
* Corresponding author.  +88-01911769364 
E-mail:  ripon_ipebuet@yahoo.com (R. Kumar Chakrabortty) 
 
© 2012 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2012.09.003 
 

 

 
 

International Journal of Industrial Engineering Computations 4 (2013) 1–12 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
Solving an aggregate production planning problem by using multi-objective genetic algorithm 
(MOGA) approach 

 

 
Ripon Kumar Chakraborttya* and Md. A. Akhtar Hasinb  
 
 

 
 
aDepartment of Industrial & Production Engineering, Rajshahi University of Engineering & Technology, Rajshahi-6204, Bangladesh 
bDepartment of Industrial and Production Engineering, Bangladesh University of Science and Technology (BUET), Dhaka-1000, Bangladesh 
A R T I C L E I N F O                            A B S T R A C T 

Article history:  
Received 5 September  2012 
Received in revised format            
25 September  2012 
Accepted September 27  2012  
Available online  
27 September 2012 

 In hierarchical production planning system, Aggregate Production Planning (APP) falls between 
the broad decisions of long-range planning and the highly specific and detailed short-range 
planning decisions. This study develops an interactive Multi-Objective Genetic Algorithm 
(MOGA) approach for solving the multi-product, multi-period aggregate production planning 
(APP) with forecasted demand, related operating costs, and capacity. The proposed approach 
attempts to minimize total costs with reference to inventory levels, labor levels, overtime, 
subcontracting and backordering levels, and labor, machine and warehouse capacity.  Here 
several genetic algorithm parameters are considered for solving NP-hard problem (APP problem) 
and their relative comparisons are focused to choose the most auspicious combination for solving 
multiple objective problems.  An industrial case demonstrates the feasibility of applying the 
proposed approach to real APP decision problems. Consequently, the proposed MOGA approach 
yields an efficient APP compromise solution for large-scale problems.  
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1. Introduction  
 
Aggregate production planning is associated with the determination of inventory, production and work 
force levels to consider fluctuating demand needs over a planning horizon, which ranges from six 
months up to a year. Typically, the planning horizon includes the next seasonal peak in demand. The 
planning horizon can be divided into periods. For instance, a one-year planning horizon could consist 
of six one-month periods plus two three-month periods. We may consider a fixed value for the physical 
resources of the firm during the planning horizon of interest and the planning attempt is oriented 
towards the best utilization of those resources, given the external demand needs. Since it is usually 
impractical to consider every fine detail related to the production process while maintaining such a long 
planning horizon, it is obligatory to aggregate the information being processed. The aggregate 
production approach is forecasted on the existence of an aggregate unit of production, such as the 
“average" item, or in terms of weight, volume, production time, or dollar value. Plans are based on 
aggregate demand for one or more aggregate items. Once the aggregate production plan is created, 



  2

constraints are applied on the detailed production scheduling process, which decides the specific 
quantities to be produced of each individual item.  
 
APP has attracted considerable interest from both practitioners and academics (Shi & Haase, 1996). For 
solving APP problems, certain constraints are imposed which demand constraint optimization. Ioannis 
(2009) described a novel genetic algorithm for the problem of constrained optimization. His model was 
a modified version of the genetic operators namely crossover and mutation. These new version preserve 
the feasibility of the trial solutions of the constrained problem that are encoded in the chromosomes. 
Bunnag and Sun (2005) presented a stochastic optimization method, referred to as a Genetic Algorithm 
(GA), for solving constrained optimization problems over a compact search domain. It was a real-
coded GA, which converges in probability to the optimal solution. The constraints were treated through 
a repair operator. A specific repair operator was included for linear inequality constraints. Summanwar 
et al. (2002) introduced a method for constrained optimization using a modified multi-objective 
algorithm. Their algorithm treats the constraints as objective functions and handles them using the 
concept of Pareto dominance. The population members were ranked by two different methods: first 
ranking is based on objective function value and the second ranking is based on Pareto dominance of 
the population members. 
 
