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 This study determines the optimal investment portfolio in Tehran Stock Exchange (TSE) 
industries. For this purpose, a conditional capital asset pricing model (CAPM) with time-varying 
covariance, according to a Multivariate GARCH approach has been formulated. According to this 
conditional CAPM, the conditional variance-covariance matrix and mean of returns are calculated 
for some industries. By using the Mean-Value at Risk portfolio selection model, the optimum 
proportion is detected. Results showed that the Pharmaceutical Industry, Financial Group and 
Cement Industry have the most quotas in portfolio since they maintain the minimum variance and 
maximum return among all other industries.  
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1. Introduction  
 
The capital asset pricing model (CAPM) was originally proposed by Sharp (1964) and Lintner (1965), 
independently. This model is based on the assumption that individual investors will hold only mean-
variance efficient portfolio. In other words, there are no other portfolios, which would offer a higher 
return for the same level of risk or a similar return for a lower level of risk (Morelli, 2003). CAPM has 
provided a straightforward and compelling theory of asset market pricing for many years (Bollerslev et 
al., 1988).  

Engle (1982) is believed to be the first who introduced the idea of ARCH model and various studies on 
CAPM in conditional form have been performed (Ferson et al., 1987). They developed this model by 
allowing expected risk premiums and market betas to vary over time. Bollerslev et al. (1988) 
considered time varying covariance in their study and estimated a Multivariate GARCH model for 
returns to bills, bonds and stocks in US. Their results showed that the conditional covariances are quite 
variable over time. Bodurtha and Mark (1991) and Ng (1991) also modeled the variance and covariance 
of CAPM variables over time according to Engle’s autoregressive conditional heteroskedasticity 
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(ARCH) model. De Santis Gerard (1997) implemented Multivariate GARCH model to consider 
variance and covariance components in CAPM over time. They tested this conditional CAPM for the 
world’s eighth largest equity markets. Morelli (2003) investigated conditional and unconditional 
versions of the CAPM on UK securities by using the ARCH type family of models. He compared the 
systematic risk factor (beta) of the security in conditional and unconditional asset pricing model and 
found that these values correlated, depending on the method used.  

After representing Modern Portfolio Theory by Markowitz (1952), various risk measures have been 
developed to extend this model. Value at Risk was one of these measures introduced by Till Guldimann 
(1980), which shows the maximum potential loss, during a defined period, under a given probability. 

In this paper, we construct an optimal portfolio for various industries in Tehran Stock Exchange (TSE). 
By considering conditional variance and covariance, conditional CAPM is represented. Optimum 
proportions in various industries are detected by using mean-VaR portfolio selection model. For this 
purpose, the CAPM’s feature is reviewed in section 2. By representing the ARCH and M-GARCH 
models in section 3 and 4, conditional CAPM is represented in section 5. To consider these industries 
as a dynamic construction, Vector Autoregressive model has been represented in section 6. In section 7, 
Markowitz mean-variance model has been introduced. The Value at Risk has been represented in 
section 8 as the portfolio selection model risk measure and the Mean-VaR portfolio selection model is 
represented in section 9. To determine conditional variance, covariance and conditional mean of returns 
for conditional CAPM, various tests like stationary test and the ARCH-LM test, are used to detect the 
suitable VAR-Multivariate GARCH model in section 10. Finally, the optimum proportions are 
determined by using these conditional variance, covariance and mean of returns and the Mean-VaR 
portfolio selection model in section 11.    

 2. The Capital Asset Pricing Model 

The capital asset pricing model (CAPM), originally proposed by Sharp (1964) and Lintner (1965) 
independently following the suggestion of mean variance optimization in Markowitz (1952) has 
provided a straightforward and compelling theory of asset market pricing for many years (Bollerslev et 
al., 1988). This model is based on the assumption that individual investors will hold only mean 
variance efficient portfolios. The theory of the model tries to predict the expected return of an asset as 
the combination of the risk free rate and a proportion of the nondiversifiable risk (systematic or market 
risk), which is measured by the covariance of the asset return with the market portfolio (Bollerslev et 
al., 1988). According to this model, the expected return can be expressed as: 

( ) ( ( ) )β= + −i F M F iE R R E R R  (1)
Where ( )iE R is the expected return of security i, MR  is the market return, FR  is the risk free rate of 
return and β i  is the systematic risk measure for security i. Systematic risk measure (β i ) can be 
derived as the coefficient of a linear regression between the security return and the market return: 

0 ,it i Mt itR Rα β ε= + +  (2)
where 

( , )
( )

β = i M
i

M

Cov R R
V ar R

 (3)

3. Autoregressive Conditional Heteroskedasticity Models 

In conventional econometrics models, it is assumed that residuals variance is constant over sample time 
period (homoscedastic), while analyzing different financial time series like GDP growth rate, exchange 
rate and etc. demonstrate that most of these series do not maintain constant return and they have 
different volatility over time. This feature is called volatility clustering which describes that these series 
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have low volatility in one period and high volatility in another one. According to these explanations, 
the assumption of constant variance or homoscedasticity is not so reasonable.   

