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 The capacitated arc routing problem is one of the most important routing problems with many 
applications in real world situations such as snow removing, winter gritting, refuse collection, etc. 
Since this problem is NP-hard, many of researchers have been developed numerous heuristics and 
metaheuristics to solve it. In this paper, we propose a new constructive and improvement 
heuristic in which forming a vehicle’s tour is based on choosing an unserved edge randomly as 
current partial tour and then extending this partial tour from its both of end nodes base on four 
effective proposed criteria. When the vehicle load is near its capacity, it should come back to the 
depot immediately. Finally, the constructed tours are merged into more efficient and cheaper 
tours. The quality of this new approach was tested on three standard benchmark instances and the 
results were compared with some known existing heuristics and metaheuristics in the literature. 
The computational results show an excellent performance of our new method.  

© 2012 Growing Science Ltd.  All rights reserved
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1. Introduction 

The capacitated arc routing problem (CARP) is one of the most important routing problems in 
literature, and attracted interest of many researchers. It has numerous applications in real world 
situations such as refuse collection (Dijkgraaf & Gradus, 2007), winter gritting (Eglese & Li, 1992), 
snow removing (Labelle et al., 2002), inspection of gas pipeline (Han et al., 2004), street sweeping 
(Tobin & Brinkmann, 2002), and electric meter reading (Stern & Dror, 1979). The CARP was first 
introduced by Golden and Wong (1981) and deals with connected and undirected graph G= (V, E), 
where V is the set of vertices (nodes) and E is the set of edges. Each edge of E has a definite travel cost 
and some edges have positive demand, called required edges, which must be serviced by some vehicles 
with limited capacity. All vehicles are identical and located at a single depot. The aim of CARP is to 
design a set of vehicle tours of  minimum total routing cost such that each tour starts and ends at the 
depot, each required edge is serviced by exactly one vehicle, and the total demand serviced by any 
vehicle most not exceed the vehicle’s capacity. Some instances (in small size) of CARP can be solved 
for optimality by implementing exact methods such as branch and bound (Hirabayashi et al., 1992), 
branch and cut and price algorithm (Aragão et al., 2006), and cutting plane algorithm (Belenguer & 
Benavent, 2003). Wøhlk (2006) proposed a new lower bound, the Multiple Cuts Node Duplication 
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Lower Bound, for the undirected CARP. However, the CARP is a NP-hard problem (Golden & Wong, 
1981) and these exact methods are not able to solve the large-scale instances in polynomial time. 
Therefore, due to the computational complexity of the problem, there have been  remarkable attempts 
by researchers in developing heuristic and metaheuristics algorithms to solve it. Tabu search is the first 
metaheuristics proposed by Hertz et al., (2000). Here solutions breaking vehicle capacity are accepted 
but penalized. Three improvement procedures (Shorten, Drop, Add) initially explained by Hertz et al. 
(1999) and four new ones (Paste, Cut, Switch, and Postopt) are used. Lacomme et al. (2004a) proposed 
a memetic algorithm to solve an extended version of the CARP; each required edge is represented by 
two directions. The chromosomes are encoded as large tours. Each chromosome is evaluated optimally 
using a splitting procedure, which partitions the large tour into feasible trips. Ant colony system 
(Lacomme et al., 2004b) is one of the other metaheuristics in which two types of ant are used to work 
through the problem. These are elitist ants that make the solutions converge towards a minimum cost 
solution and non-elitist ants that guarantee diversification to prevent being trapped in a local minimum. 
Beside metaheuristics, heuristics are better with required short CPU time. Furthermore, they are 
implemented easier and provide a good initial solution to start of many metaheuristics. However, 
metaheuristics give solutions with more quality. Augment-Merge (Golden & Wong, 1981), Path-
scanning (Golden et al., 1983), Double Outer Scan heuristic (Wøhlk, 2005), Ulusoy’s heuristic 
(Ulusoy, 1985), Ellipse Rule based Path-scanning heuristic (Santos et al., 2009), and Construct-Strike 
(Pearn, 1989) are some of the known heuristics to solve the CARP. For a detailed overview of the main 
characteristics of the heuristics in the literature, the readers may refer to Wøhlk (2008). Yet, the 
development of enhanced heuristics is an important research area for the CARP.  

It is note that researchers try to develop various models of classical CARP and consequently develop 
efficient heuristic and metaheuristic methods to solve these models. For example, recently Kirlik et al. 
(2012) introduced a new model of CARP with deadheading demands and modified the Ulusoy’s 
heuristic (Ulusoy, 1985) to solve it. Grandinetti et al. (2012) by giving an optimization-based heuristic 
solved CARP with three objectives: the total transportation cost, the longest route cost, and the number 
of vehicles. In addition, Salazar-Aguilar et al. (2012) proposed an adaptive large neighborhood search 
heuristic for synchronized arc routing problem.  