When we solve APP problem, we have to face with uncertain market demands and capacities in 
production environment, imprecise process times, and other factors introducing inherent uncertainty to 
the solution. Using deterministic and stochastic frameworks in such conditions may not lead to 
desirable results (Aliev et al., 2007). Aliev et al. (2007) developed a fuzzy integrated multi-period and 
multi-product production and distribution model in supply chain where the model was modeled in 
terms of fuzzy programming and the solution was provided by genetic optimization.  
 
Genetic Algorithm (GA) normally provides a series of alternative solutions for various GA parameter 
values. The decision-maker can find alternative optimal solutions from a series of alternative values 
(Sharma & Jana, 2009). In order for GAs to surpass their more traditional cousins in the quest for 
robustness, they must vary in some very fundamental ways (Goldberg, 1989). Four differences separate 
GAs from more traditional optimization techniques and those are, direct manipulation of a coding, 
searching from a population rather than a single point, following a blind searching technique and 
finally search using stochastic operators, not deterministic rules. It can be quite efficient to combine 
GA with other optimization methods. GA seems to be quite good for finding generally good global 
solutions, but quite inefficient at locating the last few mutations to determine the absolute optimum. 
Other techniques (such as simple hill climbing) are quite efficient at finding absolute optimum in a 
limited region. Alternating GA and hill climbing can improve the efficiency of GA while overcoming 
the lack of robustness of hill climbing. For solving Multiple Objective problems GA could generate the 
most optimum value (Yeh & Chuang, 2011).   
 
Multi-objective optimization, multi-objective programming or Pareto optimization also known as 
multi-criteria or multi-attribute optimization is the process of simultaneously optimizing two or more 
conflicting objectives subject to certain constraints (Cai & Wang, 2006). These problems have 
absorbed many researchers using traditional techniques of optimization and search as well as GAs 
(Schaffer, 1985). On the other hand, Lai and Hwang (1992) developed an auxiliary multiple objective 
linear programming (MOLP) model for solving a PLP problem with imprecise objective and/or 
constraint coefficients. Yeh and Chuang (2011) used multi-objective GA for partner selection in green 
supply chain problems. In their work, they involved four objectives such as cost, time, product quality 
and green appraisal score for optimization or minimization. In order to solve these conflicting 
objectives, they adopted two multi-objective genetic algorithms to find the set of Pareto-optimal 
solutions, which utilized the weighted sum approach, which could generate more number of solutions. 
This implies Pareto optimality is more suitable for multi-objective optimization cases. Number of 
Pareto-optimal solutions is also a determinant for suitability justification (Yeah & Chuang, 2011).  
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Again, with the consideration of NP-hard problems Moghaddam & Safaei (2006) presented a genetic 
algorithm (GA) for solving a generalized model of single-item resource constrained aggregate 
production planning (APP) with linear cost functions. In their paper, they developed a new genetic 
algorithm with effective operators and integer representation.  Most recently, Ramezanian et al. (2012) 
concentrated on multi-period, multi-product and multi-machine systems with setup decisions. In their 
study, they developed a mixed integer linear programming (MILP) model for general two-phase 
aggregate production planning systems. Due to NP-hard class of APP, they implemented a genetic 
algorithm and Tabu search for solving this problem. 
 
Throughout the review, it is obvious that there have been a long evolution phase for GA algorithms. 
Yet the researchers obstinately keep on this and they got newer dimension. Here the authors become 
optimistic enough after reviewing all the literatures since there are good opportunities for future 
contributions. Here, the authors considered multiple objectives for multi period and multi product APP 
problem. However, the distinction lies in the followed approach. We used five scenarios 
simultaneously with different GA options for solving multiple objectives. A detailed comparison is also 
placed to choose the perfect combination of GA parameters.  In the previous works with GA for APP, 
there not any single application of escalating factors for any little uncertainty or imprecise costs. This 
work develops a novel interactive MOGA approach considering escalating factors as well. The 
proposed approach attempts to minimize total costs in terms of inventory levels, labor levels, overtime, 
subcontracting and backordering levels, and labor, machine and warehouse capacity. 
  
