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 In many real-world applications, the quality of a process or a particular product can be 
characterized by a functional relationship called profile. A profile builds the relationships 
between a response quality characteristic and one or more explanatory variables.  Monitoring the 
quality of a profile is implemented to understand and to verify the stability of this functional 
relationship over time. In some real applications, a fuzzy linear regression model can represent 
the profile adequately where the response quality characteristic is fuzzy. The purpose of this 
paper is to develop an approach for monitoring process/product profiles in fuzzy environment. A 
model in fuzzy linear regression is developed to construct the quality profiles by using linear 
programming and then fuzzy individuals and moving-range (I-MR) control charts are developed 
to monitor both intercept and slope of fuzzy profiles to achieve an in-control process. A case 
study in customer satisfaction is presented to show the application of our approach and to express 
the sensitivity analysis of parameters for building a fuzzy profile.     
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1. Introduction 

In statistical process control (SPC) applications it is assumed that the quality of a process or product 
can be suitably characterized by the distribution of a quality characteristic. In numerous practical 
situations, however, the quality of a process or a product is represented and summarized better by a 
relationship between a quality response variable and one or more explanatory variables. In the 
literature, the relationship is referred to as profile. Thus, the monitoring and controlling of these kinds 
of processes and products will be done by monitoring profiles. In other words, profile monitoring is 
bringing into play the control charts for cases in which the quality of a process or product can be 
distinguished by a functional relationship between a response variable and one or more explanatory 
variables.  

 

The analysis of profiles includes two phases, phase I and phase II, as shown in figure 1. In phase I, we 
analyze a historical set of fixed number of process samples collected over time. Analyzing is done by 
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identifying regression lines for each sample. In phase I, we seek to identify any out-of-control 
regression lines and then to remove them from the data set in order to estimate strictly the in-control 
regression parameters for use in phase II online monitoring. The main concern in the analysis of phase 
II is quickly detecting shifts in the process parameters via online monitoring the process profile. 

       Phase I                                                     Phase II 

 
Fig. 1. Phase I & II in profile monitoring 

 
1.1. literature review on monitoring the quality profiles in phase I 
 

Quality profiles can take on several different functional structures such as linear, nonlinear, 
polynomial, etc, depending on the particular application. In the area of simple linear profile monitoring, 
Kang and Albin (2000) proposed two methods for monitoring simple linear profiles: bivariate T2 
control chart and EWMA/R control charts. Monitoring the relationship between vertical densities of 
engineered wood boards and depths is considered by Walker and Wright (2002). Kim et al. (2003) 
coded the x-values to change the average to zero and then applied three separate EWMA control charts. 
Montgomery (2005) discussed a case where the relationship between the torque and the engine speed 
can be modeled by a profile. Mahmoud and Woodall (2004) recommended the use of a univariate 
control chart in conjunction with the F-test to monitor the regression coefficients in phase I. 
Noorossana et al. (2004) proposed MCUSUM procedure in combination with R chart proposed by 
Kang and Albin (2000) to improve the performance of the existing methods in phase II monitoring of 
simple linear profiles. Zou et al. (2006) and Mahmoud et al. (2007) proposed methods based on 
likelihood ratio statistics to monitor linear profiles in phase II and I, respectively. Gupta et al. (2006) 
compared the performance of Kim et al. (2003) method with a method developed by Croarkin and 
Varner (1982)..  Jensen et al. (2008) proposed linear mixed models to account for the autocorrelation 
within a linear profile. Noorossana et al. (2008) investigated the effect of autocorrelation between 
linear profiles on the performance of T2 control chart proposed by Kang and Albin (2000). Saghaei et 
al. (2009) proposed a method based on cumulative sum statistics for monitoring of linear profiles in 
phase II. Zhang and Wang (2009) constructed control chart based on likelihood ratio for monitoring 
linear profiles in phase II. Zhu and Lin (2010) proposed some approaches for Monitoring the Slopes of 
Linear Profiles in both phase I and II. Noorossana et al. (2010) developed four methods based on 
Principal components analysis for phase I monitoring of multivariate multiple linear regression profiles 
in a calibration application. Noorossana et al. (2010) proposed the use of three control chart schemes 
for Phase II monitoring of multivariate simple linear profiles. Chen and Nembhard (2011) developed a 
high-dimensional control chart for profile monitoring in phase I. The effect of non normality on the 
performance of control charts for monitoring simple linear profiles is investigated by Noorossana et al. 
(2011). Eyvazian et al. (2011) proposed four methods based on likelihood ratio approach to monitor 
multivariate multiple linear profiles in Phase II. Hosseinifard et al. (2011) developed three monitoring 
methods based on artificial neural networks to monitor linear profiles. Zou et al. (2012) developed a 
methodology for monitoring general multivariate linear profiles, including the regression coefficients 
and profile variation in the basis of applying the variable-selection-based multivariate control scheme 
to the transformations of estimated profile parameters. Amiri et al. (2012) proposed a dimension 
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reduction method to overcome the dimensionality problem of some of the methods on phase II 
monitoring of multiple linear regression profile. 