The main objective of the current research is to propose a new heuristic for classical CARP that 
employs some ideas of “Double Outer Scan heuristic” and “Path-scanning whit Ellipse Rule heuristic” 
to solve the problem. This proposed heuristic is based on selecting an unserved edge randomly, then 
extending it by both of its end points, into a vehicle’s tour based on four effective criteria. When the 
vehicle load is near its capacity or there is no qualified edge to add the current tour, vehicle should 
return to the depot by using shortest path. Finally, in order to reduce the total cost and efficient usage of 
vehicle capacity, the constructed tours are merged into shorter tours. The remainder of the paper is 
structured as follows: A brief review about Double Outer Scan heuristic (DOS) and Ellipse Rule 
heuristic based on Path-scanning (RSE-ER), is presented in section 2. In section 3, we describe our 
heuristic method. Section 4 is devoted to computational results and experimental analysis. Finally, 
some concluding remarks are stated in section 5.  

2. Brief review on DOS and RSE-ER 

In this section, we give a brief review of DOS and RSE-ER. Details of these methods can be found in 
Wøhlk, (2005) and Santos et al. (2009), respectively. Double Outer Scan heuristic was introduced by 
Wøhlk (2005) and combines the Augment-Merge algorithm and the Path-scanning method. Unlike the 
Augment-Merge which always selects the edge that has the shortest path from the end points of the 
current tour, here the neighbor edges is considered. In each iteration the unserved edge that is farthest 
away from the depot is selected, and from this edge, vehicle scan in the Path-scanning heuristic way to 
service the other edges, but unlike the Path-scanning heuristic, this done from both ends of the current 
partial tour. Finally, the obtained tours are merged into shorter tours. Ellipse Rule based on path-
scanning heuristic is a modification of the path scanning algorithm in which, when the vehicle is near 
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the end of a route, in other words, when the vehicle load is around its capacity, the ellipse rule impels 
the vehicle to service only arcs near the shortest path between the last serviced arc and the depot. 

Furthermore, Path-scanning is based on construction of each tour by adding one edge to the partial tour 
at a time. In order to choose the next edge, if the tie occurs, the five criteria (Golden et al., 1983) 
including: 1) Minimize the distance to the depot; 2) Maximize the distance to the depot; 3) Minimize 
the distance per unit demand ; 4) Maximize the distance per unit demand; 5) Use criterion 1, if the 
vehicle is more than half-full, otherwise use criterion 2; are used and among the obtained five solutions, 
the best one is selected as the final solution. Pearn (1989) used a modified path-scanning heuristic 
based on random selection of the five criteria. Belenguer et al. (2006) suggested another path-scanning 
based upon random selection of the tied arcs. Recently, Santos et al. (2009) indicate that the solutions 
achieved by the random selection of tied arcs are similar quality to those identified by the five criteria 
of Golden et al. (1983) and Pearn (1989). So Santos et al. (2009) used random-add approach in the 
Path-scanning with Ellipse Rule heuristic. 

In this paper, by employing some ideas of DOS and RSE-ER, we propose a new robust heuristic 
method. At each iteration, this heuristic chooses one arc, randomly. This arc forms the current partial 
tour. Like DOS, we extend the current partial tour by both of its end points, but here we use four 
proposed criteria that will be presented in the next section. We choose those required edges that are 
incident to current partial tour. In RSE-ER, Santos et al. (2009) used ellipse rule, which forces the 
vehicle to serve only edges near the shortest path between the last serviced edge and the depot, when 
the vehicle is near the end of a route. However, here if the vehicle load is near its capacity or there is no 
qualified arc to add the current partial tour, we force the vehicle to return to the depot immediately then 
the chance of saving cost will be increased in merging phase. 

