
* Corresponding author.
E-mail: mohammadi@tmu.ac.ir (M. Mohammadi)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2012.08.005

International Journal of Industrial Engineering Computations 3 (2012) 751–766

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and scheduling
problem

M. Babaeia, M. Mohammadia, S.M.T. Fatemi Ghomib and M. A. Sobhanallahia

aDepartment of Industrial Engineering, Faculty of Engineering, Kharazmi University, Karaj, Iran
bDepartment of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Article history:
Received 18 July 2012
Received in revised format
14 August 2012
Accepted August 15 2012
Available online
15 August 2012

 This paper addresses the problem of lot sizing and scheduling problem for n-products and m-
machines in flow shop environment where setups among machines are sequence-dependent and
can be carried over. Many products must be produced under capacity constraints and allowing
backorders. Since lot sizing and scheduling problems are well-known strongly NP-hard, much
attention has been given to heuristics and metaheuristics methods. This paper presents two
metaheuristics algorithms namely, Genetic Algorithm (GA) and Imperialist Competitive
Algorithm (ICA). Moreover, Taguchi robust design methodology is employed to calibrate the
parameters of the algorithms for different size problems. In addition, the parameter-tuned
algorithms are compared against a presented lower bound on randomly generated problems. At
the end, comprehensive numerical examples are presented to demonstrate the effectiveness of the
proposed algorithms. The results showed that the performance of both GA and ICA are very
promising and ICA outperforms GA statistically.

© 2012 Growing Science Ltd. All rights reserved

Keywords:
Genetic algorithm
Imperialist competitive algorithm
Taguchi methodology
Lot sizing and scheduling

1. Introduction

Lot sizing and scheduling are some of the most challenging subjects where tremendous efforts have
been accomplished to propose efficient solutions. In lot sizing and scheduling, a set of activities is
considered for the best use of production resources (such as machines, materials, etc.) to satisfy
production goals under some conditions and over a certain period named the planning horizon.
Therefore, optimization of lot sizing and scheduling with various conditions and restrictions is essential
for improving production efficiency as well as system flexibility. Wagner and Within (1958) are
believed to be this first who considered lot sizing and scheduling problems. Since then, several
researchers have studied their model and many features and assumptions have been added to the
original model.

The area of lot sizing and scheduling problems still remains interestingly researched as evident from
the very recent works, Lang and Shen (2011) developed a mixed-integer programming (MIP)

 752

formulation for a capacitated single-level dynamic lot sizing problem with sequence-dependent setup
costs and times, which includes product substitution options. Shim et al. (2011) considered a single
machine capacitated lot sizing and scheduling problem to determine the lot sizes and the sequence of
lots while satisfying the demand requirements and the machine capacity in each period of a planning
horizon. They also considered setup carry over in their study. Mohammadi (2010) presented an
integrated lotsizing, loading, and scheduling model for the capacitated flexible flow shops with
sequence-dependent setups and to solve this problem, mixed integer programming-based heuristics
based on iterative procedures was provided. There are a number of surveys and researches on lot sizing
and scheduling problems Zhua et al. (2006), Buschkühl, et al. (2010), Quadt, et al. (2008) and Drexl, et
al. (1997).

It is well-known that CLSP problems are NP-hard. Bitran and Yanasse (1982) showed that the CLSP
with setup costs is an NP-hard problem, meaning that one cannot expect to find an efficient algorithm,
which generates an optimal solution. On the other hand, when setup times are included, Maes et al.
(1991) showed that even the feasibility problem becomes NP-complete. This implies that one cannot
efficiently say whether a feasible solution exists at all. Consequently, heuristics and metaheuristics
methods are needed to find a reasonably good solution in a moderate amount of computation time.
Mohammadi, et al. (2010a, 2010b) employed fix-and-relax heuristic and MIP-based heuristic for
simultaneous lot sizing and scheduling in capacitated flow shop with sequence-dependent setups.
Araújo and Nagano (2010) proposed a new constructive heuristic based on a structural property for the
problem of scheduling jobs in a no-wait flowshop problem with sequence-dependent setup times with
the objective of minimizing makespan. Khanzadi et al. (2011) presented a heuristic approach and a new
genetic algorithm approach for large scale multiple resource-constrained project-scheduling problems.

In addition, it has been reported that the evolutionary algorithms are capable of providing highly cost-
efficient solutions within reasonable computing load (Xiao et al., 2012) so that these algorithms have
been considered by many researchers. One of the most popular evolutionary algorithms is Genetic
Algorithm (GA). GA generates solutions to optimization problems using techniques inspired by natural
evolution, such as selection, crossover and mutation. GA has been extensively and successfully
employed in lot sizing and scheduling problems. Sun et al. (2009) studied a problem, which scheduled
productions of products on multiple identical machines. They developed a GA and compared it with a
heuristic. Computational results showed that their genetic algorithm outperforms the heuristic.
Mohammadi et al. (2011) employed a GA for simultaneous lot sizing and sequencing. Kimms (1999)
used a GA to solve a new mixed-integer programming formulation for the multi-level, multi-machine
proportional lot sizing and scheduling problem. Yao and Huang (2005) employed a hybrid genetic
algorithm with a feasibility testing procedure and a binary search heuristic to efficiently solves the
Economic Lot Size Scheduling Problem. The computational results show that the hybrid approach
could be very helpful to derive the production scheduling and lot sizing strategies. Goren, et al.(2010)
provided a worthy overview of recent advances in this field to highlight the many ways GAs can be
applied to various lot sizing models.

Imperialist Competitive Algorithm (ICA) is a new socio-politically motivated global search strategy
introduced by Atashpaz-Gargari and Lucas (2007) for dealing with different optimization problems.
Past literature on the capacitated lot sizing and scheduling problem with complex setups and
backlogging is reasonably sparse due to the problem’s complexity. Keyvanfar and Zandieh (2012)
studied an economic lot scheduling problem (ELSP) and employed an ICA to provide good solutions
within reasonable computational times in order to minimize setup cost, holding cost and slack cost.
Lian et al. (2012) investigated the optimization of process planning in which various flexibilities were
considered to minimize total weighted sum of manufacturing costs. They proposed an imperialist
competitive algorithm to find promising solutions with reasonable computational cost. The obtained
results from computational experiments show that the algorithm performs significantly better than
existing algorithms like genetic algorithm (GA), simulated annealing (SA), Tabu search (TS), and

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

753

particle swarm optimization (PSO). Shokrollahpour et al. (2010) proposed an ICA to solve the two-
stage assembly flow shop scheduling problem. They calibrated the parameters of the algorithm using
the Taguchi method. In this study, they showed that the ICA indicated an improvement in comparison
with the best algorithm proposed previously. Rajabioun et al. (2008), Khabbazi et al. (2009), Kaveh
and Talatahari (2010), Lucaset al. (2010), Nazari-Shirkouhi et al. (2010) and Sarayloo and Tavakkoli-
Moghaddam (2010) are other related study that employed ICA.

