stage 

Pid :location of the best position found so far by 
each particle in dimension d  

( )x t : location of each particle vector Pgd:: location of the best position found by all 
particles in dimension d 

W  (INTERIA WIEGHT) : controls 
intensification and diversification 

LP : vector of best found position of each particle 
so far 

d   : dimensions of solution space gP
r

  : vector of best found position of all particles
xid(t)  :  location of particle i in dth dimension in tth 
stage 

C1 and C2   : fixed coefficient to control the impact 
of Pid and  Pgd 

( )P t
r

 : vector of best found solution 1 2 and φ φ  : uniform random number between [0,1] 
 
At any iteration, velocity and position of particles are updated according to Eq. (29) and Eq. (30):  

)29(  1 1 2 2( )  . ( 1)  (  ( 1))  (  ( 1))                      id id id id gd idv t w v t c p x t c p x tϕ ϕ= − + − − + − −

*
1 1 1,    ,    

10 n n
DZ Z D β ε ε β−− = = = +  (28) 
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4.2.2. Introduction of MOPSO Algorithm  
 
Traditional PSO cannot be used for multi-objective optimization problems and considering that a set of 
solution are presented instead of one in the multi-objective models, changes in algorithm are needed so 
that one can reach this set of solution called Pareto Optimum. Generally, three objectives should be 
considered in order to solve multi-objective problems: (Eckart et al. 2000).  
 
1- Increasing the number of found Pareto points, which is called quality metric.  
2- Decreasing the resulted Pareto border distance by the algorithm with global optimal Pareto border 

called spacing metric.  
3- Increasing the range of the obtained solutions such that there is a uniform distribution of the 

response vectors as much as possible called diversity metric.  
 
Fig. 2 shows proposed multi-objective PSO algorithm pseudo code of this paper. In fact, binary 
MOPSO method of zero and one was used. Since space of the problem was binary, binary algorithm 
which was presented by Eberhart and Kennedy was used in this research (Kennedy & Eberhart 2001). 
In order to update archive of Pareto solution, Roulette wheel operator was used. Most of evolutionary 
meta-heuristic algorithms use a random approach for producing initial solution. Here, this approach 
was followed to produce initial solution (Alvarez-Benitez et al. 2005). 

  
{Initialize search parameters 

Generate N initial particles  

Evaluate the initial particles to get the local best Pi and the global best Pg 

Initialize the adaptive Pareto archive set so that it is empty 

   Initial iteration t=0    
      While {t<max iterations 

            Improve particles by velocity vector          
            Calculate the new position of particles 

            Update the adaptive Pareto archive set 

            Update p-best and g-best           

           Insert t=t+1 

     End while}  
}  

Fig. 2. MOPSO Pseudo code   
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4.2.3. Presentation and Decoding Method 
 
Any solution is a feasible solution, which includes 3 matrices. The first matrix relates to values of Xijcs, 
the second matrix shows values of Yjkcs and the third matrix determines binary values of Zjl . An 
example of response representation is given in Fig. 3 when two suppliers, three distribution centers, 
two products, two customers and two scenarios are considered. Based on Fig. (a), suppliers 1 and 2 
give 16 and 14 product units of type 1 to distribution center 1, respectively, and supplier 2 gives 18 
product units of type 1 to distribution center 2. Based on Fig. (b), 16 product units of type 1 are 
delivered to customer 1 and 12 product units of type 1 are delivered from distribution center 2 to 
customer 2. Fig. (c) also shows that distribution center 1 with medium size and distribution center 2 
with small size are constructed.  
 
          ↓ i        C=1,s=2           ↓ i        C=1,s=2           ↓ L 
i 
 

16  0 0 
14  18  0  

 

i 
16 0  
0 12 
0 0 

 

i 
0  1 0 
1  0 0  
0 0 0 

(a). Xijcs (b). Yjkcs (c). Zjl 
 

Fig. 3. Decoding method for 2 suppliers, 3 DC's, 2 commodities, 2customers and 2 scenarios  

4.2.4. parameters tuning of the Applied MOPSO Algorithm 
 
In the meta-heuristic algorithm of multi-objective particle swarm optimization, parameters of the 
algorithm are set using trial and error method after consecutive periods of algorithm execution as well 
as considering the results obtained from the related papers in this field. For determining the number of 
initial population, ϕ1 and ϕ2 , and the maximum iteration which is stopping criteria, response surface 
method (RSM) in design expert software was used.  
 
In MOPSO, initial population is randomly produced with uniform distribution. Primary population is 
considered 60 in each repetition. The maximum number of repetitions at any time of the algorithm 
execution is considered 60. Values of ϕ1 and ϕ2 are both considered as 2.05. Personal and ultimate 
learning coefficients of c1 and c2 are as a fixed coefficient (k=l) of ϕ1 and ϕ2, respectively.  wdamp is 
considered 0.999 and α is considered as 0.1. Here, stop condition is achieved when algorithm reaches 
the maximum number of repetitions.  
 