The rest of this paper is organized as follows: Section 2 describes the problem, details the assumptions, 
and formulates the problem. Section 2 also focused on the multiple objectives for the APP case and 
considered parameters for solving this MOGA approach. Subsequently, Section 3 presents an industrial 
case designed on Bangladeshi perspective to implement the feasibility of applying the proposed 
Multiple Objective Genetic Algorithm (MOGA) approach to real APP decision problems. Next, 
Section 4 discusses the results and findings for the practical application of the proposed PLP approach. 
Conclusions are finally drawn in Section 6. 
 
2. Problem formulation 
 
2.1 Problem description & notation 
 
The multi-product APP problem can be described as follows. Assume that a company manufactures N 
kinds of products to meet market demand over a planning horizon T. This APP problem focuses on 
developing an interactive MOGA approach to determine the optimum aggregate plan for meeting 
forecasted demand by adjusting regular and overtime production rates, inventory levels, labor levels, 
subcontracting and backordering rates, and other controllable variables. Based on the above 
characteristics of the considered APP problem, the mathematical model herein is developed on the 
following assumptions. 
 

i. The values of all parameters are certain over the next T planning horizon. 
ii. The escalating factors in each of the costs categories are certain over the next T planning 

horizon. 
iii. Actual labor levels, machine capacity and warehouse space in each period cannot exceed their 

respective maximum levels. 
iv. The forecasted demand over a particular period can be either satisfied or backordered, but the 

backorder must be fulfilled in the next period. 
 
The following notation is used after reviewing the literature and considering practical situations (Wang 
& & Liang, 2004; Masud & Hwang, 1980; Wang & Fang, 2001). 
 



௡௧      Forecasted demand for nth product in period t (units) ܽ௡௧  Regular time production cost per unit for nth product in period t (Tk./unit) ܳ௡௧ܦ4    Regular time production for nth product in period t (units) ݅௔ Escalating factor for regular time production cost (%) ܾ௡௧ Overtime production cost per unit for nth product in period t (Tk./unit) ܱ௡௧ Overtime production for nth product in period t (units) ݅௕ Escalating factor for overtime production cost (%) ܿ௡௧ Subcontracting cost per unit of nth product in period t (Tk./unit) ܵ௡௧ Subcontracting volume for nth product in period t (units) ݅௖ Escalating factor for subcontract cost (%) ݀௡௧ Inventory carrying cost per unit of nth product in period t (Tk./unit) ܫ௡௧ Inventory level in period t for nth product (units) ݅ௗ Escalating factor for inventory carrying cost (%) ݁௡௧  Backorder cost per unit of nth product in period t (Tk./unit) ܤ௡௧  Backorder level for nth product in period t (unit) ݅௘ Escalating factor for backorder cost (%) ܭ௧ Cost to hire one worker in period t (Tk./man-hour) ܪ௧ Worker hired in period t (man-hour) ݉௧ Cost to layoff one worker in period t (Tk./man-hour) ܨ௧ Workers laid off in period t (man-hour) ݅௙ Escalating factor for hire and layoff cost (%) ݅௡௧ Hours of labor per unit of nth product in period t (man-hour/unit) ݎ௡௧ Hours of machine usage per unit of nth product in period t (machine-hour/unit) ௡ܸ௧ Warehouse spaces per unit of nth product in period t (ft2/unit) ௧ܹ௠௔௫ Maximum labor level available in period t (man-hour) ܯ௧௠௔௫ Maximum machine capacity available in period t (machine-hour) ௧ܸ௠௔௫ Maximum warehouse space available in period t (ft2) 
 
2.2 Multi-Objective Genetic Algorithm (MOGA) Model 
 
2.2.1 Multi-Objective functions 
 
Most practical decisions made to solve APP problems usually consider total costs. The proposed 
MOGA targeted three objective functions. First, it selected total costs as objective function, after 
reviewing the literature and considering practical situations (Masud & Hwang, 1980; Saad, 1982; Wang 
& Fang, 2001). The total costs are the sum of the production costs and the costs of changes in labor 
levels over the planning horizon T. Accordingly, the objective function of the proposed model is as 
follows: Min	Zଵ = 	෍෍ሾܽ௡௧	ܳ௡௧(1 + ݅௔)௧ +	ܾ௡௧ܱ௡௧(1 + ݅௕)௧	 + ܿ௡௧ܵ௡௧(1 + ݅௖)௧ + ݀௡௧ܫ௡௧(1 + ݅ௗ)௧்