To the best of our knowledge, there is no result for employing a novel imperialist competitive
algorithm (ICA) and a genetic algorithm (GA) as solution approaches for capacitated lot sizing and
scheduling problem with complex setups and backlogging problems in the literature. In this paper, we
present problem formulation and a lower bound. The parameters of the algorithms are calibrated using
the Taguchi method. The calibrated algorithms are compared against the presented lower bound and a
statistical method is used to comparing the results.

The paper is organized as follows: In section 2 problem formulation and lower bound are presented. In
section 3 GA and ICA are developed. Computational experiments are presented in Section 4 and finally
Section 5 describes conclusions.

2. Notation and problem formulation

In order to formulate the problem, let us introduce the following notations:

2.1. Notations

 Indices
 ݅, ݆, ݇ Production type,
 ݊, ݊ᇱ, ݊ᇱᇱDesignation for a specific setup number,
 ݉ Level of production,
 ,Period ݐ
 Parameters

ܶ Planning horizon,
ܰ Number of different products,
 ,Number of production levels/number of machines ܯ
 ,A large real number ܯܾ݃݅
 ,,௧ Available capacity of machine m in period t (in time units)ܥ

݀,௧ External demand for product j at the end of period t (in units of quantity),

݄,
ା Storage costs unit rate for product j in level m,

݄,௧
ି Shortage costs unit rate for product j at the end of period t,

ܾ, Capacity of machine m required to produce a unit of product (or shadow product) j (in
time units per quantity units),

ܲ,,௧ Production costs to produce one unit of product j on machine min period t (in money
unit per quantity unit),

ܵ,, Sequence-dependent setup time for the setup of the machine m from production of
product i to production of product j(in time units); for݅ ് ݆, ܵ,, 0 and ݅ ൌ
݆, ܵ.. ൌ 0,

ܹ,, Sequence-dependent setup cost for the setup of the machine m from production of
product i to production of product j (in money units); for ݅ ് ݆, ܹ,, 0 and
݅ ൌ ݆, ܹ.. ൌ 0,

݆ The starting setup configuration on machine m.

 754

 Decision variables
,,௧ܫ

ା Stock of product j at level m at the end of period t,
,௧ܫ

ି Shortage of product j at the end of period t,
,,,௧ݕ

 Binary variable, which indicates whether the nth setup on machine min period t is from
product i to product j (ݕ,,,௧

 ൌ 1) or not (ݕ,,,௧
 ൌ 0ሻ,

,,ݔ
 Quantity of product j produced after nth setup on machine min period t,

,,ݍ
 Shadow product: the gap (in quantity units) between nth setup (to product j) on machine

min period t and its related production in order to ensure that direct predecessor of this
product (production of product j on machine min period t) has been completed. In
other words, idle time (in quantity units) before production of product j on machine
min period tin order to guarantee vertical interaction.

The mathematical model in this paper is described on the basis of the following:

2.2. Assumptions and formulation

Capacitated lot sizing focuses on how to make lot sizing planning and scheduling focuses on when each
product should be produced to minimize total cost. In order to formulate this model the following
assumptions are considered:

 Several products are produced in a flow shop environment and each product can be produced
only on one machine at the same time,

 Inventory cost incurred when a product unit is hold between a particular period,
 If the product cannot be delivered on time shortage cost is incurred,
 Setup times reducing machine capacity and capacity of each machine is constrained
 Setups are sequence-dependent and must be complete in a period.
 there must be precisely N (number of products) setups in each period on each machine, even if a

setup is just from a product to itself, with respect to this issue that setup time (and cost) from a
product to itself is zero

The objective function is to find an optimal lot sizing and scheduling that minimize setup, inventory,
production and backlogging costs.

݉݅݊ ܹ,,. .,,௧ݕ

்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

ே

ୀଵ

ே

ୀଵ

 ܲ,,௧. ,,௧ݔ

்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

ே

ୀଵ

 ݄,
ା . ,,௧ܫ

ା

்

௧ୀଵ

ெ

ୀଵ

ே

ୀଵ

 ݄,௧
ି . ,௧ܫ

ି

்

௧ୀଵ

ெ

ୀଵ

(1)

subject to

݀,௧ ൌ ,ெ,௧ିଵܫ
ା ,ெ,௧ݔ

 െ

ே

ୀଵ

,ெ,௧ܫ
ା െ ,௧ିଵܫ

ି ,௧ܫ
ି ; ݆ ൌ 1, … , ܰ, ݐ ൌ 1, … , ܶ (2)

,,௧ିଵܫ
ା ,,௧ݔ

ே

ୀଵ

ൌ ,,௧ܫ
ା ,ାଵ,௧ݔ

 ;

ே

ୀଵ

݆ ൌ 1, … , ܰ, ݉ ൌ 1, … , ܯ െ 1, ݐ ൌ 1, … , ܶ (3)

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

755

.ܯܾ݃݅ ቌ ,,,௧ݕ
ᇲ

ே

ୀଵ,ஷሺሺᇲவଵሻ

െ 1ቍ ,,,௧ݕ

ே

ୀଵ

ே

ୀଵ

ᇲ

ୀଵ

. ܵ,, ܾ,

ே

ୀଵ

ᇲ

ୀଵ

. ,,௧ݍ

 ܾ,

ே

ୀଵ

ᇲ

ୀଵ

. ,,௧ݔ

 .ܯܾ݃݅ ቌ1 െ ,,ାଵ,௧ݕ
ᇲᇲ

ே

ୀଵ,ஷሺሺᇲᇲவଵሻ

ቍ ,,ାଵ,௧ݕ

ே

ୀଵ

ே

ୀଵ

ᇲᇲ

ୀଵ

. ܵ,,ାଵ

 ܾ,ାଵ

ே

ୀଵ

ᇲᇲ

ୀଵ

. ,ାଵ,௧ݍ
 ܾ,ାଵ

ே

ୀଵ

ᇲᇲିଵ

ୀଵ

. ,ାଵ,௧ݔ
 ; ݆ ൌ 1, . . . , ܰ,

݊ᇱ ൌ 1, . . . , ܰ, ݊ᇱᇱ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , ܯ െ 1, ݐ ൌ 1, . . . , ܶ