In the previous researches about profile monitoring, all of the studies carried out in the monitoring of 
profiles deals with crisp quality characteristics in non-fuzzy environment where it is assumed that the 
process input and output data are not fuzzy. But in many real applications, these data have a kind of 
uncertainty, fluctuations, impreciseness and vagueness or they may be linguistic attribute data. 
Information may be incomplete, imprecise, vague, contradictory or deficient in some way or the other, 
and each one of these various information deficiencies results in different types of uncertainty. Unlike 
traditional methods in monitoring profiles, fuzzy set approaches can put up with imprecision and 
uncertainty without loss of performance and effectiveness. Thus, the monitoring of fuzzy profiles can 
be applied for a wide variety of applications. No work has already been done for monitoring of fuzzy 
profiles in both phases I and II. In this paper, we introduce some new univariate approaches for 
monitoring of fuzzy linear profiles in which the relationship between a fuzzy response (fuzzy output) 
and some explanatory crisp variables (non-fuzzy inputs) is defined by a fuzzy linear regression. 

In section 2, we introduce fuzzy linear profile practically. In section 3, we develop a fuzzy regression 
model to construct fuzzy linear profile for each sample in the basis of linear programming. Fuzzy 
individuals and moving range (I-MR) control chart are developed in section 4 to monitor the process 
profiles constructed for each sample. In section 5, we propose developed approaches for detecting out-
of-control profiles. In section 6, a case study in customer satisfaction is presented to show the 
application of our approach. Some analysis for fuzzy regression model is done in section 7 to 
investigate the effect of regression parameters on fuzzy linear profiles. 

2. Fuzzy Linear Profile 
 

We assume that m random samples from a historical data set are available. For the jth random sample 
collected over time, we have the observations ሺݔ௜௝,  ෤௜௝ሻ, i = 1, 2, …, n, and  j=1, 2,…, m. We assumeݕ
that the X-values are non-fuzzy input and fixed and take the same set of values for each sample. So it 
means that xij= xi  where xi’s are different levels of a single explanatory crisp variable X. The value ݕ෤௜௝ 
is a linguistic quality characteristics and displays a symmetrical triangular fuzzy number with center ݕ௜௝ 
and width of  ݏ௜௝ ൒ 0  as shown in Fig. 2. For each sample we assume that the linear model relating the 
independent variable X to the fuzzy quality response Y is  

෨ܻ௜௝ ൌ ෨଴௝ܤ ൅ ෨ଵ௝ܤ ௜ܺ, (1)

where regression coefficient ܤ଴௝ (r = 0 &1) for sample j is a symmetrical triangular fuzzy number 
centered at ܾ௥௝ with width ݀௥௝ ൒ 0. 

 
Fig. 2.  a. triangular Fuzzy regression coefficients & b. triangular fuzzy response QC 

3. Constructing Fuzzy Linear Profiles in phase I 

We consider the phase I analysis in which the in-control values of the parameters ܤ෨଴ and ܤ෨ଵ in Eq. (1) 
are unknown.  In phase-I analysis we try to find any out-of-control fuzzy regression lines and to 
remove them from the data set, assuming that the corresponding assignable causes can be identified and 
removed. This is required to estimate accurately the in-control fuzzy regression parameters for use in 
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phase II. If the process is stable and “in-control” then ܤ෨଴௝ ൌ ෨ଵ௝ܤ ෨଴ andܤ ൌ  ෨ଵ and all sample data followܤ
underlying model. 

෨ܻ ൌ ෨଴ܤ ൅ ෨ଵܺ. (2)ܤ
In our proposed approach, we first code the X -values so that the average of coded value is zero. This 
simplifies the resulting analysis and gets rid of much of the need for multivariate monitoring 
approaches since, in this situation, the least squares estimators of the intercept and slope for each 
sample are independent fuzzy variables (Kim et al. (2003)).  

After transforming the X-values, we obtain an alternative form of the underlying model in Eq. (2) as 
follows, 

෨ܻ ൌ ሚ଴ܣ ൅ ሚଵܺ, (3)ܣ
 

where ܣሚ଴ ൌ ෨଴ܤ ൅ ሚଵܣ ෨ଵܺ andܤ ൌ ܺ  ෨ଵ andܤ ൌ ܺ௢௟ௗ െ തܺ௢௟ௗ . For the jth sample, the estimator of ܣሚ଴ and ܣሚଵ 
are ܣሚ଴௝ and ܣሚଵ௝ , respectively. The regression coefficient ܣሚ௥௝ for sample j is a symmetrical triangular 
centered at ܽ௥௝ and width ܿ௥௝ ൒ 0. Both ܣሚ଴௝ and ܣሚଵ௝ are normally distributed with means ܣሚ଴ and ܣሚଵ, 
respectively and they are independent. Thus, we can apply some separate univariate control charts for 
each sequence of random variables ܣሚ଴௝ and ܣሚଵ௝ without the problems that would result if the estimators 
were correlated. In general, there are two main approaches of fuzzy regression models due to different 
fitting criterion (Tanaka et al. (1989) and Azadeh et al. (2010)). The first approach is based on 
minimizing the fuzziness of the response variables as an optimal criterion which was first proposed by 
Tanaka et al. (1989). The advantage of this approach is its simplicity in programming and computation, 
but it has been criticized to provide too wide ranges in estimation which cannot give much help in the 
application ((Wang and Tsuar (2000 a,b) and Chang and ayyub(2001) ). The second main approach 
uses least squares of errors as a fitting criterion to minimize the difference between the estimated and 
observed responses. Integrating minimum fuzziness criterion and the ordinary least-squares concept 
into fuzzy regression models is an extension of fuzzy regression and will be developed in this paper to 
monitor fuzzy profiles. In the proposed approach both objectives are used in the objective function and 
a multi-objective linear programming is developed. 

