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 Recovery of used products has steadily become interesting issue for research due to economic 
reasons and growing environmental or legislative concern. This paper presents a closed-loop 
logistics network design based on reverse logistics models. A mixed integer linear programming 
model is implemented to integrate logistics network design in order to prevent the sub-optimality 
caused by the separate design of the forward and reverse networks. The study presents a single 
product and multi-stage logistics network problem for the new and return products not only to 
determine subsets of logistics centers to be opened, but also to determine transportation strategy, 
which satisfies demand imposed by facilities and minimizes fixed opening and total shipping 
costs. Since the deterministic estimation of some parameters such as demand and rate of return of 
used products in closed loop logistics models is impractical, an uncertain programming is 
proposed. In this case, we assume there are several economic conditions with predefined 
probabilities calculated from historical data. Then by means of expert's opinion, a fuzzy variable 
is offered as customer's demand under each economic condition. In addition, demand and rate of 
return of products for each customer zone is presented by fuzzy-random variables, similarly. 
Therefore, a fuzzy-random programming is used and a priority-based genetic algorithm is 
proposed to solve large-scale problems.  

© 2012 Growing Science Ltd.  All rights reserved
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1. Introduction and literature review 
 
1.1. Closed loop logistics network design                                                                          
 
During the past few decades, there has been increasing growing interests on final products or after sales 
services for a variety of economic, environmental or legislative reasons. Reverse logistics is the process 
of moving goods from their typical final destination to another point, for the purpose of capturing value 
or for the proper disposal of the products (Du & Evans, 2008). According to the American Reverse 
Logistics Executive Council, Reverse Logistics is defined as: “The process of planning, implementing, 
and controlling the efficient, cost effective flow of raw materials, in-process inventory, finished goods 
and related information from the point of consumption to the point of origin for the purpose of 
recapturing value or proper disposal.” A reverse logistics system comprises a series of activities, which 
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form a continuous process to treat return-product items until they are properly recovered or disposed. 
These activities include collection, cleaning, disassembly, test and sorting, storage, transport, and 
recovery operations. The latter can also be represented as one or a combination of several main 
recovery options, like reuse, repair, refurbishing, remanufacturing, cannibalization and recycling (Lu & 
Bostel, 2007). Reverse logistics is getting increasingly important as a profitable and sustainable 
business strategy. There are a number of situations for products to be placed in a reverse flow. 
Normally, return flows are classified into commercial, warranty and end-of-use returns, reusable 
container returns, etc. (Du & Evans, 2008). Implementation of reverse logistics especially in product 
returns not only saves inventory carrying, transportation, and waste disposal costs due to returned 
products, but also it improves customer loyalty and futures sales (Ko & Evans, 2007). Reverse logistics 
systems are more complex than forward logistics systems, which stems from a high degree of 
uncertainty due to the quantity and quality of the products (Kara & Rugrungruang, 2007). Reverse 
logistics has attracted much attention recently due to growing environmental or legislative concerns and 
economic opportunities for cost savings or revenues from returned products.  
 
Barros et al. (1998) proposed a mixed integer linear programming (MILP) model based on a multi-level 
capacitated warehouse location problem for sand and proposed a heuristic method to solve the resulted 
model. The model determined the optimal number, capacities, and locations of the depots and cleaning 
facilities. Kirkke et al. (1998) presented a MILP model based on a multi-level uncapacitated warehouse 
location model. They presented a case study, which deals with a reverse logistics network for the 
returns, processing, and recovery of discarded copiers. The model was used to determine the locations 
and capacities of the recovery facilities as well as the transportation links connecting various locations. 
Jayaraman et al. (1999) proposed another MILP model to determine optimal numbers and locations of 
distribution/remanufacturing facilities for electronic equipment.  
 
Jayaraman et al. (2003) developed the other MILP model and solution procedure for a reverse 
distribution problem focused on the strategic level. The model determines whether each 
remanufacturing facility is open considering the product return flow. Min et al. (2005) proposed a 
Lagrangian relaxation heuristics to design the multi-commodity, multi-echelon reverse logistics 
network. Kim et al. (2006) proposed a general framework for remanufacturing environment and a 
mathematical model to maximize the total cost saving. The model determines the quantity of 
products/parts processed in the remanufacturing facilities/subcontractors and the amount of parts 
purchased from the external suppliers while maximizing the total remanufacturing cost saving.  Min et 
al. (2006) proposed a nonlinear mixed integer programming model and a genetic algorithm, which 
could solve the reverse logistics problem involving product returns. Their study proposed a 
mathematical model and GA, which aims to provide a minimum-cost solution for the reverse logistics 
network design problem involving product returns.  
 
Ko and Evans (2007) presented a mixed integer nonlinear programming model for the design of a 
dynamic integrated distribution network to account for the integrated aspect of optimizing the forward 
and return network, simultaneously. They proposed a genetic algorithm-based heuristic for solving this 
problem. Lee et al. (2009) proposed a multi-stage, multi-product, MILP model for minimizing the total 
of costs to reverse logistics shipping and fixed opening cost of facilities. They also proposed a hybrid 
genetic algorithm for solving this problem. Lee and Dong (2008) developed a MILP model for 
integrated logistics network design for computer products. They considered a network with a given 
number of hybrid distribution-collection facilities to be opened and a single production center. Pishvaee 
et al. (2009) developed a stochastic programming model for an integrated forward/reverse logistics 
network design under several uncertain scenarios. They assumed some hybrid facilities to reduce 
implementation costs. Later Pishvaee et al. (2010) developed their last works by a bi-objective mixed 
integer programming formulation to minimize the total costs and maximize the responsiveness of a 
logistics network. They used a new dynamic search strategy by employing three different local 
searches. 
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1.2. Hybrid programming 
 