 
3. Problem solving technique 

 
3.1. Problem definition and notations 

In this section, we introduce the problem definition and notations to facilitate the description of the 
heuristic algorithm. Let G=(V,E) be a connected and undirected graph, where 1 2{ , ,..., }nV v v v  is the 

set of nodes and {( , ) , ,  }i j i jE v v v v V i j    is the set of edges. Required edges are those with positive 

demand and can be shown as RE E  . Each edge Ee  has a nonnegative travel cost ( ) 0c e  , and 

each edge Re E  is associated with a positive demand ( ) 0q e  . Node 1v  denotes the depot where a 

fleet of identical vehicles with limited capacity ( max{ ( ),  })RQ Q q e e E  , are located at 1v . We 

represent each edge in two directions; positive (from iv to jv ) and negative (from jv to iv ) directions 

that so called arcs. In order to facilitate, the arcs with positive direction is denoted by p and the arcs 
with negative direction is denoted by n. Each arc has a tail node t and a head node h. Further, the 
opposite direction of arc is denoted by inv. Hence, the following features are notable: 

( ) ( ) ;  ( ) ( ) ;  ( ) ( );  ( ) ( );  ( ) ;  ( ) ;i jh p t n v t p h p v c p c n q p q n inv p n inv n p         

Let td be the total demand, nre be the number of required edges, rvc be the remaining vehicle capacity, 
and   be a real parameter. The goal of the problem is to determine a set of least-cost tours of all edges 

Re E  such that each required edge is served by one vehicle exactly, and the total vehicle load at any 

time does not exceed the definite capacity Q. 

3.2. Description of the new heuristic algorithm 

In this section, we present our new heuristic algorithm. As mentioned before, by employing some 
features of DOS, and RSE-ER with some differences, we present a new robust heuristic. Like DOS, we 



  770

extend the current partial tour by its both of ends, but here, we use four new criteria, and like RSE-ER, 
we force the vehicle back to the depot when its load is near its capacity, but without serving any edge 
between the last served edge and the depot. Finally, we merge the obtained tours in order to reduce the 
total cost. Our algorithm can be described as follows: 

Step 1. Select one unserved arc randomly, and remove its inverse from unserved arc set. This arc forms 
the current partial tour. 

Suppose that the selected arc is in positive direction and is shown as selP , so let  selhp and seltp  be the 

first and last arcs of the current partial tour, respectively.  

Step 2. Set { }ip  as those tail-neighbor and head-neighbor required arcs with selP  such that head-

neighbor 1{ ( ) ( ) }i i selp t p h hp v   and tail-neighbor 1{ ( ) ( ) }i i selp h p t tp v  . For the sake of 

convenience, we abbreviate tail-neighbor and head-neighbor by tngb and hngb, respectively. Fig. 1.a 
shows this step of the algorithm.  

Step 3. Randomly choose one of following four criteria with equal probability. Then based on the 
result, sort the arcs in tngb and hngb sets. 

1) Minimum distance from ( ),  i ih p p hngb  to depot and Minimum distance from ( ),  i it p p tngb  to 

depot; 
2) Maximum distance from ( ),  i ih p p hngb  to depot and Maximum distance from ( ),  i it p p tngb  to 

depot; 
3) Minimum distance from ( ),  i ih p p hngb  to depot and Maximum distance from ( ),  i it p p tngb  to 

depot; 
4) Maximum distance from ( ),  i ih p p hngb  to depot and Minimum distance from ( ),  i it p p tngb  to 

depot; 

Step 4. If both hngb set and tngb set are not empty and /rvc td nre  , choose the first arc with 
smaller demand to serve and add it to current partial tour, and then if /rvc td nre  , add another arc 
in another set with greater demand to current partial tour, else back to the depot (see fig. 1.b). By this 
idea, we force the vehicle to services just those unserved edges that are incident to the current partial 
tour. Consequently, more of the required edges are served by the vehicle in its tour. Note that when one 
arc is selected to receive a service, its inverse must be deleted from unserved arcs.  

 If  hngb(tngb) set is empty, in other words: there are no unserved edges incident to current partial tour 
by its head, and the remaining capacity of vehicle rvc is greater than /td nre , vehicle services the 
first arc in obtained tngb(hngb) set in step 2, otherwise it should return to the depot. 

Step 5. Update hngb set and tngb set, in other words subject to new obtained current partial tour, form 
the hngb and tngb again. 

Step 6. Repeat step 3 to step 5 until vehicle load approaches its capacity or both hngb and tngb, 
becoming empty. Then connect the ( )selh hp  and  ( )selt tp  to the depot by using the shortest path. 

Step 7. Repeat step 1 to step 6 until all required edges are served. 

Step 8. Merge the constructed tours into less cost tours, subject to vehicle capacity. 