3.1. The Developed Model for Constructing jth Fuzzy Linear profile 
 
It is assumed that the value ݕ෤௜௝ is a symmetrical triangular fuzzy number with center ݕ௜௝ and width of 
௜௝ݏ ൒ 0. If we are interested in using part of ݕ෤௜௝ with minimum confidence level, h, where (0 ൑ ݄ ൑ 1), 
we should use an interval as follows, 
 
௜௝ݕൣ െ ሺ1 െ ݄ሻݏ௜௝    ,   ݕ௜௝ ൅ ሺ1 െ ݄ሻݏ௜௝൧. (4)
 
This interval is the bold boundary lines in figure 3. Here h represents the least confidence level and is 
called the h-cut of the observed values. Similarly, the support of the predicted fuzzy value ݕ෤෠௜௝ 
corresponding to a set of values ݔ௜  with membership at least h is obtained as follows, 
 

൥෍൫ܽ௥௝ െ ሺ1 െ ݄ሻܿ௥௝൯

ଵ

௥ୀ଴

,  ௜ݔ ෍൫ܽ௥௝ ൅ ሺ1 െ ݄ሻܿ௥௝൯ݔ௜

ଵ

௥ୀ଴

൩ ݅ ൌ 1, … , ݊ 
(5)  

 
In previous models used by Ozelkan and Duckstein(2000), Hojati et al.(2004) and Azadeh et al. 
(2010), fuzzy linear regression has been fitted concerning two objectives: minimizing the width 
of the regression coefficients and bringing the h-cut of the estimated values of response as close 
as possible to the h-cut of the observed values. Each of previous researchers identified the fuzzy 
regressions models based on one of these two objectives, or considering the other objective as a 
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constraint to achieving the objective. 
 

 
Fig. 3.  h-cut of each response value in sample j 

 

In our proposed method, both objectives are placed in the objective function and a linear programming 
is introduced to construct jth profile as follows.   

 

 

    

    

1

1 2
1 0 1

1

0

1

0

1 2

min

subject to    1 1

1 1

1

, 0

0 0,1 1, ,

n n

r ir iU iL
i r i

r r ir i i iU
r

r r ir i i iL
r

iL iU

r r

w c x w d d

a h c x y h s d

a h c x y h s d

w w

d d

a IR c r i n

  





   

     

     

 


    

                                   (6)

In our model shown in Eq. (6), the first objective minimizes the width of the regression coefficients and 
so concludes to minimum h-cut of the estimated values. The second objective makes the h-cut of the 
estimated values cover the h-cut of the observed values. To solve this model, depending on the decision 
maker’s preferences, a weight factor is allocated to each objective. In other word, our developed fuzzy 
regression model integrates two classic objectives in literature by assigning weight factors to each of 
them determined by decision maker. Where w1 and w2 are weight factors determined by the decision 
maker, and ݀௜௎ and ݀௜௅ are the deviation variables and nonnegative. 

݀௜௎ ൌ ,൛0ݔܽ݉ ሺmax ݕ ݌݌ݑݏ෤௜ െ max ,෤෠௜ሻൟݕ ݌݌ݑݏ  ݀௜௅ ൌ ,൛0ݔܽ݉ ሺmin ෤෠௜ݕ ݌݌ݑݏ  െ min  ෤௜ൟݕ ݌݌ݑݏ 

݀௜௎ calculates the difference between upper values of the support of  ݕ෤෠௜ and ݕ෤௜ in sample j when the 
upper value of the support of estimated value ݕ෤෠௜௝ is smaller than the upper value of the support of 
observed value ݕ෤௜௝ in sample j. Also, ݀௜௅ calculates the difference between lower values of the support 
of the estimated responses ݕ෤෠௜ and observed responses ݕ෤෠௜ when lower value of the support of ݕ෤෠௜ is 
greater than lower value of the support of ݕ෤෠௜ in jth sample. w1<w2 means that the decision maker is risk 
averser and concluds the h-cut of the estimated values envelops the h-cut of the related observed 
values. It means that the second objective is more considerable and of higher weight to him. If the 
decision maker is risk seeker, he will prefer the h-cut of the predicted values to have a narrow width. In 
this case, the first objective becomes more vital to him and he assigns it a higher weight. Allocating 
same weights implies the equal importance of both objectives. For each sample we run the above linear 
program to specify fuzzy linear profile models. 