Uncertainty is one of the main characteristics of reverse logistics network problem, which further 
increases the complexity of the problem. The degree of uncertainty in terms of the capacities, demands 
and quantity of products exists in reverse logistics parameters. An important issue, when manufacturing 
centers' demands as well as recycling centers' demand are random variables in reverse logistics' 
network design problem, is to find the network strategy, which could achieve the objective of 
minimization of total shipping cost and fixed opening expenditures of the disassembly and the 
processing centers. This paper proposes a probabilistic MILP model for the design of a reverse logistics 
network. This probabilistic model is first converted into an equivalent deterministic model. 
 
There are some mathematical programming which deals with the theory and methods for the solution of 
conditional extremum problems under incomplete information about the random parameters called 
“stochastic programming”. Fuzziness, on the other hand, is associated with the unsharp boundaries of 
the parameters of the model, and can be traced to sources of uncertainty such as modeling choices, 
parameter choices, application of expertise, boundary conditions, and lack of knowledge. Thus, 
randomness is more an instrument of a normative analysis, which focuses on the future and fuzziness 
and it is more a tool for a descriptive analysis to reflect the past and its implications. Clearly, 
randomness and fuzziness are complementary. One important aspect of this relationship is the fuzzy-
random variable (FRV), which is a measurable function from a probability space to the set of fuzzy 
variables (Shapiro, 2009). A simple type of programming, which simultaneously deals with random 
and fuzzy nature of the uncertain models is called “hybrid programming” and the special type of this 
programming, which solves the resulted model including FRVs is “fuzzy-random programming”. 
 
Unfortunately, the SCN design problem is subject to many sources of uncertainty besides random 
uncertainty and fuzzy uncertainty (Huang, 2006) and in many practical decision-making issues, we deal 
with a hybrid uncertain environment. To deal with twofold uncertainties, fuzzy random variable was 
proposed by Kwakernaak (1978) to depict the phenomena in which fuzziness and randomness appear, 
simultaneously. As mentioned earlier, in SCN design problem, uncertainty in some parameters such as 
demand of customer zones and rate of return of used products from customers is reasonable. Although 
there are some approaches to solve models with hybrid and particularly fuzzy random parameters (such 
as Liu (2002a, 2002b) and Liu and Liu(2003) ), there are only a few researches about SCN design with 
hybrid parameters. This point is more critical for integrated logistics network designs. Nonetheless 
there are some papers in facility location allocation in hybrid environment, for example Wen and 
Imamura (2008), Wen and Kang (2011). In this paper, we develop an integrated logistics network 
design model with fuzzy-random demands and rate of returned products.  
 
1.3. Priority-based genetic algorithm 
 
GA’s are stochastic search techniques based on the mechanism of natural selection and natural genetics 
(Jaramillo et al., 2002). As one of the Evolutionary Computation (EC) techniques, the GA has been 
receiving great attention and it has successfully been applied for combinatorial optimization problems 
(Gen et al., 2006). GA is very useful when a large search space with little knowledge of how to solve 
the problem is presented. It belongs to the class of heuristic optimization techniques, which includes 
simulated annealing (SA), Tabu search, and evolutionary strategies. It has been with great success in 
providing optimal or near optimal solution for many diverse and difficult problems (Gen & Syarif, 
2005). Representation is one of the important issues, which reflects the performance of Gas and 
normally different problems have various data structures or genetic representations. Tree-based 
representation is known to be one way for representing network problems. There are three ways of 
encoding tree: (1) edge-based encoding, (2) vertex-based encoding and (3) edge-and-vertex encoding 
(Gen & Cheng, 2000). Michalewicz et al. (1991) used matrix-based representation GA, which belongs 
to edge-based encoding to handle linear and non-linear transportation/distribution problems. Let m and 
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n be the number of sources and depots, respectively, then the dimension of matrix will be m*n. 
Although representation is straightforward, this approach requires special crossover and mutation 
operators for obtaining feasible solutions.  
 
Gen and Cheng (2000) introduced spanning tree GA (st-GA) for solving network problems. They used 
Prüfer number representation for solving transportation problems and developed feasibility criteria for 
Prüfer number to be decoded into a spanning tree. Syarif et al. (2002) proposed spanning tree-based 
genetic algorithm by using prüfer's number representation for solving a single product, three-stage 
supply chain network (SCN) problem. Xu et al. (2008) applied spanning tree-based genetic algorithm 
(st-GA) by the Prüfer number representation to locate the SCN to meet the demand imposed by 
customers with minimum total cost and maximum customer services for a multi objective SCN design 
problem. Although Prüfer number developed to encode of spanning trees, has been successfully applied 
to transportation problems, it needs some modifications to reach feasible solutions after classical 
genetic operators. 
 
In this study, to escape from these repair mechanisms in the search process of GA, we concentrate on 
the priority-based encoding method. Gen et al. (2006) used priority-based encoding for a single-
product, two-stage transportation problem. Altiparmak et al. (2006) applied priority-based 
representation to a single- product, single-source, and three-stage SCN problem, Altiparmak et al. 
(2009) proposed this encoding to a single-source, multi-product, multi-stage SCN problem. Lee et al. 
(2009) proposed a hybrid genetic algorithm with priority-based encoding method.  
 