Step 9. Repeat steps 1 to 8 for maximum iteration (stopping criterion) determined by decision maker; 
finally the best solution is selected. 
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This algorithm is same as explained before if the selected arc in step 1 be in negative direction, and just 
p in all notations is replaced with n (e.g., selp  is replaced with seln ).  Fig. 2 presents the general 

structure of the proposed heuristic:  

 

 

 

 

Fig. 1.a. Presentation of forming the hngb set and tngb set     Fig. 1.b. Presentation of determining the ( )selhp  and  ( )seltp  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. General structure of the proposed heuristic 

4. Computational results 

In this section, we show our computational results. The aforementioned algorithm has been coded in C# 
language and run on a laptop computer with CPU clock frequency 2.66 GHz and 4Gbyte of RAM. In 
order to evaluate the performance of our heuristic method, we have implemented it on three standard 
CARP benchmark test sets. The first set contains 23 gdb instances introduced by DeArmon (1981) with 

While (maximum iteration to be reached){ 
     While ( all reqired edges to be served){  
         Select a required arc to be served 
         Form tngb and hngb 

            While ( /  or   rvc td nre hngb tngb       ){ 

                Choose one of four proposed criteria and sort hngb and tngb based on 

                    If ( /     rvc td nre hngb tngb        ){ 

                    Between the first required arcs of two sets hngb and tngb,  
                  serve  that with less demand 

                  If ( /rvc td nre  ) 
                  Serve another arc of another set 
                  update hngb and tngb 
                  } 

                  else if ( /     rvc td nre hngb tngb        ){ 

                  Serve the first arc of tngb 
                  update hngb and tngb 
                } 

                else if ( /     rvc td nre hngb tngb       ) 

                Serve the first arc of hngb 
                update hngb and tngb   
                } 
               else connect the constructed partial tour to depot from both of its end  
               by shortest path 
          } 
       } 
  Merge constructed tours 
} 

 

 , sel selhp tp

Depot 
hngb Set tngb Set 

selhp 

 

tngb Set Depothngb Set 

seltp 
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7-27 nodes and 11-55 edges, all of which is required. This set contains 25 instances but gdb8 and gdb9 
contain inconsistencies, and they have never been used in the literature. The second set consists of 34 
val problems proposed by Benavent et al. (1992) whose ranges are from 24 to 50 nodes and fro 34 to 97 
edges. The last set is bigger which is based on a winter gritting problem (Eglese, 1994) proposed by 
Belenguer and Benavent (2003) and includes 24 egl instances with 77–140 nodes and 98–190 edges 
and in some instances not all edges are required. All these set of benchmark are available at 
http://www.uv.es/~belengue/carp.html. In our implementation, we have followed the practice of Santos 
et al. (2009). Hence, the parameter   is set at 1.5. 
 
The results of our algorithm for three sets of benchmark (gdb, val, egl files) are given in table 1 to 3, 
respectively. In all these tables, the row named “our algorithm” shows the obtained results by proposed 
algorithm, over 10 runs for 1000, 10000 and 20000 iterations. Note that due to the large size instances 
in egl files, the row in Table 3 is divided to 10000, 20000 and 25000 iterations. We have compared our 
computational results with four known heuristics; Path-scanning heuristic (PS) (Golden et al., 1983), 
Augment-Merge heuristic (AM) (Golden & Wong, 1981), Double Outer Scan heuristic (DOS) (Wøhlk, 
2005), and Ellipse Rule based Path Scanning heuristic (with 10000 iteration) (RSE-ER (10000)) 
(Santos et al. 2009) and also three of the well known metaheuristics including Tabu Search algorithm 
(CARPET) (Hertz et al., 2000), Memetic algorithm (MA) (Lacomme et al., 2004a) and Ant Colony 
Optimization algorithm (BACO) (Lacomme et al., 2004b). The columns headed “Ave”, “#Opt”, “Dev 
(%)”, and “Time” (en second)  provide, for each row, average value, number of optimal results, average 
percentage deviation above lower bound, and running time, respectively. (i.e., deviation above lower 
bound is equal to ( (cos ) / 100t LB LB  ). The details of results can be found in Appendix A. 
 
Table 1 
Computational results for gdb files 

  Ave     
  Cost Time(s) #Opt Dev (%) 

1000 257.4 0.09 16 1.16 
Our algorithm:  10000 256.7 0.84 16 1 

20000 256.4 1.75 16 0.87 
                           PS 279.6 * 3 8.27 
Heuristics:         AM 286.2 * 2 10.92 
                          DOS                    313.6 * 0 24.07 
                          RSE-ER(10000) * 1.25 * 1.13 
                           CARPET 255 3.6 18 0.48 
Metaheuristics:  MA 253.9 2.12 21 0.15 
                           BACO 254.4 7.43 18 0.28 
 “*” unknown values 

 

Table 2 
Computational results for val files 

  Ave     
  Cost Time(s) #Opt Dev (%) 