(4)

 ,,,௧ݕ

ே

ୀଵ

ே

ୀଵ

ୀଵ

. ܵ,, ܾ,

ே

ୀଵ

ୀଵ

. ,,௧ݔ
 ܾ,

ே

ୀଵ

ୀଵ

. ,,௧ݍ
 ݉;,௧ܥ ൌ 1, . . . , ,ܯ

ݐ ൌ 1, . . . , ܶ

(5)

,,௧ݔ
 ቆ

,௧ܥ

ܾ,௧
ቇ . ,,,௧ݕ

ே

ୀଵ,ஷሺሺவଵሻ

; ݊ ൌ 1, . . . , ܰ, ݆ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , ,ܯ

ݐ ൌ 1, . . . , ܶ

(6)

,,௧ݍ
 ቆ

,௧ܥ

ܾ,௧
ቇ . ,,,௧ݕ

ே

ୀଵ

; ݊ ൌ 1, . . . , ܰ, ݆ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , ,ܯ

ݐ ൌ 1, . . . , ܶ

(7)

,,,ଵݕ
ଵ ൌ 0 ݆ ് ݆; ݅ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , (8) ܯ

 బ,,,ଵݕ
ଵ

ே

ୀଵ

ൌ 1; ݉ ൌ 1, . . . , (9) ܯ

 ,,,௧ݕ

ே

ୀଵ

ൌ ,,,௧ݕ
ାଵ ;

ே

ୀଵ

 ݅ ൌ 1, . . . , ܰ, ݊ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , ,ܯ ݐ ൌ 1, . . . , ܶ (10)

 ,,,௧ିଵݕ
ே

ே

ୀଵ

ൌ ,,,௧ݕ
ଵ ;

ே

ୀଵ

 ݅ ൌ 1, . . . , ܰ, ݊ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , ,ܯ

ݐ ൌ 2, . . . , ܶ

(11)

,,,௧ݕ
 ൌ 1 ݎ 0 (12)

,,௧ܫ
ା , ,௧ܫ

ି , ,,௧ݔ
 , ,,௧ݍ

 0 (13)

,,ܫ
ା ൌ 0, ݆ ൌ 1, . . . , ܰ, ݉ ൌ 1, . . . , ܯ (14)

In this model, the objective function is Eq. (1). The backlogging or storage at the end of each period is
considered by Eq. (2). Constrain (3) guarantees total of in-flows to each node is equal to of out-flows
from that node. Eq. (4) ensures within one period each typical product j one machine m is produced

 756

before its direct successor. The left side of Eq. (4) is equal to the time between the beginning of period t
and the end of production of product j on machine m if ݊ᇱth setup in machine m and period t is from
every product i to product j (for ݊ᇱ 1, ݅ ് ݆), else it is a negative number. In other words, if ݔ,,௧

ᇲ

cannot get a positive value when the left side of Eq. (4) would get a negative value. The right side of
Eq. (4) is equal to the time between the beginning of period t and the beginning of production of
product j on machine m+1if ݊ᇱᇱth setup in machine m+1 and period t is from every product i to product
j (for ݊ᇱᇱ 1, ݅ ് ݆), else it is a big number. In fact, if ݔ,ାଵ,௧

ᇲᇲ
 cannot get a positive value, the right side

of Eq. (4) would get a big value. The capacity constraints of machine are considered by Eq. (5). Eq. (6)
respects setups in production process. Eq. (7) indicates the relationship between shadow products and
setups. Constraints (8) and (9) ensure that for each machine, the first setup at the beginning of the
planning horizon is from a defined product. Eq. (10) and Eq. (11) represent the relationship between
successive setups. Eq. (8) to Eq. (11) ensure that for each triple (n,m,t) there is exactly one pair (i,j)
which ݕ,,,௧

 ൌ 1. The type of variables is defined by Eq. (12) and Eq. (13) and finally Eq. (14)
indicates that at the end of planning horizon there is no on-hand inventory.

2.3. Lower bounds

In this section, we present a lower bound. The lower bound is developed by adding a new equation and
solving a new model. We add following equation to the relaxed model and consider ݕ,,,௧

 are
continuous variable between 0 and 1.

 ,,,௧ݕ
ଵ

ே

ୀଵ

 ,,,௧ݕ

ே

ୀଶ

ே

ୀଵ,ஷ

ൌ ܽ,,௧ (15)

In this Equation ܽ,,௧ is binary variable. Eq. (15) was proved that is valid to model. We refer the proof
of this Eq. to Mohammadi et al. (2010a).

3. The proposed algorithms

As mentioned above, the CLSP problem is strongly NP-hard and developing heuristics or
metaheuristics method is essential. In this section, we propose two metaheuristic algorithms, namely,
Genetic Algorithm (GA) and Imperialist Competitive Algorithm (ICA).

3.1. The proposed Genetic Algorithm

One of the most popular evolutionary metaheuristics is genetic algorithms, which have been applied to
various optimization problems with promising results (Goren, et al., 2010). GA is probabilistic search
optimization algorithm inspired by the process of natural evolution and the principles of ‘survival of the
fittest’ (Holland, 1975). In this section, we discuss the way a GA can be customized to address a lot
sizing and scheduling problem. Like other population-based metaheuristics, GA starts with an initial
population. Since the quality of the initial population can help the algorithm reach better solutions, so
we first present a simple and effective heuristic to generate initial solution and we discuss the issue of
encoding in our case a binary matrix. Finally, the GA stages and operators according to our model are
designed. The components of GA which are used in this article are described as follows.

3.1.1 Initial Population and chromosome representation

To generate initial solution, values of continuous variables are generated randomly by uniform
distribution function. Quantity of product (x), Shadow product (q), Stock of product (ܫା) and Shortage
of product (ିܫ) are continuous variables and the binary variables are sequencing of job at planning

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

757

horizon (ݕ). The binary variables are coded by determination of sequencing of product. We use a
simple and effective heuristic which has been presented by Mohammadi et al. (2011).