In this paper, we propose single-product, multi-stage integrated logistics network problem, which 
consider the minimizing of total shipping cost and fixed opening costs of the hybrid 
production/recovery centers, hybrid distribution/collection and disposal centers. In fact, this type of 
network design problem belongs to the class of NP-hard problems, so that priority based genetic 
algorithm could be presented to solve large scale problems. Finally, we apply the proposed model for 
an example problem and present some numerical results. 
 
The remainder of this paper is organized as follows: The problem definition and mathematical model of 
integrated closed-loop logistics network design with hybrid parameters are introduced in section 2. 
Then in section 3, solution approach including priority-based genetic algorithm and fuzzy-random 
programming is discussed. Illustrative numerical examples and the results for evaluation are given in 
section 4. Finally, concluding remarks and future researches are outlined in section 5. 
 
2. Problem definition and formulation 
 
2.1 Problem definition 
 
There are many modeling approach for supply chain network design of reverse and forward logistics 
flows. The logistics network discussed in this paper is an integrated logistics one, which models 
forwards and reverses flows. The mentioned integrated logistics network, which is based on Pishvaee et 
al. (2009), is a single product, single period, multi-stage logistics network. There are four kinds of 
logistics node including customer zones, production, recovery, distribution, collection centers and 
disposal centers. As stated by Pishvaee et al. (2009) in such an integrated logistics network, hybrid 
logistics facilities offer more advantages compared with separate distribution or collection centers. The 
advantages include both cost savings and pollution reduction as results of sharing material handling 
equipment and infrastructures (Shen, 2007). 
 
As discussed earlier, in many real systems, the randomness and fuzziness of the customers’ demands or 
rate of returned products are often mixed up with each other. Often estimation of these parameters can 
be considered by means of historical data. However, sometimes obtaining these data by means of 
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experiments is difficult. Instead, expert opinion is used to provide the estimations. Unfortunately 
sometimes using fuzzy variables cannot overcome on this kind of uncertainty, properly. Lack of 
attention to hidden aspect of randomness in these parameters could be a reason of this problem. In this 
case, fuzziness and randomness of the customers’ demands are mixed up. The primary assumption is 
that there are several economic conditions with predefined probabilities, which can be calculated from 
historical data. Then, by means of expert opinions, a fuzzy variable is offered as demand of the 
customer under each economic condition. So the demand of each customer zone is presented by a 
fuzzy-random variable. Similarly, another fuzzy-random variable is offered for rate of return of 
products. As shown in Fig.1, in the forward flow in a pull system, products are shipped from hybrid 
production/recovery centers through hybrid distribution/collection centers to customer zones to meet 
customers’ demand. In the reverse flow through a push system, returned products are collected by 
distribution-collection centers and after inspection the recoverable products are shipped to 
production/recovery centers, and scrapped products are shipped to disposal centers. 
 
After the processes of recovery, the recovered products are used as new products in forward flows. A 
predefined fuzzy-random rate of demand and a predefined fuzzy-random percentage of demand of each 
customer zone are assumed as rate of returned products and a predefined value is determined as an 
average disposal rate. High quality returned products are more capable for recovery processes and low 
quality ones should be disposed in a safe process. 

Forward flow
Reverse flow

Hybrid production/
recovery center

Hybrid distribution/
collection center

Customer zone

Disposal centers

Ujk

Xij

Qkj

Vji

Tjm

 
Fig. 1. The integrated forward-reverse logistics network 

 
2.2 Mathematical formulation 
 
Based on mentioned assumptions, the main issues to be addressed by this paper are to select the 
location and to determine the number of hybrid distribution/collection, hybrid production/recovery and 
disposal centers and to quantify the products shipped among logistics facilities. The notations used for 
the considered problem are listed below: 
 
Parameters: 
I Set of potential production/recovery center locations i ∈ I 
J Set of potential hybrid distribution/collection center locations j ∈ J
K Fixed locations of customer zones k ∈ K 
M Set of potential disposal center locations m ∈ M

kξ  Fuzzy-random demand of customer zone k 
kη  Fuzzy-random rate of return of used products from customer zone k 

s Average disposal fraction 
fi Fixed cost of opening hybrid distribution/collection center j 
gj Fixed cost of opening disposal center m 
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hm Shipping cost per unit of products from production/recovery center i to hybrid 
distribution/collection center j 

cij Shipping cost per unit of products from hybrid distribution/collection center j to customer zone k

ajk 
Shipping cost per unit of returned products from customer zone k to hybrid 
distribution/collection center j 

bkj 
Shipping cost per unit of recoverable products from hybrid distribution/collection center j to 
production/recovery center i 

eji 
Shipping cost per unit of scrapped products from hybrid distribution/collection center j to 
disposal center m 

pjm Manufacturing/recovery cost per unit of product at production/recovery center i 
cwi Capacity of production for production/recovery center i 
cyj Capacity of handling products in forward flow at hybrid distribution/collection center j 
czm Capacity of handling scrapped products at disposal center m 
cyrj Capacity of handling returned products in reverse flow at hybrid distribution/collection center j 
cwri Capacity of recovery for production/recovery center i 
 
 

Variables: 

Xij 
Quantity of products shipped from production/recovery center i to hybrid distribution/collection 
center j 

Ujk Quantity of products shipped from hybrid distribution/collection center j to customer zone k 

Qkj 
Quantity of returned products shipped from customer zone k to hybrid distribution/collection 
center j 

