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1. Introduction

Salameh and Jaber (2000) developed a model to determine the total profit per unit of time and the
economic order quantity (EOQ) for a product purchased from a supplier. They assumed that each lot of
the product received contained defective items with a known probability density function. Each order
was subjected to a 100% screening process at a rate of X units per unit time with X > D (the annual
demand). The defective items were sold at a discounted price at the end of the 100% screening process.
Wee et al. (2007) extended the approach by Salameh and Jaber (2000) to consider permissible shortage
backordering and the effect of varying backordering cost values. Maddah and Jaber (2008) identified a
flaw in the work of Salameh and Jaber (2000) and proposed a new model that rectified the flaw using
the renewal reward theorem. Chang and Ho (2010) revisited the work of Wee et al. (2007) and adopted
the suggestion of Maddah and Jaber (2008) to use the renewal reward theorem to derive closed-form
solutions for the optimal lot size and the maximum shortage level without using differential calculus.
Since Salameh and Jaber (2000) assumed that the screening process and demand took place
simultaneously, Wee et al. (2007) made the same assumption. However, in Wee et al.'s (2007) model, B
units were backordered and then satisfied at the beginning of each cycle. They implicitly assumed that
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the B units that were backordered were shipped to customers before the screening process (since they
assumed that the maximum inventory level was the order size y minus B). In other words, the B units
may have contained defective items. Moreover, if the B backordered units were shipped to customers
before the screening process, the time at which the defective items were sold should not have been y/X.

The purpose of this technical note is to point out the flaw in both Wee et al.'s (2007) and Chang and
Ho's (2010) models and develop a corrected model. The rest of this paper is organized as follows: In
section 2, we briefly review Wee et al.'s (2007) model and point out the flaw in the model. Then, in
section 3 we develop a corrected model. Section 4 provides numerical examples to illustrate the
differences between Wee et al.'s (2007) model and the corrected model.

2. The model of Wee et al.

The following notation and assumptions were used in Wee et al. (2007) and Chang and Ho (2010):

order size

the demand rate

the screening rate, X > D

the purchasing cost per unit

the ordering cost per order

the defective percentage in 'y

the probability density function of p

the selling price per unit

the salvage value of per defective item, v <cC
the screening cost per unit

the maximum backordering quantity in units
the backordering cost per unit per unit time
the holding cost per unit per unit time

the superscript representing optimal value
Assumptions:

*TomWaA< v XT XO X g<
<
N—r

(1) The demand rate is known, constant, and continuous.
(2) The lead time is known and constant.
(3) The replenishment is instantaneous.

(4) The screening process and demand proceed simultaneously, but the screening rate is greater than
demand rate, x > D.

(5) The defective items exist in lot size y. The defective percentage, p, has a uniform
distribution with [, ], where 0< a < g<I1.

(6) Shortage is completely backordered.

(7) A single product is considered.
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Fig.1. Inventory system with complete backordering (Wee et al.'s (2007) model).

The behavior of the inventory level is illustrated in Fig. 1, where T is the cycle length, py is the number
of defective items in each order, and t is the total screening time of y units ordered. Egs. (1) - (8) were
developed in Wee et al. (2007). To avoid shortages within the screening time t, p is restricted to

p<1-2. 0
X

Let TR(p,y) and TC(B, y) be the total revenue and total cost per cycle; one has

TR(p,y) == p)ys+ pyv, 2)

_ _Rr\?2 2 2 3)
TC(B,y)=K+cy+dy+h{l(y Py=B)" Py } +1bB°

2 D X 2 D

The net profit per unit time, TPU (B, y), is determined by the revenue per unit time less the average cost
per unit time, which is

TP (B.y) - TRV TCEY), )

Since the replenishment cycle length T =(1— p)y/D, one has

hy KY 1 (5)

TPU(B,y)zD(S—v+m+D(v—c—d——__j(_j
— 2 2
_hy(-p) o 1 hB® 1 bB

2 2(-py 201-py’