This heuristic is used for ݐ ൌ 1 to ܶ and is described as follows:
(1) The products are sorted in the decreasing order of ܹ, ൌ ∑ ܹ,,; ݆ ൌ 1, . . . , ܰ.ே

ୀଵ
(2) Let ሾ݅ሿ indicate the ݅th product in an ordered sequence in this heuristic,

For ሾ݅ሿ ൌ 1 to ܰ:
(a) Consider inserting product ሾ݅ሿ into every position,
(b) Calculate the sum of setup costs for all products scheduled so far using the actual setup

costs,
(c) Place product i in the position with the lowest resultant sum of setup costs.

By using this method, ܯ different initial populations is produced (for ݉ ൌ 1, . . . , the remaining ,(ܯ
initial populations have been generated randomly. Chromosomes are represented in the form of
matrices with ܰ ൈ ܶ ൈ .dimensions to show the value of binary variables ܯ
In Fig. 1, a sample chromosome with T =2, N =3 and M=2 is depicted.

Fig. 1. A sample chromosome
According to Fig. 1, an encoded binary variables have been shown. The corresponding binary variables
(decoded)in this chromosome during period T=1 are, ݕଵ,ଵ,ଵ,ଵ

ଵ ൌ ଵ,ଷ,ଵ,ଵݕ
ଶ ൌ ଷ,ଶ,ଵ,ଵݕ

ଷ ൌ ଵ,ଵ,ଶ,ଵݕ
ଵ ൌ ଵ,ଷ,ଶ,ଵݕ

ଶ ൌ
ଷ,ଶ,ଶ,ଵݕ

ଷ ൌ 1 and the corresponding binary variables to this chromosome during period T=2 are,
ଶ,ଶ,ଵ,ଶݕ

ଵ ൌ ଶ,ଷ,ଵ,ଶݕ
ଶ ൌ ଷ,ଵ,ଵ,ଶݕ

ଷ ൌ ଶ,ଶ,ଶ,ଶݕ
ଵ ൌ ଶ,ଷ,ଶ,ଶݕ

ଶ ൌ ଷ,ଵ,ଶ,ଶݕ
ଷ ൌ 1 and other binary variables are equal to 0.

3.1.2 Fitness function

The fitness value of each chromosome has been calculated by solving the corresponding problem.

3.1.3 Selection operator

In order to select of appropriate parents from literature, we consider Rank selection (A), Random
selection (B), Tournament selection (C) and Roulette wheel (D) as selection approaches and must be
chosen in the process of the parameter calibration.

3.1.4 Crossover operation and mutation operator

Nagano et al. (2008) have proposed several crossover operators and we employed the similar job two-
point crossover method. In order to produce small perturbations on chromosomes to promote diversity
of the population, a shift mutation operator has been used in this article. The probability of crossover
and mutation must be determined by parameters calibration.

3.1.5 Population replacement

Chromosomes for the next generation are selected from the enlarged population. The best pop_size
chromosomes of the enlarged population have been selected for the next generation.

3.1.6. Termination criterion

The algorithm must terminate according to a criterion. This criterion is specified by reaching to
maximum number of iteration it_max.

 758

3.2. Hybrid Imperialist Competitive algorithm

3.2.1. Frame work of imperialist competitive algorithm

ICA is a novel population-based evolutionary algorithm proposed by Atashpaz-Gargari and Lucas
(2007). ICA is one of the most powerful evolutionary algorithms and it has been used extensively to
solve different kinds of optimization problems. This method is based on socio-political process of
imperialistic competition. Fig. 2 expresses an overview to ICA. We discuss each step of the algorithm
in turn and focus on the developing every step to propose the algorithm.

3.2.1. Generating of Initial countries

The ICA initiates with an initial population. Each individual of the population is called a ‘country’
equivalent ‘chromosome’ in GA. We use the generating initial population method that has been
described in the proposed GA.

3.2.2. Generating of Initial imperials

The countries (solutions) are divided into two categories: imperialists and colonies. This classification
is based on power of each country. Some of the most powerful countries in the initial population are
Imperialists, and the rest weaker countries in initial solution are the colonies of imperialists. A set of
one imperialist and their colonies forms one empire. The total power of an empire is set equal to the
power of the imperialist country plus a percentage of the mean power of its colonies. After forming the
initial empires, Assimilation of colonies starts.

3.2.3. Assimilation of colonies

Imperialist states change socio-political characteristics of colonies in such a way that they become
similar to them (increase their power). Through this movement, some parts of the structure of a colony
will be similar to the structure of the empire to enhance their empire. The aim of assimilation procedure
is to assimilate the colonies’ characteristic toward their imperialist such as culture, social structure,
language, etc. This fact has been modeled by moving all the colonies toward the imperialist. The
assimilating operator is shown in Fig. 2.

Fig. 2. A sample of empire Fig. 3. Moving colonies toward their related imperialist.

As shown in Fig. 3, each colony moves toward its imperialist. The important point is the method of
colonies moving towards the imperialist. Each country (colony) has different socio-political
characteristics (variables), so each socio-political characteristic (variables) moves toward the related

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

759

socio-political of imperialist. For this reason, depend on types of variables, we proposed two different
ways to assimilation variables.

Continuous variables of colonies move toward related continuous variables of its imperialist and binary
variables move toward binary variables of its imperialist. So, the continuous variables of each colony
move toward the imperialist by x units. x is a random number with uniform distribution, ݔ~ܷሺ0, ߚ ൈ
݀ሻ. Where ߚ 1 and ݀ is distance between colony and the its imperialist. d is named the vector of
movement for colony toward imperialist. Parameter ߚcauses the colony to get closer to imperialist from
both sides. To search wider area around current solution we add a random amount of deviation ߠ to the
direction of movement where ߠ~ܷሺെߛ, ሻ. The movement of binary variables is accomplished byߛ
crossover operation, as same as a genetic algorithm. Crossover allows exchanging information between
different solutions (chromosomes) so it is useful to simulate the assimilation of binary variables.