Vji 
Quantity of recoverable products shipped from hybrid distribution/collection center j to 
production/recovery center i 

Tjm Quantity of scrapped products shipped from hybrid distribution/collection center j to disposal 
center m 

1   if a production/recovery center is opened at location 
0 otherwisei

i,
W

⎧
= ⎨
⎩
1  if a hybrid distributioncollection center is opened at location ,
0 otherwisej

j
Y

⎧
= ⎨
⎩

1  if a disposal center is opened at location ,
0 otherwisei

m
W

⎧
= ⎨
⎩

 
The problem can be formulated as follow: 
 
min       i i j j m m ij ij jk jk kj kj ji ji jm jm

i I i I m M i I j J i I j J k K j J j J i I j J m M

f W g Y h Z c X a U b Q e V p T
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

+ + + + + + +∑ ∑ ∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑   (1) 

subject to  
jk k

j J

U k Kξ
∈

≥ ∀ ∈∑
 

(2) 

kj k k
j J

Q k Kη ξ
∈

≥ ∀ ∈∑
 

(3) 

ij jk
j J k K

X U 0 j J
∈ ∈

− = ∀ ∈∑ ∑
 

(4) 

ji kj
i I k K

V (1 s ) Q 0 j J
∈ ∈

− − = ∀ ∈∑ ∑
 

(5) 

jm kj
m M k K

T s Q 0 j J
∈ ∈

− = ∀ ∈∑ ∑
 

(6) 

ji ij
j J j J

V X 0 i I
∈ ∈

− ≤ ∀ ∈∑ ∑
 

(7) 
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ji i i
j J

X cw W i I
∈

≤ ∀ ∈∑
 

(8) 

ij j j
i I

X cy Y j J
∈

≤ ∀ ∈∑
 

(9) 

kj j j
k K

Q cyr Y j J
∈

≤ ∀ ∈∑
 

(10)

ji i i
i I

V cwrW i I
∈

≤ ∀ ∈∑
 

(11)

jm m m
j J

T cz Z m M
∈

≤ ∀ ∈∑
 

(12)

{ }i j mW ,Y ,Z 0,1 i I , j J , m M∈ ∀ ∈ ∀ ∈ ∀ ∈  (13)
ij jk kj ji jmX ,U ,Q ,V ,T 0 i I , j J , m M , k K≥ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ (14)

 
where: 

(15)
11 12 13 14 1

k 21 22 23 24 2

31 32 33 34 3

(d ,d ,d ,d ) with probability p
(d ,d ,d ,d ) with probability p
(d ,d ,d ,d ) with probability p

⎧
⎪ξ = ⎨
⎪
⎩

(16)
11 12 13 14 1

k 21 22 23 24 2

31 32 33 34 3

(r , r , r , r ) with probability p
(r , r , r , r ) with probability p
(r , r , r , r ) with probability p

⎧
⎪η = ⎨
⎪
⎩

 
The objective function (1) minimizes the total cost of the forward and reverse logistics. It consists of 
the logistics shipping cost and fixed opening cost of the facilities. Constraints (2) and (3) ensure that 
the demands of all customers are satisfied and the returned products from all customers are collected. 
Constrains (4)-(7) balance flows between production/recovery and distribution/collection centers in 
forward and reverse flows. Constrains (8)-(12) explain about capacity of each facilities. Constraint (13) 
imposes the binary restriction on the decision variables Wi, Yj, Zm and constraint (14) imposes the non-
negativity restriction on the other decision variables. 
 
3. Solution approach 
 
We propose priority-based GA to solve the deterministic integrated closed-loop logistics network 
design model. Then it is developed for solving uncertain model with fuzzy-random parameters.  
 
3.1. Priority-based genetic algorithm 
 
In priority-based encoding, a gene in a chromosome is characterized by two factors: locus, the position 
of the gene within the structure of chromosome, and allele, the value the gene takes. In priority-based 
encoding, the position of a gene is used to represent a node (source/depot in transportation network), 
and the value is used to represent the priority of corresponding node for constructing a tree among 
candidates (Gen & Cheng, 2000).  For a transportation problem, a chromosome consists of priorities of 
sources and depots to obtain transportation tree and its length is equal to total number of sources |K| 
and depots |J|, i.e. |K| + |J|. The transportation tree corresponding to a given chromosome is generated 
by sequential arc appending between sources and depots. At each step, only one arc is added to tree 
selecting a source (depot) with the highest priority and connecting it to a depot (source) considering 
minimum cost (Altiparmak et al., 2006). The decoding algorithm of the priority-based encoding is 
presented below. 
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Algorithm 1: Priority-based decoding: 
Inputs:	 												K: set of sources  
            	J: set of depots 
           b୨: demand on depot j, ∀jϵ	J  
          a୩: capacity of source	k , ∀	kϵK   										c୩୨:  transportation cost of one unit of product from source k	to depot j , ∀	kϵK, ∀jϵ	J  ݒሺ݇ + ݆ሻ: chromosome, ∀	kϵK, ∀jϵ	J  
Outputs: 
  k to depot j	: the amount of product shipped from sourceݔ       
While 		∑ ܾୀଵ ≥ 0 
Step 1:		ݔ = 0	, ∀	kϵK, ∀jϵ	J 
Step 2:		select	a	node	based	on	l =arg max {vሺtሻ, tϵ|k| + |j|}, ∀	kϵK, ∀jϵ	J  
Step 3:   if lϵK then	a	source	is	selected		k∗ = l , 
                j∗ =arg min {c୩୨|	vሺjሻ ≠ 0, jϵJ}, Select a depot with minimum cost 
               else  ݆∗ = l a depot is selected 
               k∗ = arg min {c୩୨|	vሺjሻ ≠ 0, kϵK}, Select a source with minimum cost 
Step 4:		ݔ∗∗ =min{ܽ∗, ܾ∗} 
              Update demands and capacities 
              ܽ∗ = ܽ∗ − ∗∗∗          ܾݔ = ܾ∗ −   ∗∗ݔ
Step 5:   if ܽ∗ = 0 then vሺ݇∗ሻ = 0 
               if   ܾ∗ = 0 then vሺ݆∗ሻ = 0 
Step 6: if ݒሺ݇ + ݆ሻ = 0, ∀jϵ	J then output ݔ and calculate transportation cost, 
            else return step 1 
End 
Fig. 2 represents a transportation tree with 5 sources and 4 depots, its cost matrix and priority based 
encoding. Table 1 gives trace table of the decoding procedure to obtain transportation tree in Fig. 2 
                                                                       