1000 360.2 0.36 7 4.3 
Our algorithm:  10000 357.4 3.71 7 3.6 

20000 355.6 7.16 7 3.2 
                           PS 415 * 0 20.35 
Heuristics:         AM 402.1 * 0 16.4 
                          DOS                    484.2 * 0 35 
                          RSE-ER(10000)  * 2.6 *  4.46 
                           CARPET 350.8 25.55 15 1.9 
Metaheuristics:  MA 344.8 15.34 22 0.61 
                           BACO 346.4 82.9 19 0.89 
  “*” unknown values 
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Table 3 
Computational results for egl files 

  Ave   
  Cost Time(s) Dev (%) 

                          10000 10421.5 35.18 8.1 
Our algorithm:  20000 10391.4 70.41 7.8 
                          25000             10375.04    88.15 7.7 
                           PS 12958.2 * 33.6 
Heuristics:         AM 11866.2 * 25.8 
                          DOS                    10633 * 11.4 
                          RSE-ER(10000)  * 9.216 8.95 
                           CARPET 10074 * 4.74 
Metaheuristics:  MA 9834.1 210.8 2.47 
                           BACO 10033 702.4 4.1 
  “*” unknown values 
 

Note that in order to have a fair comparison, the running times are scaled for the 2.66 GHz computer 
used in this paper, in other words we normalize the running times by multiplying with a CPU speed 
ratio. Since MA of Lacomme et al. (2004a) and RSE-ER (10000) of Santos et al. (2009) was 
implemented on 1 GHz Pentium III PC, the running times were multiplied by 0.4, and the running 
times for CARPET scaled to 1 GHz Pentium III PC by Lacomme et al. (2004a); so they were 
multiplied by 0.4 too. BACO of Lacomme et al. (2004b) was executed on an 800 MHz Pentium III PC; 
so here the execution times are multiplied by 0.3. All running times are in seconds. The “*” symbol 
indicate the values that we do not have any information about them, unfortunately.  

 
4.1. Analysis of experiments 

  
As it can be seen from Table 1, our proposed heuristic algorithm outperforms all Path-Scanning, 
Augment-Merge, and Double Outer Scan heuristics. In all 1000, 10000, and 20000 iterations for the 16 
problem instances, our algorithm reached the optimal solution, whereas PS and AM reached the 3 and 2 
optimal solutions respectively, and DOS reached to no optimal solution. In addition, our proposed 
heuristic algorithm with 10000 and 20000 iterations performs better than ERS-ER (10000) with the 
routing cost. It is obvious the metaheuristics give the solutions with higher quality rather than 
heuristics. For example, the ratio of average percentage deviation to LBs of our algorithm (20000) to 
CARPET, MA and BACO are 1.8, 5.8 and 3.1 respectively, and prove that our approach has significant 
advantages than other heuristic algorithms with quality of solutions. Table 2 shows the similar results 
for val files. The best lower bound is obtained in 7 problem instances while the number of optimal 
solution obtained by PS, AM and DOS is zero. Furthermore, average percentage deviation above the 
LBs for our heuristic is less and is compatible with RSE-ER. Compared to CARPET, MA and BACO, 
the quality of solutions with our heuristic (20000 iterations) is 1.68, 5.25 and 3.6 times better, 
respectively. In Table 3, the computational results for egl files are reported. The egl files are much 
harder than the previous files (gdb and val files), and lower bounds are never reached. Hence, we have 
removed the column headed “#opt” from Table 3. Concerning the average percentage deviation to LBs, 
one can see that our heuristic algorithm is superior to PS, AM, DOS and RSP-ER. Also, the solutions 
obtained by our method are near to those obtained from CARPET, MA and BACO with total routing 
cost and average results. 
 
5. Conclusion 

 
CARP is a NP-hard problem (Golden & Wong, 1981); consequently many of researchers attempt to 
develop heuristics and metaheuristics to solve it. In this paper we attempt to incorporate ideas of both, 
Double Outer Scan heuristic (Wøhlk, 2005) and Ellipse Rule based Path scanning heuristic (Santos et 
al., 2009), to provide a new heuristic for the CARP that can be effective to generate an initial solution 
in many kinds of metaheuristics. Our heuristic chooses an unserved edge randomly, and then extends it 
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by both its end points based on four criteria that stated in section 3.2. If the remaining capacity of 
vehicle is less than predefined value or there is no qualified edge to add the current tour, the vehicle 
should return to the depot and a new tour is started. We implemented the new heuristic algorithm on 
three set of standard instances (gdb, val and egl files) and compared our computational results with 
some known heuristics (Path-scanning, Augment-Merge, Double Outer Scan and Ellipse Rule based 
Path-Scanning) and metaheuristics(Tabu Search, Memetic Algorithm and Ant Colony Optimization 
algorithm) that have been presented in the literature. In addition, we compared the results with best 
lower bounds designed by Belenguer and Benavent (2003). Although the solution times of our heuristic 
algorithm are rarely long, but subject to the quality of obtained solutions, one can disregards the 
solution time. Our research is emblematic of that this new approach to solve the CARP is excellent, and 
when the solution time is important, even it can be replaced metaheuristics methods. The results 
indicate our approach can be used and developed to solve the other types of CARP in real-world 
applications. 
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Appendix A. Details of results  
 