4. Monitoring of Fuzzy Linear Profiles 

After specifying fuzzy linear profile and estimating related fuzzy coefficients ܣሚ଴௝ and ܣሚଵ௝ for all 
samples, we should determine the stability of the process. Several statistical methods have already been 
developed for monitoring linear profiles in non-fuzzy environment as surveyed in literature review. As 
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shown before, nobody developed approaches for monitoring fuzzy quality profiles. In this section we 
develop some fuzzy controls for monitoring fuzzy linear profiles in phase I in order to determine the 
stability of the process and to monitor the estimated fuzzy profile parameters  ܣሚ଴௝ and ܣሚଵ௝ to achieve 
in-control parameters. 

Each profile is composed of two individual fuzzy coefficients ܣሚ௥௝ which are independent due to coding 
the explanatory variable X in. Therefore, individual control charts are used for monitoring the mean of 
each profile parameters, and moving range (MR) control charts are used for monitoring their 
deviations. Generally in non-fuzzy environment, the data in variable control charts are assumed to be 
crisp values. But a fuzzy profile is constructed of “uncertain” or “vague” data. The fuzzy set theory is 
an existing tool for treating the vague data, therefore fuzzy individuals control chart and fuzzy moving 
range (MR) control chart introduced by Erginel (2008) are developed to monitor the mean and 
deviation of profile parameters, respectively. 
  
4.1. Fuzzy Individuals & Moving Range Control Charts for Intercept ܣሚ଴ and  Slope ܣሚଵ 

In the proposed monitoring approach, the profiles parameters ܣሚ଴ and ܣሚଵ are represented by triangular 
membership functions. The fuzzy center line of individual control chart, ܮܥ෪஺෨ೝ

 is the mean of  m fuzzy 

parameters ܣሚ௥௝ and is equal to ܣሚҧ
௥ ൌ ሺܣҧ௥௅, ,ҧ௥ܣ  ҧ௥௎ are the arithmetic means ofܣ ҧ௥, andܣ ,ҧ௥௅ܣ ҧ௥௎ሻ whereܣ

 ௥௝ are the left, right and middle point of fuzzyܣ ௥௝௎ andܣ, ௥௝௅ܣ .௥௝௎, respectivelyܣ ௥௝, andܣ ,௥௝௅ܣ
regression coefficient ܣሚ௥௝ as follows, 

௥௝௅ܣ ൌ ܽ௥௝ െ ܿ௥௝, 
௥௝ܣ ൌ ܽ௥௝, 
௥௝௎ܣ ൌ ܽ௥௝ ൅ ܿ௥௝. 

(7)

Also the fuzzy center line of moving range control chart, ܮܥ෪ ெோೝ
, is the mean of  m parameters ܯ෪ܴ ௥௝ 

and it is shown as ܯ෪ܴതതതതത௥ ൌ ሺܴܯതതതതത௥௅, ,തതതതത௥ܴܯ  തതതതത௥௎ are the arithmetic meansܴܯ തതതതത௥ andܴܯ ,തതതതത௥௅ܴܯ തതതതത௥௎ሻ whereܴܯ
of ܴܯ௥௝௅, ܴܯ௥௝ and ܴܯ௥௝௎ respectively. ܯ෪ܴ ௥௝ is a triangular fuzzy number and calculates as follows, 

෪ܴܯ ௥௝ ൌ ሚ௥௝ܣ െ ሚ௥,௝ିଵ. (8)ܣ
The conventional moving range control chart introduced by Shewhart is used to construct fuzzy MR 
control chart. By using triangular fuzzy numbers, the fuzzy MR control chart is constituted as follows, 

෫ெோೝܮܥܷ
ൌ ෪ܴതതതതത௥ܯସܦ ൌ ,തതതതത௥௅ܴܯସሺܦ ,തതതതത௥ܴܯ  ,തതതതത௥௎ሻܴܯ

෪ܮܥ ெோೝ
ൌ ෪ܴതതതതത௥ܯ ൌ ሺܴܯതതതതത௥௅, ,തതതതത௥ܴܯ  ,തതതതത௥௎ሻܴܯ

෪ܮܥܮ ெோೝ
ൌ ෪ܴതതതതത௥ܯଷܦ ൌ ,തതതതത௥௅ܴܯଷሺܦ ,തതതതത௥ܴܯ  ,തതതതത௥௎ሻܴܯ

 
 

(9)

 

where the values of D3 and D4 are function of the number of ܣሚ௥௝ 's used for calculating the related ܯ෪ܴ ௥௝ 
and the table of their values appears in Montgomery(2005). We have only two ܣሚ௥௝ for calculating 
related ܯ෪ܴ ௥௝, so the values of  D3  and D4 always equal to 0 and 3.267 respectively. Center line, upper 
and lower control limits of fuzzy individuals control chart are obtained as follows, 