 
 
 
 
 
                                             
                               

 
 
 
 

cost	matrix = ێێۏ
ۍێێ 				1							2							3						41		15				12				24				172				7					8					15				133		27				18				21				164			12				8					17					155			15				21				8				13 ۑۑے

 ېۑۑ

 
Fig. 2. A sample of transportation tree and its encoding 
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Table 1  
Trace table of decoding procedure. 
Iteration v(k+j)          A b k j ܒܓ࢞  
0 [3 9 7 8 6 |5 4 1 2] (270,100,65,135,230) (260,240,170,130) 2 1 100 
1 [3 0 7 8 6 |5 4 1 2] ( 270, 0, 65,135,230)  (160,240,170,130) 4 2 135
2 [3 0 7 0 6 |5 4 1 2] ( 270, 0,65,0,230) (160,105,170,130) 3 4 65 
3 [3 0 0 0 6 |5 4 1 2] (270,0,0,0,230) (160,105,170,65) 5 3 170 
4 [3 0 0 0 0 |5 4 1 2] (270,0,0, 0,60) (160,105,0,65 ) 1 1 160 
5 [3 0 0 0 0 |0 4 1 2] (110,0,0, 0,60) ( 0,105,0,65) 1 2 105 
6 [3 0 0 0 0 |0 0 1 2] (5,0,0,0,60) (0,0,0,65) 1 4 5
7 [0 0 0 0 0 |0 0 1 2] (0,0,0,0,60) (0,0,0,60) 5 4 60 
  8            [0 0 0 0 0 |0 0 1 0] (0,0,0,0,0)                         (0,0,0,0)                       
 
For the proposed problem of this paper, we use a chromosome consists of five segments, in which each 
one is associated with one echelon of the integrated closed-loop logistics network. We use segment J-M 
to represent the transportation pattern from hybrid distribution/collection centers to disposal centers. 
Segment J-I is used to represent the transportation pattern from hybrid distribution/collection centers to 
hybrid production/recovery centers. Segment K-J represents the transportation pattern from customer 
zones to hybrid distribution/collection centers. Segment I-J shows the transportation pattern from 
hybrid production/recovery centers to hybrid distribution/collection centers, segment determines J-K 
the transportation pattern from hybrid distribution/collection centers to customer zones (see Fig. 3). The 
chromosome of integrated closed-loop logistics network is decoded on a special sequence.  
 

Fifth segment 
J-K 

Forth segment 
I-J 

Third segment 
K-J 

Second segment 
J-I 

First segment 
J-M 

 

2143 2 1 2 1 432143214321432132 1 4 3 2 1 3 2 1 Node 
4251 3 6 3 2 614547251386241537 6 6 3 5 7 4 1 2 priority 

 
Fig. 3. An illustration of integrated closed-loop logistics network model chromosome. 

 
The decoding algorithm of an integrated closed-loop logistics network chromosome is presented in 
Algorithm 2. 
 
Algorithm 2: Integrated closed-loop logistics network decoding algorithm 
Inputs: kξ  ، kη  ،S ،fi ،gj ،hm ،cij ،ajk ،bkj ،eji ،cwi ،cyj ،czm ،cyrj. 
Outputs: Xij ،Ujk ،Qkj ،Vji ،Tjm ،Wi ،Yj ،Zm. 
Step 1: calculate Ujk , Yj , ∀݆߳ܬ,   ,using Algorithm 1 ܭ߳݇
Step 2: calculate Xij , Wi , ∀݅߳ܫ,  ,using Algorithm 1  ܬ݆߳
Step 3: calculate Qkj , ∀݇߳ܭ,  ,using Algorithm 1 ܬ݆߳
Step 4: calculate Vji , ∀݆߳ܬ,  ,using Algorithm 1 ܫ߳݅
Step 5: calculate Tjm , Zm , ∀݆߳ܯ߳݉,ܬ using Algorithm 1. 
The proposed GA solution procedure used four genetic operators described below. 
 