௧ୀଵ
ே
௡ୀଵ + ݁௡௧ܤ௡௧(1 + ݅௘)௧ሿ +	෍(ܭ௧ܪ௧ + ݉௧ܨ௧)்

௧ୀଵ ൫1 + ݅௙൯௧ 
Here the first five terms are used to calculate production costs. The production costs include five 
components-regular time production, overtime, and subcontracts, carrying inventory and backordering 
cost. The later portion specifies the costs of change in labor levels, including the costs of hiring and lay 
off workers. Escalating factors were also included for each of the cost categories. Again, for 
minimizing carrying and backordering cost (Z2) and minimizing rate of change in labor levels (Z3) the 
following objective functions are considered. 



R. Kumar Chakrabortty and Md. A. Akhtar Hasin / International Journal of Industrial Engineering Computations 4 (2013) 
 

5

Min	Zଶ = 	෍෍ሾ݀௡௧ܫ௡௧(1 + ݅ௗ)௧ + ݁௡௧ܤ௡௧(1 + ݅௘)௧ሿ்
௧ୀଵ

ே
௡ୀଵ 	and				Min	Zଷ = 	෍(ܪ௧ − ்(௧ܨ

௧ୀଵ  

 
2.2.2 Constraints 
 
Constraints on carrying inventory: 
௡௧ܫ  − ௡௧ܤ = ௡(௧ିଵ)ܫ − ௡(௧ିଵ)ܤ + ܳ௡௧ + ܱ௡௧ + ܵ௡௧ − ௡௧ܦ ݎ݋݂ ∀݊, ݐ∀  
 

௡௧ܫ  (1) ≥ ,݊∀	ݎ݋݂	௡௧௠௜௡ܫ  	ݐ∀
 

௡௧ܤ (2) ≤ ,݊∀	ݎ݋݂	௡௧௠௔௫ܤ  	ݐ∀
 

(3) 

where, Dnt denotes the imprecise forecast demand of the nth product in period t. In real-world APP 
decision problems, the forecast demand Dnt cannot be obtained precisely in a dynamic market. The sum 
of regular and overtime production, inventory levels, and subcontracting and backorder levels 
essentially should equal the market demand, as in first constraint Equation. Demand over a particular 
period can be either met or backordered, but a backorder must be fulfilled in the subsequent period. 
Constraints on Labor levels: 
 ෍݅௡(௧ିଵ)ே
௡ୀଵ ൫ܳ௡(௧ିଵ) + ܱ௡(௧ିଵ)൯ + ௧ܪ − ௧ܨ = ෍ ݅௡௧ே

௡ୀଵ (ܳ௡௧ + ܱ௡௧) ݎ݋݂  ݐ∀
 

(4)  

෍݅௡௧ே
௡ୀଵ (ܳ௡௧ + ܱ௡௧) ≤ ௧ܹ௠௔௫					݂ݎ݋	ݐ∀ 
 

(5)  

Here in the fourth constraint, equation represents a set of constraints in which the labor levels in period 
t equal the labor levels in period t-1 plus new hires less layoffs in period t. Actual labor levels cannot 
exceed the maximum available labor levels in each period, as in fifth equation. Maximum available 
labor levels are imprecise, owing to uncertain labor market demand and supply. 
Constraints on Machine capacity & Warehouse space: 
 ܵ௡௧ ≤ ܵ௡௧௠௔௫				݂ݎ݋	∀݊,  ݐ∀
 

(6)  

෍ݎ௡௧ே
௡ୀଵ (ܱ௡௧ + ܳ௡௧) ≤   (7) 	ݐ∀	ݎ݋݂		௧௠௔௫ܯ

෍ ௡ܸ௧ܫ௡௧ ≤ ௧ܸ௠௔௫			݂ݎ݋	ݐ∀ே
௡ୀଵ  

 

(8)  

Eq. (6-8) represent the limits of actual machine and warehouse capacity in each period. Non-negativity 
Constraints on decision variables are: 
 ܳ௡௧, ܱ௡௧, ܵ௡௧, ,௡௧ܫ ,௡௧ܤ ,௧ܪ ௧ܨ ≥ ,݊∀	ݎ݋݂		0 ݐ∀ (9)  
 