3.2.4.Revolution

Revolution is a fundamental change in power or organizational structures that takes place in a relatively
short period of time. The colony randomly changes its position in the socio-political axis. Fig. 4 shows
the colonies revolution. The revolution increases the exploration of the algorithm and prevents the early
convergence of countries to local minimums. The revolution rate in the algorithm indicates the
percentage of colonies in each colony, which will randomly change their position. A very high value of
revolution decreases the exploitation power of algorithm and can reduce its convergence rate (Abdi et
al., 2011). This mechanism is similar to mutation process in GA for creating diversification in
solutions. Mutation increases the variety in the population, so this operator is used for creating a
revolution in binary variables the same as genetic algorithm.

3.2.5.Exchange the colony with imperialist

Meanwhile moving toward the imperialist, a colony may get to a situation with lower cost than the
imperialist. In this case, the imperialist and the colony change their positions. Thereafter, the algorithm
will keep on by the imperialist in the new position and the colonies will be assimilated by the
imperialist in its new position. Fig. 5 shows the empire after exchanging position between the
imperialist and the colony.

Fig. 4. Revolution Fig. 5. Exchanging the positions of a colony and
the imperialist

3.2.6. Imperialistic competition

In ICA, all empires compete to take possession of more colonies besides their current colonies. By
keeping on the imperialistic competition, the power of weaker empires will decrease and the power of
more powerful ones will reinforce. To model this competition among imperialists, the weakest colony
of the weakest empire is freed from its current imperialist and waited to be possessed by all empires.
Each of the empires (based on its total power) will have a likelihood of taking possession of the

 760

mentioned colonies. It means, these colonies will not definitely be possessed by the most powerful
empires, but these empires will be more likely to possess them each imperialist attempt to gain the
colonies of other empires. The most powerful empires have a more chance to gain the colonies from the
weakest empires. Fig. 6 shows how each empires taking possession of the weakest colonies.
The total power of an empire is mainly contributed by the power of imperialist country. It is clear that
the power of an empire includes the imperialist power and their colonies. However, the power of the
colonies of an empire has a negligible effect, on the total power of that empire. This fact is modeled by
defining the total cost of an empire:

ܥܶ ൌ ሽݐݏ݈݅ܽ݅ݎ݁ሼ݅݉ݐݏܿ ߩ כ ݉݁ܽ݊ሼܿݐݏሺܿ݁ݎ݅݉݁ ݂ ݏ݈݁݅݊ሻሽ,

where ܶܥthe total is cost of the ݆th empire and ߩ is a positive small number. If values of ߩ are small,
the total power of the empire will be determined by approximately only the imperialist and increasing it
will increase the role of the colonies in determining the total power of an empire. To start the
competition, after selecting the weakest colony, the possession probability of each empire must be
found. The normalized total cost of an empire is simply obtained by

ܰ. ܶ. .ܥ ൌ ܶ. െ.ܥ maxሼܶ. .ܥ ሽ,

where, ܰ. ܶ. .ܶ and.ܥ . are the total cost and the normalized total cost of ݊th empire, respectively.ܥ
Having the normalized total cost, the possession probability of each empire is given by

ൌ ቤ ே.்..

∑ ே.்..
ಿ
సభ

ቤ.

Roulette wheel method was used for assigning the mentioned colony to empires.

Fig. 6.The more powerful an empire is, the more likely it will possess the weakest colony of the
weakest empire (Imperialistic competition)

3.2.7.Elimination of powerless empires.

During the competition, weak imperialists will lose their weakest colony, gradually. When an empire
loses all of its colonies, it will be eliminated from the population. In fact, the empire collapses. At the
end just one imperialist will remain. This is the optimum point.

3.2.8. Stop criterion

By keeping on the algorithm and spending the time, all of the empires will collapse except the most
powerful one and all the colonies will be subjected to this empire. In such an ideal new world, all the

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

761

colonies will have the same positions and the same costs and they will be controlled by an imperialist
with the same position and cost as themselves. In such a world, there is no difference not only among
colonies, but also between colonies and imperialist (Kayvanfar et al., 2012). Stopping criterion in
proposed algorithm is to get the maximum decades.

4. Experiments

4.1. Parameters tuning based on Taguchi method

One important decision to make when implementing a metaheuristic is how to set the parameter values.
Modifying the parameter tuning of a metaheuristic could greatly impact the algorithm’s performance.
In order to calibrate the algorithms, there are several ways to statistically design the experimental
investigation, but the most frequently used and exhaustive approach is a full factorial experiment
(Montgomery, 2000). This approach cannot be always effective since it becomes increasingly difficult
to carry out investigations when the number of factors becomes considerably large. In order to reduce
the number of required tests, a fractional factorial experiment (FFE) was developed (Kayvanfar et al.,
2012). Taguchi (1986) developed a family of FFE matrices that ultimately lessens the number of
experiments, but still provides adequate information so that in this paper Taguchi method is employed
to calibrate the parameters of algorithms. As universalization, we study three different categories of
problems, i.e., small problems, medium problems, and large problems. For each instance, because of
different size of problems, the factors level differs. From literatures and preliminary experimental we
determine the parameters and the levels. For the proposed GA we consider selection type, crossover
probability, mutation probability, number of population and maximum iteration. And for the proposed
ICA we consider number of population, number of imperialist, maximum iteration, revolution
probability andߩ. After preliminary experiment we considered the levels of the factors for GA and ICA
that are reported in Table 1.

Table 1
Factor levels for small, medium, and large problems

 Problem Size Parameter Level 1 Level 2 Level 3 Level 4

GA

Small

Selection Type
Crossover Probability
Mutation Probability
Number of Population
Maximum Iteration

A
0.4
0.1
300
300

B
0.5
0.2
400
400

C
0.6
0.3
500
500

D
0.7
0.4
600
600

Medium

Selection Type
Crossover Probability
Mutation Probability
Number of Population
Maximum Iteration

A
0.4
0.1
100
100

B
0.5
0.2
200
200

C
0.6
0.3
300
300

D
0.7
0.4
400
400

Large

Selection Type
Crossover Probability
Mutation Probability
Number of Population
Maximum Iteration

A
0.4
0.1
50
50

B
0.5
0.2
100
100

C
0.6
0.3
150
150

D
0.7
0.4
200
200

ICA

Small

Number of Population
Number of Imperialist
Maximum Iteration
Revolution Probability
ߩ

300
5

300
0.1

0.25

400
10
400
0.2

0.75

500
15
500
0.3

1.25

600
20
600
0.4

1.75

Medium

Number of Population
Number of Imperialist
Maximum Iteration
Revolution Probability
࣋