942
The expected value of TPU (B, y) isETPU (B, y), wherea < p< 3.

ETPU (B, y) = D(s—v+mJ+(B—%jh+%E[p]
X

+(D(v—c—d—m—ﬁj—(mb)BzJE{ ! }
Xy 2y 1-p

By taking the first derivative of ETPU (B, y) with respect to B and y, and setting the result to zero, one has

(6)

CETPUB.Y) _, (1 | (l-a)|g h+b 0 (7
oB g 1-p y |

8ETPU(B,y)_E(a+,B_1j+D_h+ ol K_h), (+B* ) 1 | (1-a))_| (&)
oy 20 2 X y oy 2y \p-a 1-8))

Wee et al. (2007) then suggested solving Egs. (7) and (8) simultaneously for B* and y* using Maple.
Note that both Wee et al. (2007) and Chang and Ho (2010) assumed that the maximum inventory level
was Yy-B, and the total screening time for the y units ordered was y/x. In other words, the B items
intended to satisfy the backorders were shipped to customers upon receipt of the new order before
screening. After that, the screening process of the y units ordered (including the B units shipped to
customers) began. The problem was that if B units were shipped to customers in the beginning of each
cycle, the B units may have contained defective items, and the screening time should not have included
the B units shipped to customers. In that case, Wee et al. should have discussed what happened to the
defective items contained in the B units. If the B units intended to satisfy the backorders were shipped
to customers after screening, then the backordering period should have included the screening time for
the satisfied backorders and the maximum inventory level in each cycle should have been Y instead of
y-B. Based on Wee et al.'s (2007) assumption that the screening process and demand proceed
simultaneously, the correct behavior of the inventory system over time is depicted in Fig. 2 and the
corrected mathematical model is developed as follows.
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Fig. 2. Behavior of the inventory level over time for the corrected model
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3. The corrected model

In the beginning of each cycle, the inventory level begins with the order quantity y. The B items
intended to satisfy the backorders in each cycle will be filled at a rate of x(1— p)— D . Aftert,, the time

taken to fill B, the maximum shortage level per cycle, the inventory level will be reduced by

B+t,D=x(1-p), = % Specifically, we have
{ cyd-p)-B )
1 D >

B (10)
t,=—,

D

B (11)

tp=—— .

x(1-p)-D

The backordering cost per cycle is given as

12
le(tz+t3):lb82(i+;]:lb52(i+ 1 j’ (12)
2 2 D x(1-p)-D) 2 D x(1-p-D/x)

and the holding cost per cycle is

h{y(l— p)—le% +%(y(l— p)—MJ(tl —u)ﬂ%}

2(x1-p)-D) (x(1-p)-D)
- h{% y(l- pit, +%[y(1— p) - (X(le_(lp_) f)D)]tl ; p{}
Ao o) o g repee) o
“h %% (1—D)D +% yz(l[; P’  yB(- p)[z) B yB(;— P, Bz(l—pg) N p))(’z . (13)
(l—p—;) D(l—p—;) D(l—p—;)

The total cost per cycle for this case is

TC(B,y)=K +cy+dy

2 2 2 2 2
Lp1YB| _(-p) | 1[y’d-p’ _ yB(-p _yB(-p) _B(-p) | py
X

1
2 D.| 2 D D D D
(1-p-—) DA-p-—) DA-p-—) | *

X X X



944

14
+le2 i+ ! , (19
2 D x(-p-D/x)

and the expected profit per cycle is given by
E[TP(B,y)] = E[TR(p,y)]-E[TC(B,y)] =(1-E[p]ys+E[p]yv-K —cy—dy

—h%ng a—pg
X la-p-o)
X

L YE-p’]_yB | (-p)’ | yBE[A-p)I B’ (-p)