Engle (1982) formulated this process and developed autoregressive conditional heteroskedasticity 
(ARCH) model, which allows conditional variance to change over time. In order to model these time 
series, if one assumes that the series follows a first order autoregressive process, then: 

0 1 1 ε−= + +t t tr a a r . (4)
The residuals are normally distributed with mean zero and variance th  

(0, )ε �t t tI N h , (5)
 where 

2 2
1 1 0

1

( ) ( )ε ε α α ε− − −
=

= = = +∑
q

t t t t t i t j
j

V ar I E I h , (6)

where q represents the order of the process, the conditional variance is given as a linear function of past 
squared errors (Morelli, 2003). 

Bollerslev (1986) extended Engle’s ARCH model to the generalized autoregressive conditional 
heteroskedasticity (GARCH) model. The GARCH model allows the conditional variance to be 
dependent upon previous own lags, so that a GARCH process of order (p,q) is given by: 

2 2
1 1 0

1 1

( ) ( )ε ε α α ε β− − − −
= =

= = = + +∑ ∑
q p

t t t t t i t j j t j
j j

V ar I E I h h (7)

 4. Multivariate GARCH models 

Nowadays it is widely accepted that financial volatility moves between different markets and 
VARIOUS financial assets. Autoregressive Conditional Heteroskedasticity models are now widely 
implemented to describe financial time series volatility changes.  

Multivariate GARCH models were developed from simple GARCH models and they were extended in 
last 1990ˈs. Most application of these models is the analysis of volatility relationship between different 
markets. These models are similar to their univariate counterpart, except that they also consider 
covariances movement over time (Brooks, 2008). Let tr  be the security return time series as follows,  

0 1 1 ,t t tr a a r ε−= + +  (8)
and  

1
2ε =t t tH z  (9)

where 

( ) 0, ( )t t NE z Var z I= =  (10)

and 
1

2
tH  is a ×N N  is positive definite matrix and tH is the conditional variance of εt as follows, 

1( )t t tH Cov Iε −=  (11)
In tH modeling, Multivariate GARCH modeling is different (Bauwens et al., 2006) and two different 
Multivariate GARCH formulations have been proposed in the literature, including the VECH and 
BEKK models. 
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 4.1. The VECH Model 

According to Bollerslev et al. (1988), a common specification of the VECH model is as follows, 

1 1 1 1( ) ( ) ( ) (0, )t t t t t t tvech H C A vech B vech H N Hε ε ε ψ− − − −′= + + � , (12)
where tH  is a ×N N conditional variance-covariance matrix, εt  is an 1×N  innovation vector, 

1ψ −t  represents the information set at time 1−t , C is a ( 1) 12
N N + ×  parameter vector, A and B 

are  ( 1) ( 1)
2 2

+ +×N N N N  parameter matrices and VECH(.) denotes the column-stacking 

operator applied to the upper portion of the symmetric matrix (Brooks, 2008). 

4.2. The BEKK Model 

The BEKK model (Engle & Kroner, 1995) addresses the difficulty with VECH of ensuring that the tH  
matrix is always positive definite. It is represented by: 

1 1 1 ,t t t tH w w A H A B Bε ε− − −′ ′ ′ ′= + +  (13)
where A, and B are ×N N  matrices of parameters and W is an upper triangular matrix of parameters. 
The positive definiteness of the covariance matrix is ensured owing to the quadratic nature of the terms 
on the equation’s right hand side (Brooks, 2008).  

5. Conditional Capital Asset Pricing Model 

The conditional CAPM allows the variance and covariance of security i to be time varying. Conditional 
CAPM can be shown as: 

( )( )1 1 1( ) ,it t F i t Mt t FE R I R I E R I Rβ− − −= + −  (14)
where  

( )
( )

1
1

1

,
β −

−
−

= it Mt t
i t

Mt t

Cov R R I
I

Var R I
. (15)

To define variance-covariance matrix values, various M-GARCH models can be used. In this research, 
the BEKK model has been used as it ensures tH matrix to be always positive definite. 