෫஺෨ೝܮܥܷ
ൌ ሚ௥ܣ ൅ 3

෪ܴതതതതത௥ܯ

݀ଶ
ൌ ሺܣ௥௅, ,௥ܣ ௥௎ሻܣ ൅

3
݀ଶ

ሺܴܯതതതതത௥௅, ,തതതതത௥ܴܯ  ,തതതതത௥௎ሻܴܯ

஺෨ೝܮܥ
ൌ ሚҧܣ

௥ ൌ ሺܣҧ௥௅, ,ҧ௥ܣ  ,ҧ௥௎ሻܣ

෪ܮܥܮ ஺෨ೝ
ൌ ሚ௥ܣ െ 3 ெோ෪തതതതതೝ

ௗమ
ൌ ሺܣ௥௅, ,௥ܣ ௥௎ሻܣ െ ଷ

ௗమ
ሺܴܯതതതതത௥௅, ,തതതതത௥ܴܯ  ,തതതതത௥௎ሻܴܯ

(10)
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where the values of d2 is function of the number of  ܣሚ௥௝ 's used for calculating the related ܯ෪ܴ ௥௝ and the 
table of their values appears in Montgomery(2005). We have only two ܣሚ௥௝ 's for calculating the related 
෪ܴܯ ௥௝ 's, so the value of  d2 is always equal to 1.128. 

5. Identification jth Profile Status (In-Control/Out-of-Control) 
 
As aforementioned above, the control lines are fuzzy and consisted of an interval. Hence, to compare 
sample j’s fuzzy regression coefficients with control chart limits and to facilitate the plotting of 
observations on the chart, we propose two methods. First method, named Direct Fuzzy Approach, is 
based on a technique for the comparison of fuzzy numbers without losing original information due to 
employing no transformative or representative techniques. The second method applies some fuzzy 
transformation techniques. 
 
5.1. Direct Fuzzy Approach (DFA) 
 

Based on fuzzy preference approach introduced by Chen(2001), we use the definition of the equation 
11, 12 and 13  to determine if the fuzzy observations are exhibited in-control. To specify the superiority 
of fuzzy triangular statistic  ܣሚ௥௝ over fuzzy triangular ܷܮܥ෫, we compare the difference of  two 
membership function with zero. Using the difference of two fuzzy numbers, ܣሚ௥௝ െ  ෫, one canܮܥܷ
specify the superiority in two numbers. Intuitively, S1 indicates the α-cut right hand side portion of 
ሚ௥௝ܣ െ  ෫ membership function from Y-axis and S2 shows the α-cut left hand side portion as shown inܮܥܷ
figure 4. We define S, S1, S2, e1 and e2 as follows, 

ଵܵ ൌ ׬ ሻ௫வ଴ݔ෫ሺܮܥെܷ݆ݎ෩ܣߤ , ݔ݀ ܵଶ ൌ ׬ ሻ௫ழ଴ݔ෫ሺܮܥെܷ݆ݎ෩ܣߤ   (11) ,ݔ݀

ܵ ൌ ଵܵ ൅ ܵଶ                               ܵ ൐ 0, (12) 

݁ଵ ൌ
ௌభ

ௌ
   ,            ݁ଶ ൌ

ௌమ

ௌ
. (13) 

Obviously, we can see that ݁1 ൅  ݁2 ൌ 1 according to the definition of them. Therefore, e1>0.5 
indicates the fuzzy value ܣሚ௥௝ is greater than the fuzzy value ܷܮܥ෫, consequently the related static give 
out an out-of-control signal. If e1≤0.5, then the statistic ܣሚ௥௝ is equal to or smaller than ܷܮܥ෫, thus related 
static exhibits an in-control situation.  

 

Fig. 4.  An illustration of calculating S1 and S2 

To specify the ܣሚ௥௝ beneath the fuzzy triangular ܮܥܮ෪ , we apply the same approach. The value α in α-cut 
measures the conservatism in determining the profile status. The greater α is, the more conservative it 
is. In practice, the value of α can be determined by the decision maker. Using this approach, the process 
is stable and in-control when four control charts display in-control condition for each sample. 

݊݋݅ݐ݅݀݊݋ܿ ݏݏ݁ܿ݋ݎ݌ ൌ

ە
۔

݊݅ۓ െ ݎ݋݂           ݈݋ݎݐ݊݋ܿ ൝
෪ܮܥܮ ஺෨ೝ

د ሚ௥௝ܣ د ෫஺෨ೝܮܥܷ
 

෪ܮܥܮ ெோೝ
د ෪ܴܯ ௥௝ د ෫ெோೝܮܥܷ

ݐݑ݋ െ ݂݋ െ ݁ݏ݅ݓݎ݄݁ݐ݋                          ݈݋ݎݐ݊݋ܿ

     j=1,…,m and r=0,1 
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5.2. Fuzzy Transformation Techniques 
 

To facilitate preserving the standard design of control charts and to ease the plotting of observations on 
the chart, it is necessary to convert the fuzzy values into scalars, which will be referred to as 
representative values, via some transformation techniques. There are four fuzzy transformation 
techniques: α-level fuzzy midrange, α-level fuzzy median, α-level fuzzy average and α-level fuzzy 
mode. Because the distribution of fuzzy data may be asymmetrical, the α-level fuzzy midrange 
transformation technique is used for fuzzy individual & moving range control charts. 