2.3 Outline of the Basic MOGA Model 
 
Step 1: Generate random population of n chromosomes (suitable solutions for the problem)  
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Step 2: Evaluate simultaneously the Multiple fitness f(x) of each chromosome x in the population  
Step 3: Create a new population by repeating four steps (Selection, Crossover, Mutation and 
Acceptation) until the new population is complete.  
Step 4: Use new generated population for a further run of algorithm  
Step 5: If the stopping condition is satisfied, stop, and return the best solution in current population  
Step 6: If the stopping condition is not satisfied then go to step 2 & follow loop. 
 
2.4 Multi-Objective Genetic Algorithm (MOGA) Parameters 
 
2.4.1 Crossover Options 
 
Crossover options specify how the GA combines two individuals, or parents, to form a crossover child 
for the next generation. Here the authors choose five different crossover options for five scenarios. 
  

I. Scattered crossover creates a random binary vector and selects the genes where the vector 
is a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and 
combines the genes to form the child. For example, if p1 and p2 are the parents such as p1 = 
[a b c d e f g h] and p2 = [1 2 3 4 5 6 7 8] and the binary vector is [1 1 0 0 1 0 0 0], then the 
function returns the following child1 = [a b 3 4 e 6 7 8] 
 

II. Single point crossover chooses a random integer n between 1 and number of variables and 
then selects vector entries numbered less than or equal to n from the first parent and selects 
vector entries numbered greater than n from the second parent. For example, if p1 and p2 
are the parents such as p1 = [a b c d e f g h] and p2 = [1 2 3 4 5 6 7 8] and the crossover 
point is 3, the function returns the following child = [a b c 4 5 6 7 8] 

 
III. Two points crossover selects two random integer m and n between 1 and number of 

variables. The function selects Vector entries numbered less than or equal to m from the first 
parent, vector entries numbered from m+1 to n, inclusive, from the second parent, vector 
entries numbered greater than n from the first parent. The algorithm then concatenates these 
genes to form a single gene. For example, if p1 and p2 are the parents such as p1 = [a b c d e 
f g h] and p2 = [1 2 3 4 5 6 7 8] and the crossover points are 3 and 6, the function returns the 
following child = [a b c 4 5 6 g h] 

 
IV. Arithmetic crossover is a crossover operator that linearly combines two parent 

chromosome vectors to produce two new offspring according to the following equations:  
Offspring1=a*Parent1+(1-a)*Parent2 
Offspring2=(1–a)*Parent1+a*Parent2 
where a is a random weighting factor (chosen before each crossover operation). 

 
V. Heuristic Crossover is a crossover operator that uses the fitness values of the two parent 

chromosomes to determine the direction of the search. The offspring are created according 
to the following equations where r is a random number between 0 and 1. 
Offspring1=Best Parent +r*(Best Parent–Worst Parent)  
Offspring2= Best Parent 
 

2.4.2 Mutation Options 
 
Mutation options specify how the genetic algorithm makes small random changes in the individuals in 
the population to create mutation children. Mutation provides genetic diversity and enables the GA to 
search a broader space. Here the authors use Constraint dependent mutation & Adapt feasible mutation 
options. Adaptive Feasible randomly generates directions that are adaptive with respect to the last 
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successful or unsuccessful generation. The feasible region is bounded by the constraints and inequality 
constraints. A step length is chosen along each direction so that linear constraints and bounds are 
satisfied. 
 
2.4.3 Creation function  
 
Creation function creates the initial population for GA. Here the authors choose Feasible population & 
Constraint dependent options. Feasible population creates a random initial population that satisfies all 
bounds and linear constraints. It is biased to create individuals that are on the boundaries of the 
constraints, and to create well-dispersed populations. This is the default if there are linear constraints. 
 
2.4.4 Selection Options 
 
Selection options specify how the genetic algorithm chooses parents for the next generation. Here the 
authors used only Tournament selection option for tournament size 2 & 4. Tournament selection 
chooses each parent by choosing Tournament size players at random and then choosing the best 
individual out of that set to be a parent.  
 