6. VAR 

By increasing the efficiency of markets and globalization of the financial markets and also high 
developments in internet communications, price volatility has moved quickly among various markets. 
For this reason, financial markets have been dependent to each other more than past and they must be 
considered as a dynamic construction. Requests transfer from different industries in stock exchange 
market can be a typical example of this subject. Detecting this relationship among various markets is 
one of the most important objects in financial modeling. For this purpose, Sims (1980) popularized 
vector autoregressive models (VARs) in econometrics. VARs are vector form of simple AR models 
where contains more than one equation. Standard form of this model is as below: 

0 1 1t t tx A A x ε− ′= + + , (16)
where tx is the coefficient matrix, 0A is the intercept matrix, 1A is the polynomials matrix in terms of 
the lag operator and ε′t is the white noise matrix. So, vector autoregressive models can be displayed as:  
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7. Mean-Variance Portfolio Selection Model 

This model was first represented by Harry Markowitz in 1952 and is the most common and famous 
approach in portfolio selection problems with the following assumptions, 

1. Risk of a portfolio is based on the variability of returns from the said portfolio. 

2. An investor is risk averse. 

3. An investor prefers to increase consumption. 

4. The investor's utility function is concave and increasing, due to his risk aversion and 
consumption preference (Markowitz, 2005).  

5. Analysis is based on single period model of investment (Markowitz, 2005).  

6. An investor either maximizes his portfolio return for a given level of risk or maximum return 
for minimum risk (Markowitz, 2009).  

7. An investor is rational in nature (Markowitz, 2005).  

To choose the best portfolio from a number of possible portfolios, each with different return and risk, 
two separate decisions are to be made: 

1. Determination a set of efficient portfolios. 

2. Selection of best portfolio out of the efficient set 

Markowitz modeled the portfolio selection problem as a quadratic programming with minimum 
portfolio variance in objective function subject to that the expected return of the portfolio to be greater 
than a specified return. There are also two important constraints in this model, where summation of 
assets weights in portfolio must be equal to one and each of these weights should be a real non negative 
number (short selling is forbidden). This model was represented as below: 

1 1

1

1

min

subject to

1

0

n n

i j ij
i j

n

i i
i

n

i
i

i

z w w

w R d

w

w

σ
= =

=

=

=

≥

=

≥

∑∑

∑

∑

 (18)
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8. Value at Risk 

Standard deviation of the portfolio return distribution is one of the common risk measures. Facility of 
usage, calculation and comparability among different portfolios, make this measure more popular. 
Nowadays, with the development of asset and liabilities management systems, measuring Value at Risk 
is important.    

The Value at Risk is one of the major risk indicators for financial portfolio or product. It was 
introduced by Till Guldimann in 1980 and then was extended by J.P. Morgan institute in the late 
1980′s. It provides a measure of the maximal potential loss, during a defined period, under a given 
probability for a financial product or portfolio. The maximal potential loss of a portfolio can be 
measured by its return probability distribution function. This evident is illustrated in Fig 1.   

 

Fig.1. Value at Risk in a normal returns function 

For instance, the Value at Risk under confidence level of 99% and 10 day time horizon indicates that, 
the maximum expected loss exceeds only for one time over per 100 samples from VaR over these 10 
days. According to these explanations, Value at Risk can be calculated as follow: 

1
1 ( ) inf ( )α α α−
− = − = − ⎡ ≥ ⎤⎣ ⎦x xVaR F x F x  (19)

Value at Risk’s calculation methods can be divided into two types of parametric and nonparametric 
methods. Parametric method contains variance-covariance and some analytical methods and 
nonparametric method contain Monte Carlo simulation and historical simulation methods (Frank, 
2004). In this research, Value at Risk approach is used as the risk measure in portfolio selection model.  

9. Mean-VaR Portfolio Selection Model 

Mean-VaR model is basically constructed according to Markowitz mean variance model as regards it 
has the Value at Risk as the risk measure in its objective function. This model is represented as below: 

1 1 1

1

1

min : ( )

subject to 

1

0

n n n
p p r i i ij i ji i j

n
i ii

n
ii
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VaR E R z w w w R z w w

w R d

w

w

α α σ
= = =

=

=

′= − ∑ = −

≥

=

≥

∑ ∑ ∑

∑
∑

 (20)

  pVaR : Portfolio’s Value at Risk 
n : Indices number  

iw : The proportion of industry i in the portfolio  
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iR : Expected return of industry i 

σ ij : Variance-covariance matrix 

d : Minimum level of investor expected return 
10. Numerical Analysis   

10.1. Data 

The data is obtained from the Tehran Stock Exchange (TSE) database. The sample period begins at the 
first of January 2005 and finishes at the end of September 2012. The data used is monthly return on ten 
different TSE industries, which contain more than 90 percent of TSE’s market value. These industries 
are: Multidisciplinary Industrial, Bank, Automobile Industry, Metal Ores, Chemical Industry, 
Pharmaceutical Industry, Cement Industry, Financial Group, Petroleum Refining Industry and Basic 
Metals Group. The returns of these industries are defined as follows: 

1ln ( ) ln ( ),t t tR P P−= −  (21)
where tR is the return of month t, Ln is the logarithm and tP  is the price index of the industry at the end 
of month t.   