α-level fuzzy midrange is defined as the midpoint of the ends of the α level cut. It is not affected by the 
extreme values. Hence, it is a suitable measure for evaluating the central tendency of an asymmetrical 
distribution. α-level fuzzy midrange transformation for fuzzy MR control chart is obtained as follows: 

ெோೝܮܥܷ ൌ
തതതതത௥௅ܴܯସሺܦ ൅ തതതതത௥௎ሻܴܯ ൅ തതതതത௥ܴܯସሾሺܦߙ െ തതതതത௥௅ሻܴܯ െ ሺܴܯതതതതത௥௎ െ തതതതത௥ሻሿܴܯ

2
 

ெோೝܮܥ ൌ
൫ܴܯ௥௝௅ ൅ ௥௝௎൯ܴܯ ൅ ௥௝ܴܯ൫ൣߙ െ ௥௝௅൯ܴܯ െ ൫ܴܯ௥௝௎ െ ௥௝൯൧ܴܯ

2
                                                         

ெோೝܮܥܮ
ൌ

ܮݎതതതതܴܯ3ሺܦ ൅ ሻܷݎതതതതܴܯ ൅ ݎതതതതܴܯ3ሾሺܦߙ െ ሻܮݎതതതതܴܯ െ ሺܴܯതതതതܷݎ െ ሻሿݎതതതതܴܯ

2
 

(14)

α-level fuzzy midrange transformation for fuzzy individual control chart is created as follows, 

஺෨ೝܮܥܷ
ൌ

ቀܮݎܣ ൅
3

݀2
ܮݎതതതതܴܯ ൅ ܷݎܣ ൅

3
݀2

ቁܷݎതതതതܴܯ ൅ ߙ ቂቀݎܣ ൅
3

݀2
ݎതതതതܴܯ െ ܮݎܣ െ

3
݀2

ቁܮݎതതതതܴܯ െ ቀܷݎܣ ൅
3

݀2
ܷݎതതതതܴܯ െ ݎܣ െ

3
݀2

ቁቃݎതതതതܴܯ

2
 

 

஺෨ೝܮܥ
 ൌ

ሺܣ௥௅ ൅ ௥௎ሻܣ ൅ ௥ܣሾሺߙ െ ௥௅ሻܣ െ ሺܣ௥௎ െ ௥ሻሿܣ

2
 (15)  

஺෨ೝܮܥܷ
ൌ

ቀܮݎܣ െ
3
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3
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3
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3
݀2

ቁቃݎതതതതܴܯ

2
 

 

 

Then, the process is under control for each sample when four control charts exhibit in-control situation. 
It means that: 

α-Level Fuzzy Median transformation is defined as the point which partitions the curve under the 
membership function of a fuzzy set into equal regions. α-level fuzzy median transformation of fuzzy 
moving range control chart is obtained as follows, 

ெோೝܮܥܷ ൌ
തതതതത௥௅ܴܯସሺܦ ൅ തതതതത௥ܴܯ ൅ തതതതത௥௎ሻܴܯ ൅ തതതതത௥ܴܯସሾሺܦߙ െ തതതതത௥௅ሻܴܯ െ ሺܴܯതതതതത௥௎ െ തതതതത௥ሻሿܴܯ

3
 

ெோೝܮܥ ൌ
ሺܴܯതതതതത௥௅ ൅ തതതതത௥ܴܯ ൅ തതതതത௥௎ሻܴܯ ൅ തതതതത௥ܴܯሾሺߙ െ തതതതത௥௅ሻܴܯ െ ሺܴܯതതതതത௥௎ െ തതതതത௥ሻሿܴܯ

3
                                                     

ெோೝܮܥܮ
ൌ

ܮݎതതതതܴܯ3ሺܦ ൅ ݎതതതതܴܯ ൅ ሻܷݎതതതതܴܯ ൅ ݎതതതതܴܯ3ሾሺܦߙ െ ሻܮݎതതതതܴܯ െ ሺܴܯതതതതܷݎ െ ሻሿݎതതതതܴܯ

3
 

 
(16)  

α-level fuzzy median transformation for fuzzy individual control chart is created as follows: 

஺෨ೝܮܥܷ
ൌ

ቀܣ௥௅ ൅
3

݀ଶ
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Then, a signal is produced whenever one of the four charts produces an out-of-control signal. In other 
words, the process is under control when four control charts exhibit in-control situation for each 
sample.  

If all control charts state in-control situation, the process is stable; the regression parameters can be 
estimated to use in phase II online monitoring of fuzzy profiles. One should use Eq. (18) to monitor the 
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profiles through some univariate control charts. Alternatively, Eq. (19) can be utilized if multivariate 
control chart are going to be used in phase II. 