100
5

100
0.1

0.25

200
10
200
0.2

0.75

300
15
300
0.3

1.25

400
20
400
0.4

1.75

Large

Number of Population
Number of Imperialist
Maximum Iteration
Revolution Probability
࣋

50
5

50
0.1

0.25

100
10
100
0.2

0.75

150
15
150
0.3

1.25

200
20
200
0.4

1.75

 762

Taguchi splits the factors into two main groups: controllable and noise factors. Those factors that we
cannot directly control them are noise factors. Since removal of the noise factors is often impossible,
the Taguchi method looks for to minimize the effect of noise and to determine the optimal level of the
important controllable factors based on the concept of robustness (Tsai, et al.). A transformation of the
repetition data to another value is employed in Taguchi method, which is the measure of variation. The
transformation is named the signal-to-noise (S/N) ratio. The term “signal” indicates the desirable value
(response variable) and “noise” signifies the undesirable value (standard deviation). Therefore, the S/N
ratio specifies the amount of variation present in the response variable. Here, maximization of the
signal-to-noise ratio is addressed (i.e., is the goal) (Kayvanfar et al., 2012). Taguchi categorizes
objective functions into three groups: the smaller-the-better type, the larger-the-better type, and the
nominal-is-best type. Since our objective functions in minimization so the smaller-the-better type is
suitable, the corresponding S/N ratio (Phadke, 1989) is:

ܵ
ܰ

݅ݐܽݎ ൌ െ10 logሺ݊݅ݐ݂ܿ݊ ݁ݒ݅ݐ݆ܾܿ݁ሻଶ

Fig. 7. Main effect plot for S/N ratios for GA in different problem size

Fig. 8. Main effect plot for S/N ratios for ICA in different problem size
In order to conduct the experiments, we implemented GA and ICA examples in MATLAB run on a PC
with a 2.27 GHz Intel Core i5 processor and 3 GB RAM memory. Fig. 7 and Fig. 8 show the average
S/N ratio obtained at each level for ICA and GA on small, medium and large problems. According to
Fig. 7 and Fig. 8 the optimal levels of factors are easily determined.

Table 2
Optimal level of the parameters for GA and ICA

Problem

size
Optimal level of the parameters

GA
Small Select Type = D, Crossover Probability = 0.6, Mutation Probability = 0.2, Number of Population = 600, Maximum Iteration = 600
Medium Select Type = D, Crossover Probability = 0.5, Mutation Probability = 0.1, Number of Population = 200, Maximum Iteration = 400
Large Select Type = D, Crossover Probability = 0.6, Mutation Probability = 0.3, Number of Population = 100, Maximum Iteration = 150

ICA
Small Number of Population=500, Number of Imperialist = 15, Maximum Iteration = 400, Revolution Probability =0.3, 1.75 = ߩ
Medium Number of Population=400, Number of Imperialist = 20, Maximum Iteration = 200, Revolution Probability =0.3, 0.25 = ߩ
Large Number of Population=50, Number of Imperialist = 15, Maximum Iteration = 100, Revolution Probability=0.1, 1.25 = ߩ

The optimal factors for each algorithm in different problem size are shown in Table 2. Based on
optimal parameters, we design some experiments and compare the tuned-algorithms in each category.

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

763

4.2. Computational and statistical evaluation

In this section, in order to evaluate and compare the performance of two proposed algorithms, we
consider different problem sizes and define a comparison measurement to determine which algorithm is
superior to the other one. We design an experiment that is intended to extensively test of the
computational efficiency of the proposed search algorithms. The primary objective is to solve problems
classified into three different sizes, small, medium, and large (Logendran et al., 2006). We conducted
20 problems for each size (small medium and large) and also for lower bound. For each of the 20
instances, 15 independent runs are carried out. The response variable for each algorithm is considered
on the following performance measure: % increase over the lower bound:

i
15 sol

1

Metaheuristic1
100 ,

15
i

i i

LB

LB

where ܿ݅ݐݏ݅ݎݑ݄݁ܽݐ݁ܯ௦
 is obtained solution by the algorithm (GA or ICA) and ܤܮ is the solution

obtained by the lower bound. It is obvious that the smaller value of the performance measurement
shows the metaheuristic is more efficient. On the other hand, the algorithm with smaller performance
measurement compared with the one with higher value has better performance and outperforms the
second one. The required parameters for these problems are extracted from the following uniform
distributions:

ܿ ൎ ܷሺ5, 10ሻ, ݀ ൎ ܷሺ0.5, 1ሻ, ݄ା ൎ ܷሺ0.05, 0.1ሻ, ݄ି ൎ ܷሺ1, 5ሻ, ܾ ൎ ܷሺ0.02, 0.04ሻ,
ൎ ܷሺ0.02, 0.04ሻ, ݏ ൎ ܷሺ100, 1100ሻ.

The GA and the ICA algorithms are coded in MATLAB programming language and are run on a PC
with a 2.27 GHz Intel Core i5 processor and 3 GB RAM memory processor running at 2 GHz with
elapse CPU time = 7200 (Mohammadi, et al., 2011). All of the classified problem instances are solved
by the GA and the ICA algorithm and finally by lower bound. The comparing measurement is
calculated. The computational results are reported in Table 3, Table 4 and Table 5.

Table 3
Computation results of the algorithms
for small size problems

 Table 4
Computation results of the algorithms for
medium size problems

 Table 5
Computation results of the algorithms for
large size problems

Problem Size
(ܰ ൈ ܯ ൈ ܶ)

GA ICA
 Problem Size

(ܰ ൈ ܯ ൈ ܶ)
GA ICA

 Problem Size
(ܰ ൈ ܯ ൈ ܶ)