5. Numerical Examples  
 
In this section, first, lingo 9 was used in order to validate the model. Then, since this software is not 
able to solve multi-objective problems, the conflict between two objectives of the problem related 
model is revealed by using Epsilon Constraint method, which is described in Section 4.1 to specify the 
reason for considering the bi-objective model. Since the model is NP-hard, meta-heuristic algorithm of 
multi-objective particle swarm optimization (MOPSO), which had high convergence speed has been 
used. Then, 10 designed problems were solved using both exact and meta-heuristic methods and its 
calculation results have been comparatively shown. Lingo9 software was used for the exact method and 
MATLAB 2009 software was used for meta-heuristic method; all the tests were performed by 
Pentium3 (Intel (R) CoreTM 2CPUT5500@1.66GHz) and Microsoft Windows XP Professional operating 
system. Then, specifications relating to these 10 problems are given in Table 3.  
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Table 3  
Data of generating parameters of  numerical examples 

Characteristic  Parameter  Characteristic  Parameter  
(100,150,300) capl (103m3) U  (0.05,0.15)  Cijcs ($/unit-km)  

(6,10,16)  fjl(103$) U  (0.05,0.15)  Cj'jcs($/unit-km) 
U (50,100) dkcs(103 unit) U  (0.05,0.15)  Cjkcs($/unit-km) 

U (110,180) ×(no.cust./no.DC) Sic (103 unit) U  (0,1)  Ps(∑Ps=1)  
U  (0.5,1) qis U  (200,210)  ($) icsφ  
U  (0.5,1)  qjs U  (205,215)  j'cs($)  φ  

1000 M 2-3 υc (m3) 
250  Fjc($) 200 hjc($) 

2000(10 times bigger than minimum procurement cost)  πkc($) 205  h ̒jc($) 
2500(12.5 times bigger than minimum procurement cost)  π ̒kc($)    

 
5.1. Studying Conflict between objective Functions  
 
Here, problem 3 is selected in order to study the conflict between objective functions and has been 
solved based on what was referred to Section 4.1 using Epsilon Constraint method; the results are given 
in Table 4. Table 4 shows that the assumed objective functions, of which one includes minimization of 
the expected value of supply costs and another one includes minimization of variance of the supply 
costs, change in the opposite directions; when one is improved, another one will be worsen. As a result, 
these two objective functions are conflicting and putting them beside each other does not seem 
reasonable. While separation of these two objective functions causes the manager to have more focus 
on the variance of costs, which is mostly neglected in decision making. 

 
Table 4  
Results of applying ε-constraint for test problem no. 3 in lingo 9 

Test prob.  z1  trend of changing z2 trend of CPU state
1 49831.11* - 5690.378 - 58 global
2 50019.66 ↗ 5482.973 ↙ 20 global
3 50208.2 ↗ 5275.58 ↙ 40 global
4 50396.73 ↗ 5068.196 ↙ 79 global
5 50558.526 ↗ 4890.22 ↙ 39 global
6 50773.79 ↗ 4653.43 ↙ 22 global
7 50962.32 ↗ 4446.047 ↙ 94 global
8 51150.85 ↗ 4238.66 ↙ 29 global
9 51339.39 ↗ 4031.27 ↙ 88 global
10 51527.92 ↗ 3823.887 ↙ 70 global
11 51716.44 ↗ 3616.515* ↙ 60 global

average 46241.26  4656.1 60.04 
 

5.1.The Results Obtained from Numerical Examples  
 

In this section, 10 problems are randomly designed (considering information available in Table 3) and 
solved with both exact and meta-heuristic methods mentioned in Section 4 to study efficiency of these 
methods. The obtained results are given comparatively in Table 5. As we can observe from the results 
of Table 5, for small instances, global solutions are available but for large scale problems, we need to 
use MOPSO. Using Eq. (34), we may compare the gap between the performance of B&B problem with 
MOPSO. The gap varies from 2% to 12% depending the size of the problem.  
 

)34(  
( ) ( & )

( & )
100MOPSO B Bn n

B Bn

obj objgap
obj

−
= × 
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Table 5  
Comparison of ε-constraint results in lingo 9 V.S MOPSO in MATLAB 
solver ε- constraint (lingo 9) MOPSO (MATLAB) 

gap%   
(z1) 

gap%   
(z2) 

test 
prob. 

no 
no. of S/SUP/DC/COM./CUS. 1Z  2Z  

CPU 
time(s) 

)B&B( 
state si

ze
 1Z  2Z  

no. of 
Pareto 

solution 
CPU time(s) 

1 2/2/3/1/2 38855.42 8307.11 42.79 global 

sm
al

l
 

39648.39 8653.24 8 16.75 -0.0204 -0.0417 

2 2/2/3/2/2 159783.74 29637.5 53.24 global 169982.7 31197.36 13 26.74 -0.0638 -0.0526 

*3 3/2/3/1/2 46241.26 4656.11 144.41 global 51854.03 6751.56 7 21.61 -0.1214 -0.45 

4 2/3/3/1/4 155251.43 71816.7 17100 local 

m
ed

iu
m

 