10.2. Stationary Test 

Stationary, is the basis of time series analysis. Stationary series express that the volatility of data are 
constant on a specific level over time. To test the stationary, the existence of unit root was reviewed in 
each series. For this purpose, Augmented Dickey-Fuller test is used and the results are exhibited in 
Table 1. 

Table 1  
Stationary Test of Time Series 

Time Series ACD Statistic Critical Level (5%) Critical Level (10%) Stationary 
Market Index -5.712 -1.944 -1.614 Positive 
Bank -9.201 -1.944 -1.614 Positive 
Multidisciplinary Industrial -6.636 -1.944 -1.614 Positive 
Pharmaceutical Industry -6.011 -1.944 -1.614 Positive 
Basic Metals Group -6.131 -1.944 -1.614 Positive 
Metal Ores -6.721 -1.944 -1.614 Positive 
Automobile Industry -7.559 -1.944 -1.614 Positive 
Petroleum Refining Industry -7.243 -1.944 -1.614 Positive 
Financial Group -8.630 -3.459 -3.155 Positive 
Chemical Industry -7.281 -1.944 -1.614 Positive 
Cement Industry -7.336 -3.459 -3.155 Positive 
 

The results explicitly show that, none of the time series has unit root at the critical level of 5% and 
10%. This shows that all these time series have stationary.    

10.3. Autoregressive Conditional Heteroskedasticity (ARCH) Test 

In order to test the existence of ARCH effects in residuals of each time series, an ARMA model is 
estimated for each series and then the ARCH-LM test is used to check the Heteroskedasticity effect in 
series. Results are exhibited in Table 2. According to these results, most of the time series have 
conditional heteroskedasticity in their error terms except the Pharmaceutical Industry, Automobile 
Industry and Financial Group time series. In other words, these time series variance should be 
considered homoscedastic (constant).      
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Table 2  
The ARCH-LM Test 
Time Series F Statistic Probability ARCH Effect 
Market Index 6.436 0.0129 Positive 
Bank 4.012 0.0479 Positive 
Multidisciplinary Industrial 8.896 0.0037 Positive 
Pharmaceutical Industry 0.071 0.7905 Negative 
Basic Metals Group 9.425 0.0028 Positive 
Metal Ores 7.323 0.0081 Positive 
Automobile Industry 0.055 0.8157 Negative 
Petroleum Refining Industry 4.179 0.0439 Positive 
Financial Group 0.0002 0.9864 Negative 
Chemical Industry 6.521 0.0167 Positive 
Cement Industry 6.792 0.0144 Positive 
 

10.4. VAR-Multivariate GARCH Model Estimation 

In order to forecast variance-covariance matrix for the next period (month), Diagonal BEKK model -
because of its benefits to other Multivariate GARCH models- is used in this research. 

10.4.1. VAR estimation 

Results of VAR estimation for four lag are exhibited in summary in Table 3. 

Table 3  
The VAR Estimation 

Lag AIC Criteria SC Criteria HQ Criteria
0 -27.406 -24.351 -26.175 
1 -27.864* -27.587* -27.752* 
2 -26.933 -21.101 -24.581 
3 -26.352 -17.741 -22.880 
4 -25.979 -14.592 -21.387 

 

The results show the first lag as the optimum lag.  

10.4.2. Diagonal BEKK estimation 
 

In this section, optimum ARCH and GARCH lags in Diagonal BEKK model is estimated on VAR for 
return time series. Results of this estimation are exhibited in Table 4, where q represents ARCH’s lag 
and p represents GARCH’s lag. 

Table 4  
Optimum Lag in Multivariate GARCH Model 

ARCH’s Lag (q) GARCH’s Lag (p) AIC Criteria SC Criteria HQ Criteria 
0 1 -26.209 -21.471 -24.296 
1 1 -26.276* -21.811* -24.473* 
1 2 -26.003 -20.992 -23.979 
2 1 -25.288 -20.277 -23.265 
2 2 -25.558 -20.275 -23.425 

 

All the AIC, SC and HQ criteria, specified the GARCH (1, 1)-BEKK model as the optimum model.   