GA ICA

2 ൈ 2 ൈ 2 10.65% 5.75% 5 ൈ 5 ൈ 5 13.35% 4.42% 9 ൈ 9 ൈ 9 12.13% 5.11%
2 ൈ 2 ൈ 3 9.49% 6.42% 5 ൈ 5 ൈ 6 14.72% 6.82% 9 ൈ 9 ൈ 10 12.94% 6.43%
2 ൈ 3 ൈ 2 11.92% 4.63% 5 ൈ 6 ൈ 5 12.09% 4.40% 9 ൈ 10 ൈ 9 10.67% 2.92%
3 ൈ 2 ൈ 2 7.59% 6.08% 6 ൈ 5 ൈ 5 13.38% 5.08% 10 ൈ 9 ൈ 9 6.68% 3.40%
2 ൈ 3 ൈ 3 1015% 4.14% 5 ൈ 6 ൈ 6 13.17% 5.38% 9 ൈ 10 ൈ 10 10.61% 5.72%
3 ൈ 2 ൈ 3 10.43% 6.67% 6 ൈ 5 ൈ 6 10.77% 4.75% 10 ൈ 9 ൈ 10 8.42% 5.52%
3 ൈ 3 ൈ 2 12.00% 3.76% 6 ൈ 6 ൈ 5 9.08% 5.87% 10 ൈ 10 ൈ 9 11.15% 4.82%
3 ൈ 3 ൈ 3 9.38% 4.64% 6 ൈ 6 ൈ 6 10.50% 5.44% 10 ൈ 10 ൈ 10 10.73% 4.64%
4 ൈ 3 ൈ 3 11.58% 5.58% 7 ൈ 6 ൈ 6 10.30% 5.07% 10 ൈ 10 ൈ 11 7.85% 4.63%
3 ൈ 4 ൈ 3 10.35% 3.15% 6 ൈ 7 ൈ 6 13.19% 5.89% 10 ൈ 11 ൈ 10 10.54% 6.07%
3 ൈ 3 ൈ 4 9.86% 2.94% 6 ൈ 6 ൈ 7 7.80% 5.31% 11 ൈ 10 ൈ 10 9.37% 4.83%
4 ൈ 3 ൈ 3 6.95% 3.93% 7 ൈ 7 ൈ 7 10.18% 5.70% 11 ൈ 11 ൈ 10 10.74% 3.35%
3 ൈ 4 ൈ 3 13.05% 5.55% 7 ൈ 7 ൈ 8 10.99% 4.96% 11 ൈ 10 ൈ 11 10.94% 3.34%
3 ൈ 3 ൈ 4 11.81% 3.63% 7 ൈ 8 ൈ 7 15.81% 3.94% 10 ൈ 11 ൈ 11 13.10% 5.79%
4 ൈ 4 ൈ 4 10.57% 4.87% 8 ൈ 7 ൈ 7 13.52% 6.09% 11 ൈ 11 ൈ 11 9.26% 5.71%
4 ൈ 4 ൈ 5 14.54% 7.68% 7 ൈ 8 ൈ 8 13.04% 5.06% 12 ൈ 12 ൈ 12 11.63% 3.93%
4 ൈ 5 ൈ 4 9.73% 3.91% 8 ൈ 7 ൈ 8 10.64% 5.04% 13 ൈ 13 ൈ 13 13.05% 6.02%
5 ൈ 4 ൈ 4 10.30 4.96% 8 ൈ 8 ൈ 7 10.09% 5.35% 14 ൈ 14 ൈ 14 9.19% 5.45%
5 ൈ 5 ൈ 4 11.43% 5.48% 8 ൈ 8 ൈ 8 11.46% 6.18% 15 ൈ 15 ൈ 15 - -
5 ൈ 4 ൈ 5 10.12% 6.39% 8 ൈ 8 ൈ 9 6.65% 4.83% 16 ൈ 16 ൈ 16 - -

mean %10.60 %5.01 mean %11.54 %5.28 Mean %10.50 %4.87
Finding the optimum value for the second lower bound requires more than 7200 s and the objective value at this time has been considered.

From the computational results, the mean of performance measurement in small, medium and large
problems shows that the proposed ICA outperforms the proposed GA. In the ICA, we have used some
advanced techniques such as compound assimilation policy, compound revolution policy, designed
improvisation scheme and hybridization continuous variables and binary variables. Despite the fact that

 764

the mean of measurement could be used to comparing two algorithms, we have used a well-known
methodology to compare two algorithms statistically. A statistic experiment is carried out by means of
a multi-factor analysis. Tukey Honest Significant Difference (HSD) confidence Intervals is employed to
compare algorithms.

The results are showed in Fig. 9. According to this Fig., it is clear that the proposed ICA that are
statistically better than the proposed GA in small, medium and large problems consequently in every
size problems.

Fig. 9. Means and 95% LSD Intervals for the compared algorithms
5. Conclusions

To the best of our knowledge, this was the first reported comparison of the imperialist competitive
algorithm and genetic algorithm for solving the capacitated lot sizing and scheduling problem with
backlogging in flow shop environment. We proposed two metaheuristics algorithm (ICA and GA). As
universalization, we have studied the developed models in three different categories (small problems,
medium problems, and large problems). For each instance, because of different size of problems, the
factors level differs and we have employed Taguchi method to calibrate each category separately. In
addition, we have presented a lower bound to evaluate the performance of the algorithms. Some
problems were designed in each category and were solved by the algorithms. The computational results
and statistical comparisons demonstrated the superiority of the proposed ICA to GA in terms of
solution quality. As the future work, employing other metaheuristics algorithm, such as Particle Swarm
Optimization (PSO) and Harmony Search (HS) is proposed.

References

Abdi, B., Mozafari, H., Ayob, A., & Kohandel, R. (2011). Imperialist Competitive Algorithm and its
Application in Optimization of Laminated Composite Structures. European Journal of Scientific
Research, 55 (2), 174-187.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition, IEEE Congress on Evolutionary Computation,
Singapore, 4661–4667.

Araújo, C. D., Nagano, M. S. (2010). A new effective heuristic method for the no-wait flowshop with
sequence-dependent setup times problem. International Journal of Industrial Engineering
Computations, 2, 155–166.

Bitran, G., &Yanasse, H. (1982).Computational complexity of the capacitated. Management Science,
28(10), 1174–1186.

Buschkühl, L., Sahling, F., Helber, S., &Tempelmeier, H. (2010). Dynamic capacitated lot-sizing
problems: a classification and review of solution approaches. OR Spectrum, 32, 231–261.

Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling - Survey and extensions. European Journal
of Operational Research, 99, 221-235.

M. Babaei et al. / International Journal of Industrial Engineering Computations 3 (2012)

765

Goren, H. G., Tunali, S., & Jans, R. (2010). A review of applications of genetic algorithms in lot sizing.
Journal of Intelligence Manufacturing, 21, 575–590.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The U. of Michigan Press
Kaveh, A., & Talatahari, S. (2010). Optimum design of skeletal structures using imperialist competitive

algorithm. Computer Structure, 88(21–22), 1220–1229.
Kayvanfar, V., & Zandieh, M. (2012). The economic lot scheduling problem with deteriorating items

and shortage: an imperialist competitive algorithm. The International Journal of Advanced
Manufacturing Technology, doi:10.1007/s00170-011-3820-6

Khabbazi, A., Gargari, E., & Lucas, C. (2009). Imperialist competitive algorithm for minimum bit error
rate beamforming. International Journal of Bio-Inspiration Computing, 1(1/2), 125–133.