3.1.1. Parent selection operator 
 
The parent selection operator is an important process, which directs a GA search towards promising 
regions in a search space. Two parents are selected from the solutions of a particular generation by 
selection methods, which assign reproduction opportunities to each individual parent in the population. 
There are a number of different selection methods, such as roulette wheel selection, tournament 
selection, rank selection, elitism selection, and random selection (Gen & Cheng, 2000). In this study, 
we implement tournament selection method where two teams of individuals are chosen from the 
population, randomly and each team consists of two chromosomes. The two best chromosomes taken 
from one of the two teams are chosen for crossover operations.  
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3.1.2. Crossover operator 
 
The crossover operator generates new offspring by combining information contained in the 
chromosomes of the parents so that new chromosomes will have the best parts of the parent’s 
chromosomes. The crossover is performed to explore new solution space and crossover operator 
corresponds to exchanging parts of strings between selected parents. Several crossover operators have 
been proposed for permutation representation, such as partially mapping crossover (PMX), order 
crossover (OX), position-based crossover (PX), cycle crossover (CX), weight mapping crossover 
(WMX), Heuristic crossover etc. (Lee et al., 2009). In this paper, we have used weight mapping 
crossover (WMX) operator, which is one-cut point crossover for permutation representation. As one 
point crossover, two chromosomes (parents) chooses a random cut-point and generates the offspring 
using segment of own parent to the left of the cut-point, then remapping the right segment based on the 
weight of other parent of right segment (Fig. 4). 
 

Step 1: select a cut-point                                                                                                                              
                                                                    A cut point                                  

  
  

  

Step 2: exchange substrings between parents    
   

 

  

Step 3: mapping the weight of the right segment                                                                                      

      

 

Step 4: generate offspring with mapping relationship  
  
  

 
 

Fig. 4. Illustration of the WMX 
3.1.3. Mutation operator 
 
After recombination, some children undergo mutation, similar to crossover; mutation is executed to 
prevent the premature convergence and explores new solution space. However, unlike crossover, 
mutation is usually performed by modifying gene within a chromosome. In this study, we have used 
insert mutation where a digit is randomly selected and it is inserted a randomly selected new position in 
chromosome. Fig. 5 represents insert mutation.  

Select a gene at random  
  
  

                                            Insert it in a random position 
  

 

Fig. 5. Illustration of the insert mutation  

2 1 4 5 6 8 7 93 

6 8 7 3 2 1  4 9 5 

687328793 

2 1 4 5 6 1 4 9 5 

8 7 6 3 2   68732

6 5 4 2 1  21456

4 6 5 2 1 8 7 93 

3 2 6 7 8 1 4 9 5 

6 8 7 3 2 1 4 9 5 

6 8 3 2 1 7 4 9 5 

Parent 1: 

Parent 2: 

Offspring 1: 

Offspring 2: 

Offspring 1: 

Offspring 2: 
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3.1.4. Evaluation operator 
 
The evaluation aims to associate each individual with a fitness value so that it can reflect the goodness 
of fit for an individual. The evaluation process is intended to compare one individual with other 
individuals in the population. The choice of fitness function is also very critical because it has to 
accurately measure the desirability of the features described by the chromosome. The function should 
be computationally efficient since it is used many times to evaluate each solution (Gen & Cheng, 
2000). In this study, the objective function has been taken as fitness function. 
 
3.3. Fuzzy-random programming 
 

In this section, we shall recall some basic concepts and results on random fuzzy variable. These results 
are crucial for the remainder of this paper. An interested reader may consult Liu (2009) where 
important properties of random fuzzy variables are recorded. 

Let Θ be a nonempty set, (Θ) the power set of Θ, and Pos a possibility measure. Then the triplet 
(Θ,P(Θ),Pos) is called a possibility space. A fuzzy variable ξ is defined as a function from a possibility 
space (ξ,P(ξ),Pos) to the set of real numbers. The possibility, necessity, and credibility of a fuzzy event 
{ξ ≤ r} can be represented by 
 
Pos{ r} = sup (x),

x r
ξ μ

≤
≤  (17)

Nec{ r} = 1-sup (x),
x r

ξ μ
>

≤  (18)

1Cr{ r}= (Pos{ r} Nec{ r}),
2

ξ ξ ξ≤ ≤ + ≤  (19)

respectively. 

Definition 1. Let ξ be a fuzzy variable. Then the expected value of ξ is defined by 

0

0
E[ ]= Cr{ r}dr- Cr{ r}dr,ξ ξ ξ

∞

−∞
≥ ≤∫ ∫  (20)

provided that at least one of the two integrals is finite. 

Definition 2. A fuzzy random variable is a function ξ from a probability space (Ω;;Pr) to the set of 
fuzzy variables such that Cr{ ξ (ω) ∈ B} is a measurable function of ω for any Borel set of B � . 

Definition 3. Let ξ be a random fuzzy variable, and B a Borel set of R. Then the chance of random 
fuzzy event ξ ∈ B is a function from [0,1] to [0,1], defined as 

ACr{A}
Ch{ B}( ) sup inf{ ( ) B}.

θ∈≥α
ξ∈ α = ξ θ ∈  (21)

There are several hybrid programming models for solving an optimization model including fuzzy-
random variables. Expected value model (EVM), chance-constrained programming (CCP), dependent-
chance programming (DCP) are the generic models of them. Chance-constrained programming, which 
was initialized by Charnes and Cooper (1961), offers a powerful means for modeling uncertain decision 
systems. Liu and Iwamura (1998) extended the chance-constrained programming to fuzzy decision 
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systems. Liu (2001) initialized a general framework of fuzzy random chance-constrained programming. 
The essential idea of chance-constrained programming is to optimize some critical value with a given 
confidence level subject to some chance constraints. The general form of this programming is: 

max f   
subject to  

( ){ }Ch f x, fξ ≥ ≥ α  (22)