152146.4 63198.71 13 22.21 0.02 0.12 

5 3/3/3/2/2 153505.84 28678.2 17100 local 151970.8 23315.58 5 38.18 0.01 0.18 

6 3/3/3/2/3 164381.57 32506.1 17100 local 146299.6 25679.82 9 45.01 0.11 0.21 

7 3/4/4/2/3 167734.43 46040.2 19800 local 176562.6 47958.58 5 54.83 -0.0526 -0.0417 

8 4/5/4/2/4   172800 unknown 

la
rg

e
 

248237.1 90825.61 8 82.81   

9 4/5/8/2/4   172800 unknown 215013.8 343262.5 22 137.24   

10 5/5/10/3/4   172800 unknown 345831.1 449346.8 24 285.46   

 
In case the objective functions are improved, the minimum and maximum percent of improvement are 
calculated from 1% to 11% for the first objective function (Z1). In addition, the minimum and the 
maximum percentage of improvement are from 12% to 21% for the second objective function (Z2), 
respectively, which is regarded as considerable improvement compared with problem 7 with the 
worsened objective function. In the problems with large size, it is found that exact solution in lingo is not 
able to find the response while acceptable solution are created using MOPSO meta-heuristic algorithm. 
Both exact method and MOPSO meta-heuristic algorithm have reached reasonable solutions in a short 
period of time for small instances. For large scale problems, no response is obtained within 48 hours time 
execution using Lingo software. However, MOPSO meta-heuristic algorithm has been able to create 
justifiable solution within reasonable amount of time. Considering the mentioned cases, one can conclude 
that this algorithm is more efficient than the presented exact solution and is able to present justifiable and 
acceptable answers for large sizes. 
 
5.2. Sensitivity Analysis 
 
In order to study the effects of some important parameters on values of objective functions which are 
determined by trial and error method, five parameters including fixed cost of location, capacity of 
distribution centers, capacity of suppliers, shortage cost and demand rate have been selected and 
executed in MATLAB for problem 3 and their results are given in Fig. 4. As it is depicted, spacing 
metric has a non-decreasing trend with the increase of values of the intended parameters for shortage 
cost and the capacity of distribution center has an ascending trend for the fixed cost of location and has 
a fluctuating trend in other cases. In diversity metric, it has an ascending trend for the fixed cost of 
location and demand rate and has a descending trend for capacity of supplier and distribution centre 
and shortage cost and this trend holds true for quality metric. Regarding mean of the first objective 
function, an ascending trend is found in the fixed cost of location, shortage cost and demand rate and a 
descending trend is found in capacity of supplier and distribution center. As far as the second objective 
function is concerned, there is a generally descending trend in the fixed cost of location, capacity of 
supplier and distribution center and there is an ascending trend in shortage cost and demand rate. At the 
end, one can conclude that the related parameters influence the values of objective function and 
comparative indices of MOPSO, which are determined by considering the conditions related to the 
given supply chain and utility of the decision makers. However, it is worth noting that values of 
objective function changed a little in all the cases despite the changes of parameters and, as shown in 
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the figures, slope of the diagrams relating to mean of the objective functions is mild, which indicates 
robustness of the applied algorithm.  
 
 

 
  

(a) (b) (c) 
 

(d)  (e) 
Fig. 4. Sensitivity analysis 

  
5. Conclusion and future research 
 
This paper has concentrated on the joint location-inventory problem where a three-level supply chain 
networks under uncertain environment through finite discrete scenarios. We proposed a robust 
optimization model and formulated the model as a two-objective mixed-integer nonlinear 
programming. In addition, a multi-objective particle swarm has been applied to solve the model. Then 
computational trials for three sizes of the problem (small, medium, large) and MOPSO algorithm have 
been compared with the mean of obtained solution of lingo for each objective function by the ε-
constraint method. Numerical instances pointed out the MOPSO algorithm performed more logical 
compared with other algorithms. Meanwhile, MOPSO could find a near-optimal solution for large 
instances, where optimal solutions are not available. All in all cases, it could be said that the proposed 
algorithm has been able to solve the problem in reasonable amount of time, efficiently. Finally, a 
sensitivity analysis has been presented to survey the impacts of the most important factors on the 
objective functions and specific metrics of MOPSO algorithm, which indicates based on the MOPSO, 
the two mentioned objectives, show slight changes that approve the robustness of applied algorithm.  
 
The main contributions of this research lie in integrating strategic (location) decisions with tactical ones 
(inventory and support system). We have presented a robust optimization model by considering 
different uncertainties such as uncertain demand, supply, procurement, transportation cost, orders' 
amounts and facilities' capacities. This helps us design more realistic and flexible supply chain 
networks, contemplating the variance of total cost as an objective function.  
 
At last, as the future research directions of this work can be as follows: (1) merging the proposed model 
by pricing policies. (2) developing the model for more than three level supply chains and considering 
other uncertain factors such as lead times in order to more compatibility by real-world's situations. (3) 
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taking into account the discounting policies about procurement, transportation cost, and etc. (4) using 
other function such as financial risk or reliability as an individual objective.  
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