Khanzadi, M., Soufipour R., & Rostami, M. (2011).A new improved genetic algorithm approach and a
competitive heuristic method for large-scale multiple resource-constrained project-scheduling
problems. International Journal of Industrial Engineering Computations, 2, 737–748.

Kimms, A. (1999). A genetic algorithm for multi-level, multi-machine lot sizing and scheduling.
Computers & Operations Research, 26, 829-848.

Lang, J. C., &Shen, Z.-J.M. (2011).Fix-and-optimize heuristics for capacitated lot-sizing with
sequence-dependent setups and substitutions. Production, Manufacturing and Logistics, 3, 214.

Lian, K., Zhang, C., Shao, X., & Gao, L. (2012). Optimization of process planning with various
flexibilities using an imperialist competitive algorithm. The International Journal of Advanced
Manufacturing Technology, 59, 815-828.

Logendran, R., Salmasi, N., &Sriskandarajah, C. (2006).Two-machine group scheduling problems in
discrete parts manufacturing with sequence-dependent setups. ChelliahSriskandarajah, 33, 158 –
180.

Lucas, C., Nasiri-Gheidari, Z., & Tootoonchian, F. (2010).Application of an imperialist competitive
algorithm to the design of a linear induction motor. Energy Conversion Management, 51(7), 1407–1411.

Maes, J., McClain, J., & Van Wassenhove, L. (1991). Multilevel capacitated lotsizing complexity and
LP-based heuristics. European Journal of Operational Research, 53, 131-148.

Mohammadi, M. (2010).Integrating lotsizing, loading, and scheduling decisions in flexible flow
shops.The International Journal of Advanced Manufacturing Technology, 50, 1165–1174.

Mohammadi, M., FatemiGhomi, S.-M.-T., Karimi, B., & Torabi, S-A. (2010a). MIP-based heuristics
for lotsizing in capacitated pure flow shop with sequence-dependent setups. International Journal of
Production Research, 48 (10), 2957–2973.

Mohammadi, M., FatemiGhomi, S.-M.-T., Karimi, B., & Torabi, S-A. (2010b). Rolling-horizon and
fix-and-relax heuristics for the multi-product multi-level capacitated lotsizing problem with
sequence-dependent setups. Journal of Intelligent Manufacturing, 21(4), 501–510.

Mohammadi, M., Ghomi, S. F., & Jafar, N. (2011). A genetic algorithm for simultaneous lotsizing and
sequencing of the permutation flow shops with sequence-dependent setups. Expert Systems with
Applications, 24, 87-93.

Montgomery, D. (2000). Design and Analysis of Experiments. New York: Wiley.
Nagano, M., Ruiz, R., & Lorena, L. (2008).A constructive genetic algorithm for permutation flowshop

scheduling. Computers & Industrial Engineering, 55 (1), 195–207.
Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., &Atashpaz- Gargari, E. (2010).Computers

and Industrial Engineering, 37(12), 7615–7626.
Phadke, M. (1989).Quality Engineering using Robust Design. Engelwood Cliffs: Prentice-Hall.
Quadt, D., & Kuhn, H. (2008). Capacitated lot-sizing with extensions: a review. 4OR, 6(1), 61–83.
Rajabioun, R., Atashpaz-Gargari, E., & Lucas, C. (2008).Colonial competitive algorithm as a tool for

Nash equilibrium point achievement. International Journal of Intelligent Computing and
Cybernetics, 49 (11), 680–695.

Sarayloo, F., &Tavakkoli-Moghaddam, R. (2010).Imperialistic competitive algorithm for solving a
dynamic cell formation problem with production planning. Advanced Intelligent Computing
Theories and Applications, 6215, 266–276.

 766

Shim, I.-S., Kim, H.-C., Doh, H.-H., & Lee, D.-H.(2011). A two-stage heuristic for single machine
capacitated lot-sizing and scheduling with sequence-dependent setup costs. Computers & Industrial
Engineering, 61(4), 920-929.

Shokrollahpour, E., Zandieh, M., & Dorri, B. (2010).A novel imperialist competitive algorithm for bi-
criteria scheduling of the assembly flowshop problem. International Journal of Production
Research, 49(11), 3087–3103.

Sun, H., Huang, H.-C., & Jaruphongsa, W. (2009).Genetic algorithms for the multiple-machine
economic lot scheduling problem. The International Journal of Advanced Manufacturing
Technology, 43, 1251-1260.

Taguchi, G. (1986). Introduction to quality engineering. White Plains: Asian Productivity.
Tsai, J.T., Ho, W.H., Liu, T.K., & Chou, J.H. (2007). Improved immune algorithm for global numerical

optimization and job-shop scheduling problems. Applied Mathematics and Computation, 194, 406–
424.

Wagner, H.-M., & Whithin, T.-M.(1958). Dynamic version of the economic lot size model.
Management Science, 5, (89–96).

Xiao, Y., Kaku, I., Zhao, Q., & Zhang, R. (2012).Neighborhood search techniques for solving
uncapacitated multilevel lot-sizing problems. Computers & Operations Research, 39, 647–658.

Yao, M. J., & Huang, J. X. (2005).Solving the economic lot scheduling problem with deteriorating
items using genetic algorithms. Journal of Food Engineering, 70, 309–322.

Zhua, X., & Wilhelm, W. E. (2006). Scheduling and lot sizing with sequence-dependent setup: A
literature review. IIE Transactions, 38, 987–1007.

	Two parameter-tuned metaheuristic algorithms for the multi-level lot sizing and schedulingproblem
	1. Introduction
	2. Notation and problem formulation
	2.1. Notations
	2.2. Assumptions and formulation

	3. The proposed algorithms
	3.1. The proposed Genetic Algorithm
	3.2. Hybrid Imperialist Competitive algorithm

	4. Experiments
	4.1. Parameters tuning based on Taguchi method
	4.2. Computational and statistical evaluation

	5. Conclusions
	References