20 b D la-p-2) b D a-p-B)
X X
(15)
_hE[p_]yz_lezLLQE[;D,
X 2 D x [(I-p-D/Xx)
Since the expected cycle time is
ery- (-ELPDY. (16)
D
using the renewal reward theorem, the expected profit per unit time is
ETPU(B,y):E[TP(B’y)]:SD+vD E[p] Kb ¢ dD
E[T] (1-E[p) (-E[pDy (-E[p]) (d-E[pD
X( - [p]) (l—p——)
X
_L | YE=p)¥] B (-p)° | o, B | (-p)
2| (-E[p) (-E[p) | q_,_Dy| ~ ya-ElpD |4_,_D,
X X
_p ElpD 1 ( L, D E{ ! D (17)
x(1-E[p]) 2 yd-E[p]) xy(d-E[p]) [(1-p-D/x)
Let A = p)D A =E (l_p); ,and A, = E|— 1 =
(1—|0—;) (l—p—;) (l—p—;)
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by taking the first derivative of ETPU (B, y) with respect to B and y, we have

OB -

CETPUB,y) _, | 1 DA 1 A 1 BA (18)
| 2xQ-E[p]) 2(-E[p) 2 y(d-E[p])

—bB[ ! + DA J,
y(—E[p]) xy(l-E[p])

GETPU(B,y) _ KD _h(lE[(l—p)z]_ B°A _E[pID j (19)
oy (1-E[p]y’ 2 (1-E[p) 2y*(1—E[p) x(1-E[p])

+lb82( . ! + 2DA3 ]
2 y"(I-E[pD) xy"(-E[p]D

Taking the second derivative, we have

0°ETPUB,y) . hA b( 1 . DA ] (20)
0B’ yAd-E[p) \yd-E[p) xy(-E[p]))

O’ETPUB,y) _ 2KD hB* A, _sz[ 1 . DA, J (21)
oy’ y’(-E[p]) Yy’ (-E[p]) y’(1—E[p) xy*(-E[pD)’

O°ETPU(B,y) _  BhA +bB[ 1 ,_ DA j (22)
oBoy y*(1-E[p]) y*(—E[p]) xy>(-E[p]))’
and
O*ETPU(B,y) ) °ETPU(B,y)| [@°ETPU(B,y)) _ 2KD(hA +b+bAD/X) (23)
0B’ oy’ oBoy y*(1-E[p])’ '
2 2
Note that if the value of p <l—%, we have 0 ETS;(B’y) <0, 0 ETZ;(B’y) < 0, and

0*ETPU (B, y) | 0°ETPU(B, y) B 0*ETPU (B, Y)
0B’ oy® oBoy
solutions of B and y that maximize the expected profit per unit time and are given as

2
J > 0, which implies that there exist unique

2KD (24)
2 2 D ) D
h{E[(l—p) ]-R A|+2E[p]x}—bR (1+A3Xj

b

y =

B*=y*R, (25)
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With

R_h(l—E[p]—A,D/x+A2) (26)
~ 2(hA +b+bAD/x)

4. Numerical examples

For the purpose of comparison, we apply the same parameters as in Wee et al. (2007):

Demand rate, D = 50,000 units/year,

Ordering cost, K = 100/cycle,

Holding cost, h = $5/unit/year

Screening rate, X = 1 unit/min = 175,200 units/year
Screening cost, d = $0.5/unit

Purchase cost, C = $25/unit

Backordering cost, b = $10/unit/year

Selling price of good quality items, S = $50/unit

The salvage value of defective items, v =$20/unit

If the defective percentage follows a uniform distribution with

1
f(py=1 50 P=F

0, otherwise

then we have

E[p]zf pf(p)dpzjoﬁ§dp=§, E[(1- p)z]zjoﬂ(l— p)’ f(p)dp:jf%dp:l—wr%z,

A= =0 =fﬂ1_—pf(p)dp:ﬁi{1+—mx }dp=1+21n{—l_D/X j

(1—p—9) 0 1-p-D/X o gl 1-p-D/x px \1-D/x-p
i X
o a-p? | pox (z+D/x) o (D/x)?
AZ_E—(I_p_D) _.ﬁ_D/X_ﬂ—Z f(z)dz_'[I_D/X_ﬁﬂ(z+2D/x+—Z )dz
L X

:1_2_£+22+l(2)2m—1—D/X =1+2—£+l(2)2ln 1-D/x ,
X 2 X f X 1-D/x-p X 2 pf X 1-D/x-p
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A3 =E ;D :lln(%J
(l—p—;) pod=Bix=p

Specifically, if g = 0.04, we obtain the results given in Tables 1-4. Numerical examples show that in
terms of the two decision variables (order size y and the maximum backordering quantity in units B),
there is a significant difference between the corrected model and Wee et al.'s (2007) model. The results
also show that that the penalty of using Wee et al.'s (2007) model can be significant when the screening
rate X is small.