2.4.5 Migration Options 
 
Migration options specify how individuals move between subpopulations. Migration occurs if we set 
Population size to be a vector of length greater than 1. When migration occurs, the best individuals 
from one subpopulation replace the worst individuals in another subpopulation. Individuals that migrate 
from one subpopulation to another are copied. They are not removed from the source subpopulation. 
 
3. Model implementation 
 
3.1 Case description 
 
Comfit Composite Knit Limited (CCKL) was used as a case study to demonstrate the practicality of the 
proposed methodology. The Comfit Composite Knit Limited is the sister concern of Youth Group, 
which is one of the pioneer company of Ready Made Garments (RMG) sector in Bangladesh. This 
company readily produced knit ware items among them some are fancy & some are expensive. The 
jacket items as well as cardigan items are very expensive and we need significant amount of time and 
cost incurring manufacturing items. Therefore, it needs a lot of precise observations & perfect 
manufacturing practices to catch up the market & satisfy the buyers within specified lead time. Since 
they are the most expensive items, major concentration was on one particular style of hooded jacket 
(Product 1) & another special type of ladies cardigan (Product 2).     
 
The APP decision problem for CCKL’s Knit garments manufacturing plant presented here focuses on 
developing an interactive GA approach for minimizing total costs. The planning horizon is 2 months 
long, including May and June. The model includes two types of knit ware items, namely the hooded 
jacket (Product 1) and special type of ladies cardigan (Product 2). According to the preliminary 
environmental information, Table 1 and Table 2 summarize the forecast demand, related operating cost, 
and capacity data used in the CCKL case. Other relevant data are as follows. 
 

I. Initial inventory in period 1 is 500 units of product 1 and 200 units of product 2. End inventory 
in period 2 is 400 units of product 1and 300 units of product 2. 

II. Initial labor level is 225 man-hour. The costs associated with hiring and layoffs are Tk.22 and 
Tk.8 per worker per hour, respectively. 

III. Hours of labor per unit for any periods are fixed to 0.033 man-hour for product 1 and 0.05 man- 
hour for product 2. Hours of machine usage per unit for each of the two planning periods are 0.1 
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machine-hours for product 1 and 0.08 machine-hours for product 2. Warehouse spaces required 
per unit are 1 square feet for product 1 and 1.5 square feet for product 2. 

IV. The expected escalating factor in each of the costs categories are 1%. 
 
Table 1  
Forecasted demand, maximum labor, machine, warehouse capacity, back order level, subcontracted 
volume & minimum Inventory data 

Item (Units) 
Period 

Items 
Period 

1 2 1 2 
D1t (pieces) 1400 3000 S1tmax (pieces) 200 350 
D2t (pieces) 1600 800 S2tmax (pieces) 100 100 
Wtmax (man-hours) 225 225 I1tmin (pieces) 300 500 
Mtmax (machine-hours) 400 500 I2tmin (pieces) 150 200 

Vtmax (ft2) 1000 1000 
B1tmax (pieces) 200 600 
B2tmax (pieces) 150 100 

 
Table 2  
Related Operating cost data for the CCKL case 

Product ant (tk./unit) bnt (tk./unit) cnt (tk./unit) dnt (tk./unit) ent (tk./unit) 
1 22 40 27 3.5 42 
2 20 40 30 4 47 

 
The authors used MATLAB computer software to solve the proposed MOGA approach for the CCKL 
case. Total five runs were implemented considering five scenarios with different MOGA parameters 
shown in Table 3. Table 4 lists the multiple objective values for five MOGA runs through MATLAB. 
Finally, since from Table 4 it is clear that the least cost is achieved in the fourth scenario so in Table 5 
lists the entire initial APP plan for the CCKL case based on the present information for that fourth 
scenario. 
 