( ){ }iCh g x, 0 , j 1,2, ,pξ ≤ ≥ α = L  (23)
 

where x is decision vector,ξ  is a hybrid vector, ( )ξ,xf  objective function, ( )jg x, ,ξ j 1,2, ,p= L  
constraint functions, α confidence level and {}⋅Ch  is a chance measure. In the discussed model in 
section 2.2 the objective function does not include any hybrid variable but to calculate the chance 
function for uncertain constraints (2) and (3), a fuzzy-random simulation is used. Then the mentioned 
chance constraints are added to the model. The chance constraints related to the integrated logistics 
network design are: 

k jk
j J

k k kj
j J

Ch{ U 0} k K

Ch{ Q 0} k K

∈

∈

ξ − ≤ ≥ α ∀ ∈

η ξ − ≤ ≥ α ∀ ∈

∑

∑
 

(24)

(25)

The fuzzy-random simulation algorithm to calculate chance constraints is as following (Liu, 2006): 

Algorithm 1. Fuzzy Random Simulation 
 
Step 1. Generate 1 2 N, , ,ω ω … ω  from Ω according to the probability measure Pr. 
Step 2. Compute the credibilities k j kCr{g (x, ( )) 0, j 1,2,...,p}β = ξ ω ≤ = for k=1,2,…N  by the fuzzy 

simulation (see algorithm 2). 
Step 3. Set N′ as the integer part of Nα . 
Step 4. Return the N th′ largest element in 1 2 N{ , ,..., }β β β . 
 

In order to compute uncertain functions j kCr{g (x, ( )) 0, j 1,2,...,p}ξ ω ≤ = a fuzzy simulation can be used. 

The fuzzy simulation algorithm is as following (Liu, 2006): 

Algorithm 2. Fuzzy Random Simulation 
 
Step 1. Randomly generate kθ from Θ such that kCr{ } / 2,θ ≥ ε  for k=1,2,…,N. 
Step 2. Write k k(2Cr{ } 1)ν = θ ∧  and produce k k( )ξ = ξ θ for k=1,2,…,N where ε is a sufficiently small 

number. 
Step 3. The credibility j kCr{g (x, ( )) 0, j 1,2,...,p}ξ ω ≤ = can be estimated by the following formula

  
k j k k j k1 k N1 k N j 1,2,...,p for some j

1 max | g (x, ) 0 min 1 | g (x, ) 0 .
2 ≤ ≤≤ ≤ =

⎛ ⎞⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟ν ξ ≤ + − ν ξ >⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
(26)

 

 

4. Numerical examples and results  
 
To illustrate previous parts and efficiency evaluation, the proposed method is applied to some 
hypothetical problems. All the computations for this part were coded by the Visual Basic 6 software 
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and were run on a core i5 Intel CPU with 4 GB of RAM. First, we assume a small-scaled integrated 
logistics network design with deterministic parameters to evaluate the priority-based genetic algorithm. 
Tables 2 to 5 give information about this problem and we assume that s=0.5. 
 
Table 2  
Demand and rate of return for each customer zone

Table 3  
Fixed cost for each facility 

Customer zone dk rk  Facility no. fi gj hm 
k=1 1 0.3  1 2 7 7 
k =2 1 0.5  2 3 8 10 
k =3 4 0.2  3 4 9  
k =4 9 0.7  4 5   
    5 6   
 
Table 4  
Transportation cost between facilities 
cij  bkj  pjk 
 j=1 j=2 j=3   j=1 j=2 j=3   m=1 m=2 
i=1 1 2 3  k=1 4 7 9  j=1 6 3 
i=2 7 12 10  k =2 10 6 3  j=2 7 7 
i=3 9 5 4  k =3 5 7 1  j=3 8 5 
i=4 3 6 7  k =4 2 4 7     
i=5 10 5 2      
ajk  eji
 k=1 k=2 k=3 k=4   i=1 i=2 i=3 i=4 i=5 
j=1 8 1 2 2  j=1 2 8 9 3 1 
j=2 9 3 10 4  j =2 0 6 0 7 4 
j=3 2 5 9 9  j =3 0 7 0 7 4 
 
Table 5                                                                                                          Table 6 
Capacities of each facility                                                                              Binary decision variables 
 j=1 j=2 j=3 j=4 j=5   j=1 j=2 j=3   m=1 m=2   4 3 2 1 
cwi 81 90 12 91 63  cyj 4 13 12  czm 6 3  Wi 0 0 0 1 
cwri 31 38 26 1 33  cyrj 2 8 18      Yj  1 1 1 
                Zm   0 1 

 
First the model is solved by lingo 11, and a global optimum is reached in about 1 second. The related 
solution is shown in Table 6 and 8. Lingo uses a branch and bound approach and the objective value of 
the global optimum is 160.65. 
 
Table 7  
Transportation decision variables 
Xij Qkj Tjk 
 j=1 j=2 j=3   j=1 j=2 j=3   m=1 m=2 
i=1 4 10.75 0  k=1 0.5 0 0  j=1 0.3 0 
i=2 0 0 0  k =2 0 0 0.69  j=2 0.345 0 
i=3 0 0 0  k =3 0 0 1.12  j=3 0.27 0 
i=4 0 0 0  k =4 1.5 2.3 0   
i=5 0 0 1.75      
Ujk  Vji 
 k=1 k=2 k=3 k=4   i=1 i=2 i=3 i=4 i=5 
j=1 0 0 4 0  j=1 1.7 0 0 0 0 
j=2 0 1.25 0 9.5  j =2 1.95 0 0 0 0 
j=3 1.25 0 0.5 0  j =3 1.54 0 0 0 0 
 
As mentioned earlier, for large-scaled problems a metaheuristic algorithm is needed because the 
integrated closed-loop network design of this paper is NP-hard. Therefore, two genetic algorithm 
encoding is used: classic encoding (with usual operators) and priority-based encoding. To compare this 
3 solving method Table 8 depicts best objective values and computational time for each method.   
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Table 8  
Comparison of 3 solving methods 

Priority-based GA  Classic GA  Lingo 
 

No of 
constraints 

No. of 
variables M K J I 

Problem 
no. 