ሚ௥ܣ ൌ
∑ ሚ௥௝ܣ

௠
௝ୀଵ

݉
ݎ           ൌ 0,1 

(18)

෨௥ܤ ൌ
∑ ෨௥௝ܤ

௠
௝ୀଵ

݉
ݎ        ൌ 0,1    

 

(19)

6. Case Study 
 

Customer satisfaction is a criterion for company performances in meeting customer needs. In this 
application, we consider a tour where the customer satisfaction index is measuring and monitoring by 
using the questionnaire. Customer satisfaction index makes quality profile in survey duration which 
consists of fuzzy quality response. By using our developed approach, tourist satisfaction is monitored 
and barriers to achieving the desired level of customer satisfaction are identified and removed. Quality 
characteristic in this case study is tourist satisfaction known as response variable in tour profile which 
has been measured for each tourist at the end of journey day. Descriptive variable is the day of journey 
also known as independent variable in tour profile. Tourist satisfaction is a fuzzy QC, thus it is 
measured in the basis of some linguistic terms as shown in Fig. 5. Two hundred tourists’ satisfaction is 
measured during 7-day trip in this study. 

 

Fig. 5. Membership function of each linguistic term for tourist satisfaction 
 

A regression profile is established for each tourist by using linear programming in Eq. (6).  The 
intercept A0 and the slope A1 are fuzzy triangular numbers as shown in Table 1. h-cut, w1 and w2 are model 
parameters and were determined subject to the highest similarity between observed and predicted 
values in each of the profiles have been obtained. 

Table 1  
200 tourists’ profile (h-cut=0.25, w1=0.4, w2=0.6) 

Sample j 
Fuzzy Profile coefficient 

Center of A0 Center of A1 Spread of A0 Spread of A1 
1 0.668904 0.049199 9.78E-19 3.47E-19 
2 0.9000 -1.5E-10 2.57E-12 4.93E-13 
3 0.5500 0.1000 2.09E-17 2.52E-18 
4 0.6750 0.0750 6.5E-18 1.42E-19 
“ “ “ “ “ 

197 0.6500 0.1250 1.95E-15 2.15E-16 
198 0.735308 0.093243 1.69E-14 3.9E-15 
199 0.6500 -0.08333 1.4E-13 3.02E-14 
200 0.5500 0.0500 7.82E-16 7.19E-17 

 

Fuzzy I-MR control chart should be utilized for monitoring both slope and intercept of each profile to 
identify any out-of-control situation. Here, we try to identify any out-of-control regression lines and 
then to remove them from the data set in order to estimate strictly the in-control regression parameters 
for future use in phase II online monitoring. 
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Fig. 6. Fuzzy M-R control chart for intercept A0 Fig. 7. Fuzzy individual control chart for intercept A0 

 

  
Fig. 8. Fuzzy M-R control chart for intercept A1 Fig. 9. Fuzzy individual control chart for slope A1 

 

Each profile statistic is calculated and are plotted on the control charts as illustrated in Figure 6 to 9. If 
the computed statistic is within the related control chart limites, the process is in control, otherwise we 
face to an out-of-control process. It can be seen that 22 points state out-of-control signals in The I-MR 
control charts. It means that the satisfaction of 22 tourist are not in natural conditions. Thus, samples 
related to these out-of-control statistics should be eliminate to construct the new modified control limit. 

The in-control process is achieved after 4 loops of chart sketching by using 168 tourists’ data and the 
new control limit is obtained. Therefore the resulting control chart with thresholds shown in table 2 will 
be used for online monitoring of process in Phase II. 

Table 2  
Control limits of fuzzy I-MR chart 

Profile 
Parameter 

Control 
 Limits 

Fuzzy M-R control chart Fuzzy Individuals control chart 
Left Center Right Left Center Right 

A0 
UCL 0.3398 0.4327 0.5757 0.8888 0.9862 1.1243 
CL 0.104 0.1324 0.1762 0.6122 0.6339 0.6557 

LCL 0.0000 0.0000 0.0000 0.1435 0.2817 0.3791 

A1 
UCL 0.2162 0.2162 0.2162 0.2303 0.2303 0.2303 

CL 0.0662 0.0662 0.0662 0.0543 0.0543 0.0543 
LCL 0.0000 0.0000 0.0000 -0.1217 -0.1217 -0.1217 

 

7. Discussion 
 

Model parameters for constructing fuzzy profiles are h-cut, w1 and w2 in linear programming. 
Parameters changes have some impact on the quality of profile constructing. Mis-selection the model 
parameters lead to misunderstanding about the process situation. The spread of estimated fuzzy 
response value should be narrow enough to be of use and should be wide enough to contain as many 
observations as possible. Hence, to determine appropriate values for the parameters of the model, we 
use the similarity index developed by Sridevi & Nadarajan(2009) in order to measure the similarity of 
estimated and observed values to investigate the impacts of parameter changes on profile construction. 