Tables A.1 to A.3 show a comparison between the obtained results by proposed heuristic and the 
obtained results by some heuristic and metaheuristic algorithms reported in literature. In all these tables 
the first column gives the name of instance. Columns labeled “|V|”and “| RE |” stands for the number of 

vertices and required edges, respectively. The column headed “LB” shows the best lower bonds that 
proposed by Belenguer and Benavent (2003).  Note that the best obtained solution over 10 runs by our 
algorithm has been selected as final solution. The times reported for CARPET and MA are those given 
by Lacomme et al. (2004a), and for BACO are those presented by Lacomme et al. (2004b). These times 
are scaled in tables 1 to 3 as described in section 4. Unfortunately, we do not have any information 
about details of results of RSE-ER, so subject to Santos et al. (2009), we have only provided the 
average of percentage deviation to LBs and average of running time in section 4.   

 
Table A.1  
Computational results for gdb filse 

        Our algorithm                       
        Iteration=1000 10000 20000   Heuristics   Metaheuristic   

Instances |V| |ER| LB Cost Time Cost Time Cost Time   PS AM DOS   CARPET Time MA Time BACO Time 
gdb1 12 22 316 316 0.05 316 0.45 316 0.9   345 351 370   316 3.15 316 0 316 0.5 
gdb2 12 26 339 345 0.06 345 0.53 345 1.06   369 394 414   339 5.17 339 0.44 339 1.8 
gdb3 12 22 275 275 0.05 275 0.5 275 1.01   284 338 354   275 0.07 275 0.06 275 0.5 
gdb4 11 19 287 287 0.04 287 0.43 287 0.87   321 342 372   287 0.09 287 0 287 0.1 
gdb5 13 26 377 383 0.06 383 0.54 383 1.09   429 383 501   377 5.59 377 0.11 377 2.2 
gdb6 12 22 298 298 0.04 298 0.41 298 0.84   332 354 370   298 0.85 298 0.17 298 1.1 
gdb7 12 22 325 325 0.05 325 0.48 325 0.96   359 359 368   325 0 325 0.05 325 0.1 
gdb8 27 46 344 365 0.21 360 2.02 358 4.07   402 399 400   352 61 350 0.66 350 130.6 
gdb9 27 51 303 331 0.21 327 2.07 322 4.12   374 369 375   317 53.91 303 7.09 306 330.1 
gdb10 12 25 275 275 0.06 275 0.56 275 1.13   307 319 371   275 1.55 275 0.06 275 0.7 
gdb11 22 45 395 395 0.2 395 2.03 395 4.11    451 457 515   395 2.29 395 1.26 395 7.3 
gdb12 13 23 450 468 0.05 468 0.55 468 1.1   550 577 594   458 20.63 458 0.06 458 2.8 
gdb13 10 28 536 548 0.07 544 0.68 544 1.37   562 586 641   544 2.42 536 7.42 542 26.6 
gdb14 7 21 100 100 0.04 100 0.41 100 2.37   112 108 146   100 0.48 100 0.05 100 0.4 
gdb15 7 21 58 58 0.04 58 0.4 58 0.8   58 58 74   58 0 58 0 58 0.2 
gdb16 8 28 127 127 0.07 127 0.68 127 1.37   131 137 143   127 1.7 127 0.06 127 6.5 
gdb17 8 28 91 91 0.07 91 0.65 91 1.32   91 91 109   91 0 91 0.05 91 0.2 
gdb18 9 36 164 164 0.09 164 0.97 164 1.89   168 170 202   164 0.28 164 0.11 164 1.1 
gdb19 8 11 55 55 0.02 55 0.2 55 0.41   55 63 73   55 0.2 55 0 55 0.2 
gdb20 11 22 121 121 0.05 121 0.46 121 0.9   123 123 147   121 9.5 121 0.33 121 22.3 
gdb21 11 33 156 156 0.09 156 0.9 156 1.8   162 160 181   156 1.13 156 0.17 156 8 
gdb22 11 44 200 200 0.14 200 1.34 200 2.76   202 204 224   200 3.38 200 3.35 200 19.6 
gdb23 11 55 233 237 0.2 235 2 235 4.07   243 241 269   235 34.37 233 51.19 235 7 
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Table A.2  
Computational results for val filse 