Table 3  
Different Genetic Algorithm options used for five scenarios 
MOGA Parameters/ 
Options Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Population Type Double Double Double Double Double 
Population Size 50 50 360 360 360 

Creation Function Constraint 
Dependent 

Feasible 
Population 

Constraint 
Dependent 

Feasible 
Population 

Feasible 
Population 

Mutation Constraint 
Dependent 

Adapt 
Feasible Adapt Feasible Constraint 

Dependent Adapt Feasible 

Crossover Two point Heuristic Arithmetic Scattered Single Point 
Migration (Fraction) Forward (0.2) Both (0.2) Both (0.5) Forward (0.2) Both (0.5) 
Reproduction 
(Fraction) Crossover (0.8) Crossover 

(0.5) Crossover (0.5) Crossover (0.8) Crossover 
(0.8) 

Selection Function 
(Size) Tournament (2) Tournament 

(4) Tournament (4) Tournament (2) Tournament 
(2) 

Distance Measure 
Function Crowding  Crowding Crowding Crowding Crowding 

Pareto Front 
Population Fraction 0.35 0.35 0.35 0.35 0.35 

Iteration needed to 
complete 103 Generations 260 

Generations 134 Generations 111 Generations 152 
Generations 
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Table 4  
Multi-objective values for different scenarios 

Objectives Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
Z1 2,37,170.4 2,50,581 2,37,205.21 2,36,893.43 2,36,760.67 
Z2 41,256.88 39,017.74 41,140.35 41,319.66 41,501.20
Z3 111.73 109.18 112.28 112.36 112.03 

Total Cost 2,78,539 2,89,707.90 2,78,457.8 2,78,325.4 2,78,373.90 
  
Table 5  
Initial multi-product & multi-period APP plan for the CCKL case (Fourth Scenario) 

Items   (Product 1) Period Items (Product 2) Period 
1 2   

Q1t (Units) 571 1034 Q2t (Units) 664 446 
O1t (Units) 571 1021 O2t (Units) 670 445 
S1t (Units) 186 334 S2t (Units) 85 95 
I1t (Units) 432 524 I2t (Units) 159 213 
B1t (Units) 5 583 B2t (Units) 140 95 

Ht (man-hours) 104.4 170.67 Ft (man-hours) 0 162.7 
 
4. Results and findings 
 
The proposed MOGA approach can solve most real-world APP problems through an interactive 
decision making process. The proposed model constitutes a systematic framework that facilitates the 
decision-making process. The proposed MOGA approach outputs more wide-ranging decision 
information than other models. The proposed MOGA approach focuses on the multi-periods and multi-
products (product family) problems in an APP decision making process.  
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Scenario 5 
Fig 1. Generated Pareto Fronts for five Scenarios (Source: MATLAB) 

From Fig 1 several characteristics of this proposed MOGA approach can be drawn. Since the 
concerned APP problem has multiple objectives so Pareto optimization must be considered. For 
scenario 1 & 2, the Pareto front is vastly dispersed & their score diversity was very poor. Again for 
scenario 3 & 4 it looks pretty but it also dispersed compared to scenario 5. Therefore, it may conclude 
that the fifth scenario is mostly optimum though it have narrow higher cost than scenario 4. The 
proposed approach also provides information on alternative strategies for overtime, subcontracting, 
inventory, backorders, and hiring and layoffs workers, in response to variations in forecast demand. 
Additionally, the proposed model considers the actual limitations in labor, machine, and warehouse 
capacity.  This proposed MOGA approach also can helps to determine optimum solution even it is NP 
(nondeterministic polynomial) hard problems.  

5. Conclusions 
 
The APP decision aims to set overall production levels for each product category to meet future 
demand, frequently from 3 to 18 months ahead, such that APP also determines the appropriate 
resources to be used. This work presents a novel interactive MOGA approach for solving multi product 
and multi period APP decision problems with the forecast demand, related operating costs, and 
capacity. The proposed MOGA approach yields an efficient APP compromise solution and overall 
degree of DM satisfaction with determined goal values. Moreover, the proposed approach provides a 
systematic framework that facilitates the decision-making process, enabling a DM to interactively 
modify the MOGA parameters and related model parameters until a satisfactory solution is obtained. 
Different Genetic Algorithm options have been considered in this APP problem, which could make an 
impression for the future researchers to choose the suitable combination for solving multiple objective 
problems. Consequently, the proposed approach is expected to be suitable for making real world APP 
decisions. 
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