Time 
(sec.) 

Best 
Obj.  

Time 
(sec.) 

Best 
Obj.  

Time 
(sec.) 

Best 
Obj. 

 

0.48 161.65  15 332  1 161.65  40 70 2 4 3 5 1 
8.87 442.75  22 503  12 440.15  150 950 12 14 13 15 2 
89.42 912  142 1930  114 1510  575 13415 55 45 50 60 3 
233.532743.9 394 4735**115053330 110 90 100 120 4 

 
In problem no. 1 and 2 Lingo solver reached some optimal solution, which can be a basis to evaluate 
the two other methods. In problem no. 4 Lingo could not reach to a solution in reasonable amount of 
time. Therefore, it seems, priority-based genetic algorithm is a better efficiency choice for large-scaled 
cases. Now we solve a similar example but with hybrid parameters. Here, we assume that there are 
three scenarios (for example economic conditions) and estimate demand and rate of return under each 
scenario in terms of form of fuzzy variables based on expert's opinions. Table 9 gives information 
about demand ( kξ ) and rate of return ( kη ). Probability of occurrence of each scenario (P1,P2,P3) which 
are predicted by historical data is shown in this table. Other information about this example is similar to 
previous problem.  
 
Table 9  
Fuzzy-random variables related to demand and rate of return of each customer zone 

Customer 
zone 

 Scenario 1 
P1=0.2  Scenario 2 

P2=0.5  Scenario 
P3=0.5 

 kξ  kη   kξ kη   kξ  kη  
k=1  (0.5,1,1.5) (0.2,0.3,0.5)  (1,2,3) (0.3,0.5,0.9)  (2,4,6) (0.4,0.6,0.9) 
k =2  (0.5,1,1.5) (0.05,0.4,0.5)  (1,3,4) (0.1,0.4,0.7)  (3,4,5) (0.2,0.5,0.7) 
k =3  (3,4,5) (0.1,0.4,0.7)  (3,6,8) (0.3,0.6,0.8)  (5,8,10) (0.4,0.7,0.8) 
k =4  (8,9,10) (0.2,0.3,0.5)  (9,11,13) (0.3,0.5,0.9)  (10,12,16) (0.4,0.6,0.9) 
Now we solve this problem by the proposed fuzzy-random programming under several confidence 
level (α ) with this assumption that N=200. The results are shown in Table 10. As it seems, the 
objective function gets worse when we increase α. 
 

Table 10  
Results of hybrid programming for several confidence levels 

Computational time 
(sec.) 

Objective function 
value 

No of 
constraints 

No. of 
variables confidence level Problem no. 

208 109.55 40 70 α=0.1 1 
338 109.55 40 70 α=0.3 2 
89 140.53 40 70 α=0.5 3 
150 140.53 40 70 α=0.7 4 
418 203.224070 α=0.9 5 

 
In this part, we solve the problem with a predefined confidence level and several number of customer 
zones to evaluate efficiency of the proposed hybrid programming under various scales. Table 11 
illustrates the results and Fig. 6 depicts computational time versus each number of customer zones (K). 
Results from Table 11 represent that the proposed hybrid programming for integrated closed-loop 
logistics network design with fuzzy-random parameters is efficient for various scales.  
 
Table 11  
Results of hybrid programming for several number of customer zones (K) 

Computational 
time (sec.) 

Objective function 
value 

No of 
constraints No. of variables 

confidence 
level K M J I 

Problem 
no. 

16 124.39 40 70 α=0.8 4 2 3 5 1 
24 240.09 52 106 α=0.8 10 2 3 5 2 
146 677.39 72 166 α=0.8 20 2 3 5 3 
479 1142.26 92 226 α=0.8 30 2 3 5 4 
1954 1805.79 112 286 α=0.8 40 2 3 5 5 
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As it seems in Fig. 6, by increasing the number of customer zones (K), computational times of solving 
the model increase, exponentially. 
 

 
Fig. 6. Computational time versus each number of customer zones (K) 

 

5. Conclusion 

In this paper, we have considered a fuzzy-random mixed integer linear programming model for the 
design of an integrated forward/reverse logistics network with hybrid facilities. We have assumed that 
there are several scenarios (for example economic conditions) and estimated demand and rate of return 
under each scenario in the form of fuzzy variables by expert's opinion. Probability of occurrence of 
each scenario predicted by historical data and as a result, the demand and rate of return of customer 
zones have been regarded as fuzzy-random variables. In fact, this type of network design problem 
belongs to the class of NP-hard problems, so that we have utilized the priority-based genetic algorithm 
known to be an efficient and robust method for this kind of problem. A hybrid programming approach 
by fuzzy-random simulation has been applied to solve the uncertain model. Some examples are 
introduced in several scales and results showed that the proposed method solves them efficiently. 
Develop the hybrid model for multi-product or multi-period, using multi-objective programming to 
consider customer satisfaction for this problem can be subjects for future researches.  
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