        Our algorithm                       
        Iteration=1000 10000 20000   Heuristics   Metaheuristic   

Instances |V| |ER| LB Cost Time Cost Time Cost Time   PS AM DOS   CARPET Time MA Time BACO Time 
val1a 24 39 173 173 0.14 173 1.39 173 2.91   197 194 240   173 0.02 173 0 173 0.1 
val1b 24 39 173 179 0.12 177 1.32 177 2.57   199 200 243   173 9.26 173 8.02 173 120.6 
val1c 24 39 235 260 0.13 258 1.39 256 2.74   321 298 284   245 93.2 245 0.27 245 13.1 
val2a 24 34 227 227 0.1 227 1.05 227 2.06   258 263 317   227 0.17 227 0.05 227 2 
val2b 24 34 259 260 0.09 260 0.97 260 1.96   296 311 363   260 13.02 259 0.22 259 8.4 
val2c 24 34 455 482 0.1 476 1.07 463 2.11   538 533 533   494 31.66 457 8.08 457 135.1 
val3a 24 35 81 81 0.1 81 1.05 81 2.1   92 84 102   81 0.77 81 0.05 81 1.2 
val3b 24 35 87 88 0.09 88 0.94 88 1.95   107 90 115   87 2.79 87 0 87 3.6 
val3c 24 35 137 146 0.1 143 1.02 142 1.99   155 160 157   138 41.66 138 0.49 138 10.6 
val4a 41 69 400 400 0.36 400 3.3 400 6.87   490 435 577   400 28.32 400 0.72 400 15.3 
val4b 41 69 412 432 0.34 422 3.43 422 6.65   478 641 596   416 75.66 412 1.21 412 117.1 
val4c 41 69 428 461 0.33 456 3.03 448 6.35   518 491 593   453 70.06 428 19.11 430 285.4 
val4d 41 69 520 578 0.36 572 3.55 574 7.02   662 653 660   556 233.56 530 6.37 539 315.9 
val5a 34 65 423 433 0.29 433 2.9 433 5.68   498 502 637   423 3.8 423 1.86 423 49.5 
val5b 34 65 446 460 0.25 453 2.77 451 5.26   509 487 588   448 41.4 446 1.04 446 24.3 
val5c 34 65 469 492 0.24 483 2.72 483 5.1   600 550 680   476 53.27 474 0.44 474 200.3 
val5d 34 65 571 647 0.29 636 2.87 624 5.41   821 726 791   607 224.11 581 11.32 597 193.8 
val6a 31 50 223 223 0.19 223 1.91 223 4.26   243 252 294   223 3.89 223 0.17 223 3.8 
val6b 31 50 231 242 0.18 242 1.93 241 3.42   282 258 314   241 26.94 233 6.48 233 78.4 
val6c 31 50 311 334 0.19 334 2.14 327 4.04   391 370 364   329 85.18 317 52.23 317 91.6 
val7a 40 66 279 279 0.45 279 4.43 279 9.05   358 329 393   279 6.59 279 4.66 279 11.2 
val7b 40 66 283 287 0.44 293 4.41 286 8.28   345 335 397   283 0.02 283 0.44 283 6.6 
val7c 40 66 333 352 0.36 348 3.59 344 7.52   417 405 409   343 121.44 334 60.53 334 569.3 
val8a 30 63 386 386 0.29 386 2.9 386 6.07   445 411 556   386 3.84 386 0.66 386 15.4 
val8b 30 63 395 404 0.26 403 2.68 403 5.57   499 425 572   401 81.46 395 9.95 395 259.5 
val8c 30 63 517 588 0.27 578 2.75 579 5.28   613 645 660   533 147.4 528 62.83 534 358.1 
val9a 50 92 323 325 0.9 324 9.51 324 18.48   388 367 458   323 28.51 323 18.29 323 969 
val9b 50 92 326 329 0.83 327 8.83 327 17.1   388 373 467   329 59.89 326 29.39 326 1076.2 
val9c 50 92 332 341 0.81 338 8.12 338 15.68   407 385 473   332 56.44 332 71.19 332 1368.5 
val9d 50 92 382 431 0.72 420 7.24 424 13.57   503 457 507   409 353.28 391 211.13 404 634 
val10a 50 97 428 434 0.83 433 8.44 432 15.57   471 471 587   428 5.52 428 25.48 428 341.8 
val10b 50 97 436 448 0.78 448 7.81 448 14.4   471 471 598   436 18.43 436 4.67 437 683.4 
val10c 50 97 446 470 0.73 466 7.74 464 13.43   509 497 601   451 93.47 446 17.3 448 515.8 
val10d 50 97 524 575 0.71 570 7.14 562 13.11   641 603 652   544 156.31 528 215.04 536 916.1 