10.5. Conditional Variance-Covariance Matrix 

By estimating optimal lags in Multivariate GARCH model, conditional variance-covariance matrix is 
forecasted for the next period according to VAR(1)-GARCH(1,1)-BEKK model. This matrix is 
displayed in Table 5. 
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Table 5  
Variance-Covariance Matrix 

 MaI B MuI PI BMG MO AI PRI FG ChI CeI 
MaI 1.39 0.85 1.53 0.79 1.97 2.07 1.21 1.5 1.01 1.94 0.67 
B 0.85 9.63 1.49 0.61 0.91 -0.14 1.56 0.5 1.13 1.17 2.06 

MuI 1.53 1.49 4.45 0.91 2.29 2.87 1.69 1.21 1.62 1.65 0.86 
PI 0.79 0.61 0.91 1.57 1.12 1.67 1.44 1.06 0.65 0.92 0.28 

BMG 1.97 0.91 2.29 1.12 4.62 4.73 0.64 1.92 0.85 2.27 0.53 
MO 2.07 -0.14 2.87 1.67 4.73 9.42 1.79 2.61 1.55 3.49 0.26 
AI 1.21 1.56 1.69 1.44 0.64 1.79 4.75 0.9 1.84 0.98 0.89 

PRI 1.5 0.5 1.21 1.06 1.92 2.61 0.9 5.26 0.98 2.96 1.23 
FG 1.01 1.13 1.62 0.65 0.85 1.55 1.84 0.98 1.83 1.22 0.61
ChI 1.94 1.17 1.65 0.92 2.27 3.49 0.98 2.96 1.22 4.44 1.49 
CeI 0.67 2.06 0.86 0.28 0.53 0.26 0.89 1.23 0.61 1.49 2.55 

*All numbers in the table have a 10-3 coefficient  

10.6. Conditional Mean of Returns 

As we know, mean, variance and covariance are the most important factors in portfolio selection 
models. In this section, conditional mean of returns time series are estimated by using Eq. (1), Eq. (3) 
and the conditional values of Market Index variance and covariances in Table 5. Risk free rate of return 
is obtained from the common annual investment rate in banking system and is equal to 0.17, which can 
be considered 0.013 per month. Table 6 shows the conditional mean of return calculated by the 
conditional CAPM model.    

Table 6  
Conditional Mean of Return 
Time Series Systematic Risk (Beta i) Conditional Mean of Return 
Bank 0.61 9.33 
Multidisciplinary Industrial 1.10 6.39 
Pharmaceutical Industry 0.57 9.59 
Basic Metals Group 1.42 4.49 
Metal Ores 1.49 4.06 
Automobile Industry 0.87 7.77 
Petroleum Refining Industry 1.08 6.52 
Financial Group 0.73 8.64 
Chemical Industry 1.39 4.63 
Cement Industry 0.48 10.11 
*All numbers in conditional mean of return column have a 10-3 coefficient  

11. Determination of Optimal Portfolio 

According to Eq. (20) and variance, covariance and mean values in Table 5 and 6, optimal investment 
proportion in Tehran Stock Exchange different industries has been detected.   

Table 7  
Conditional Mean of Return 
Industries Optimal Proportion 
Bank 0 0 0 0  
Multidisciplinary Industrial 0 0 0 0
Pharmaceutical Industry 0.46 0.46 0.46 0.21 
Basic Metals Group 0 0 0 0
Metal Ores 0 0 0 0
Automobile Industry 0  0 0 0
Petroleum Refining Industry 0 0 0 0
Financial Group 0.27 0.27 0.27 0
Chemical Industry 0 0 0 0
Cement Industry 0.27 0.27 0.27 0.79 
Expected Return (d) 0.004 0.006 0.008 0.01 
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The results show that, those industries with minimum variance and maximum return have the most 
quotas in portfolio. 

12. Conclusion 

The capital asset pricing model (CAPM) is based on the assumption that individual investors hold only 
the efficient portfolio. In other words, there are no other portfolios, which would offer a higher return 
for the same level of risk or a similar return for a lower level of risk.  

By using Engle and Kroner’s Multivariate GARCH model (BEKK), the conditional capital asset 
pricing model formulation has been represented. According to this model, the conditional variance-
covariance matrix and the conditional CAPM components of TSE’s different industries return time 
series were calculated. 

Optimal investment proportion has been detected by using the Mean-VaR portfolio selection model. 
The results of our survey have demonstrated that the Pharmaceutical Industry, Financial Group and 
Cement Industry can be considered as the best options for investment planning and the reason is 
primarily because of their minimum risk and maximum return among these industries. 
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