According to DOE approach, we initially determine 4 levels for h-cut and 11 levels for w1 and w2 as 
shown in Table 3. 
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Table 3  
Similarity index for different run 

h-cut 0 
w1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
w2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

similarity 0.8532 0.8309 0.8309 0.8494 0.8657 0.8734 0.8527 0.8446 0.8445 0.8448 0.8518 
h-cut 0.25 

w1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
w2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

similarity 0.8535 0.8311 0.8434 0.8569 0.8755 0.8666 0.8503 0.8504 0.8503 0.8503 0.8530 
h-cut 0.5 

w1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
w2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

similarity 0.8556 0.8312 0.8516 0.8730 0.8689 0.8588 0.8587 0.8588 0.8587 0.8586 0.8539 
h-cut 0.75 

w1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
w2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

similarity 0.8564 0.8511 0.8753 0.8688 0.8686 0.8686 0.8686 0.8685 0.8685 0.8685 0.8545 
 

Then the similarity index is calculated for 7 pairs of fuzzy estimated and observed values in 200 
profiles for each run. The maximum similarity are around the coordinate of h-cut=0.25, w1=0.4 and 
w2=0.6 as shown in Fig. 10. Hence, We use this coordinate for other operations in fuzzy profile 
monitoring. 

 
Fig. 10. Similarity of observed and estimated values 

In this section by using an instant satisfaction data in table 4, we investigate decision maker’s 
preferences in two-objective linear programming which is showed by weight factors w1 & w2. The 
factor w1 shows the importance of enveloping the h-cut of the observed values by the h-cut of the 
estimated values and w2 illustrates the importance of minimizing the difference between predicted 
and observed values.  

Table 4  
Sample tourist satisfaction 

Tourist Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 
98 poor poor moderate moderate satisfied moderate satisfied 

 

As shown in Fig. 11,  the changes in weight factor w1 has the main affect on the with regression line so 
that the expanse of fuzzy regression line decreases while increasing the w1 value and the  resulted 
regression line leads to producing non-fuzzy values. The weight factor W2 influences estimation 
accuracy. We expect to increase the estimate error while W2 is being reduced, but because we are 
dealing with fuzzy data, the width of the regression line is another effective factor in reducing forecast 
error. Therefore, the intermediate values will develop the best result according to the Fig. 10. The 
changes of h-cut values influence fuzzy regression lines according to figure 12. h-cut determines the 
interval of observed and predicted values used in linear programming to develop a regression equation. 
Sample Regression line in Fig. 12 has been obtained through different values of h-cut with constant 
values for w1 and w2 which are equal to 0.4 and 0.6, respectively. 
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W1=0, W2=1 W1=0.1, W2=0.9 W1=0.2, W2=0.8 

 
W1=0.3, W2=0.7 W1=0.4, W2=0.6 W1=0.5, W2=0.5 

 
W1=0.6, W2=0.4 W1=0.7, W2=0.3 W1=0.8, W2=0.2 

  

W1=0.9, W2=0.1 W1=1, W2=0 
Fig. 11. Fuzzy Profile for sample #5 at h-cut 0.25 

It can be seen that the width of regression lines is reduced while h-cut increases. If the h-cut becomes 
greater, the specified interval becomes smaller and converges to a point. Therefore, fuzzy regression 
line yielded is converted to a conventional crisp regression line as a result of increasing h-cut. If the 
decision maker is risk averter, he will prefer the h-cut of the predicted values to have a broad width. 
 

 

  

h-cut=0 h-cut=0.25 h-cut=0.5 
 

 

 

 
h-cut=0.75 h-cut=1 
Fig. 12. Fuzzy Profile via different values of h-cut at w1=0.4 & w2=0.6 

8. Conclusion 
 

In this paper, we developed a framework for monitoring process/product profiles for the first time in 
fuzzy environment where the response quality characteristic is fuzzy. A model in fuzzy linear 
regression has been developed to construct the quality profiles by using linear programming approach. 
The developed model for constructing fuzzy profiles has some important advantages. It considers two 
objectives in modeling fuzzy linear regression mutually. It decreases the width of the regression 
coefficients and minimizes the difference between the observed and the predicted values. In addition, 
Fuzzy individuals and moving-range (I-MR) control charts were developed to check the stability of the 
fuzzy functional relationship and to estimate the in-control process parameters. A case study about 
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customer satisfaction was presented to illustrate the application of our approach and demonstrate the 
sensitivity analysis of parameters in constructing a fuzzy profile. 

The stages of our approach for monitoring fuzzy Profiles in phase-I are summarized as follows, 

1. Gather some historical data sample by sample (number of samples should not be less than m 
(generally m=30). 

2. Construct fuzzy linear regression for each sample using developed linear programming model. 
3. Construct two fuzzy moving range control charts for  ܣሚ଴ and ܣሚଵ , Construct two fuzzy 

individual control charts for  ܣሚ଴ and ܣሚଵ. (These four charts are used for diagnostic purposes). 
4. Check whether moving range of each sample’s intercept and slope are within the related control 

limits. 
5. Check whether each sample intercept and slope are within the related fuzzy individual control 

limits. 
6. If all the control charts state in-control situation go to step 10 otherwise, go to step 8. 
7. Identify the corresponding out-of-control samples, discover assignable causes, and remove the 

tainted samples from the data set. 
8. If the number of samples is not less than m, go to step 4, otherwise go to step 1. 
9. The process is stable; the regression parameters can be estimated for use in phase II online 

monitoring of fuzzy profiles. One should use the Eq. (18) to monitor the profiles through some 
univariate control charts. Eq. (19) should be utilized if multivariate control chart are going to be 
used for phase II. 

[ 
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