 

Table A.3  
Computational results for egl filse 

         Our algorithm                     
        Iteration=10000 20000 25000   Heuristics   Metaheuristic   

Instances |V| |ER| LB Cost Time Cost Time Cost Time   PS AM DOS   CARPET MA Time BACO Time 
e1-a 77 51 3515 3779 4.08 3779 8.2 3779 10.33   3885 4939 4414   3625 3548 1.48 3548 70.7 
e1-b 77 51 4436 4716 4.16 4715 8.4 4716 10.45   6601 5371 4770   4532 4498 48.39 4534 307.5 
e1-c 77 51 5453 5884 4.09 5835 8.15 5855 10.17   6719 6827 6063   5663 5595 39.98 5647 159.1 
e2-a 77 72 4994 5275 10.86 5302 21.7 5271 27.22   6199 6596 5778   5233 5018 20.6 5018 470.4 
e2-b 77 72 6249 6670 10.64 6668 21.37 6652 26.83   7451 8372 6735   6422 6340 22.19 6401 406.4 
e2-c 77 72 8114 8691 10.84 8700 21.5 8687 27.08   9532 10590 8934   8603 8395 27.52 8498 707.4 
e3-a 77 87 5869 6136 20.81 6132 41.84 6117 52.37   6169 7643 6442   5907 5898 24.44 5934 609.8 
e3-b 77 87 7646 8199 18.81 8144 37.54 8115 46.98   8510 9441 8107   7921 7816 173.18 7915 781.9 
e3-c 77 87 10019 10775 17.48 10725 35.27 10695 44.06   12175 12657 11084   10805 10369 111.5 10402 226.7 
e4-a 77 98 6372 6716 17.7 6702 35.32 6716 44.23   7410 8116 7322   6489 6461 275.5 6520 616.8 
e4-b 77 98 8809 9505 16.84 9516 33.87 9460 42.58   9916 10302 9681   9216 9021 291.49 9234 839.8 
e4-c 77 98 11276 12286 16.59 12276 33.18 12219 41.65   68226 13692 12404   11824 11779 77.83 11883 799.3 
s1-a 140 75 4992 5256 6.99 5252 13.74 5252 17.6   5345 6512 5529   5149 5018 15.88 5049 1010.5 
s1-b 140 75 6201 6706 6.94 6682 13.79 6684 17.26   6296 8552 6806   6641 6435 21.42 6541 2899.8 
s1-c 140 75 8310 9001 6.42 8932 12.75 8904 15.77   8692 10608 9053   8687 8518 160.38 8561 2388.9 
s2-a 140 147 9780 10685 80.91 10645 162.19 10716 203.16   10217 12097 11111   10373 9995 795.1 10368 4108 
s2-b 140 147 12886 14015 68.46 13908 137.48 13848 172.7   14773 15249 14242   13495 13174 641.58 13676 5377.6 
s2-c 140 147 16221 17732 60.67 17728 121.2 17755 151.51   17517 19767 17890   17121 16715 743.69 17115 3099.3 
s3-a 140 159 10025 10939 84.31 10871 168.9 10857 211.14   11931 12544 11471   10541 10296 651.03 10619 1392.1 
s3-b 140 159 13554 14645 70.26 14601 139.95 14657 176.02   13916 16116 14962   14291 14028 1043.6 14264 6568.6 
s3-c 140 159 16969 18744 64.34 18639 131.13 18600 161.25   17740 20070 18563   17789 17297 622.58 17797 3160 
s4-a 140 190 12027 13343 90.11 13356 179.15 13269 224.65   13596 14989 13962   13036 12442 1529.6 12868 8919.2 
s4-b 140 190 15933 17817 78.2 17731 155.07 17675 195.52   16830 19249 17723   16924 16531 1184.5 17090 6360 
s4-c 140 190 20179 22601 73.9 22554 148.03 22502 184.99   21351 24493 22142   21486 20832 1464.3 21314 4911.4 
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