Table 1

Numerical results, p is uniformly distributed between 0 and 0.04, D=50,000, K =100, h= 5, b =10.

X 75,000 125,000 150,000 175,200

Corrected B* 156.87 308.13 349.03 379.32

Corrected Yy * 1,503.34 1,594.05 1,619.40 1,638.40

ETPU (B*, y*) 1,212,600.16 1,212,986.38 1,213,086.60 1,213,159.67

B (Wee etal's B¥) 565.63 57021 57137 57221

Y (Wee etal's y) 1,731.53 1,745.54 1,749.10 1,751.67

ETPU(BWee yWee) 1,210,481.87 1,212,558.45 1,212,817.31 1,212,974.50

ETPU (B*, y*) 2,118.29 427.93 269.29 185.17

_ ETPU (BWee , yWee)

Table 2

Numerical results, p is uniformly distributed between 0 and £, D=50,000, x=175,200, K=100, h=5,b =10

B 0.04 0.06 0.08 0.10 0.20 0.30 0.40 0.50

Corrected B* 379.32 375.86 37229 368.63 348.68 325.69 299.01 26734
1,638.40 1,647.32 1,656.16 1,664.90 1,706.79 1,744.81 1,777.62 1,803.55

Corrected Y *

1,213,159.67  1,210,236.65 1,207,252.02  1,204,203.81  1,187,934.48  1,169,727.90  1,149,218.14  1,125,940.50
ETPU (B*, y*) )
Wee 572.21 569.50 566.676 563.75 547.535 528.52 506.60 481.78
B (Wee etal.'s B*)
W 1,751.67 1,761.33 1,770.86 1,780.27 1,825.12 1,865.36 1,899.76 1,927.13

ee
y (Wee etal.'s y*)
Wee ,Wee 1,212,974.50  1,210,047.83  1,207,059.39  1,204,007.22  1,187,71525 1,169,479.38  1,148,928.90  1,125,587.61
ETPU(B™,y™)

ETPU (B*, y*) 185.17 188.82 192.63 196.59 219.23 248.52 289.24 352.89

—ETPU (BWee , yWee)

Table 3

Numerical results for different holding cost, p is uniformly distributed between 0 and 0.04, D =50,000, x=175,200, K= 100, b=10

h 1 3 5 8 10

Corrected B* 209.30 324.18 379.32 421.82 436.97

Corrected Y * 3,314.84 2,022.53 1,638.40 1,366.48 1,258.27

ETPU (B*, y*) 1,216,309.45 1,214,342.54 1,213,159.67 1,211,920.31 1,211,278.13

BWee (Wee etal's B*) 299.54 476.67 572.21 659.57 698.75

yWee (Wee etal's y*) 3,362.15 2,107.74 1,751.67 1,514.31 1,426.03

ETPU (BWee yWee) 1,216,291.22 1,214,252.66 1,212,974.50 1,211,565.07 1,210,796.32
b

ETPU(B*,y*) 18.23 89.88 185.17 355.24 481.81

_ ETPU (BWee, yWee)




948
Table 4

Numerical results for different backordering cost, p is uniformly distributed between 0 and 0.04,
D=50,000, x=175,200, K=100, h=5

b 10 15 20 0

Corrected B* 379.32 274.24 214.88 0

Corrected Y * 1,638.40 1,579.38 1,546.89 1,434.48
ETPU (B*, y*) 1,213,653.39 1,213,159.67 1,212,926.94 1,212,791.24 1,212,274.30
BgWee (Wee etal.'s B*) 572.21 405.01 313.88 0

yWee (Wee et al.'s y*) 1,751.67 1,653.119 1,601.42 1,434.48
ETPU(Bwee yWee) 1,213,312.69 1,212,974.50 1,212,799.01 1,212,693.36 1,212,274.30
ETPU (B*, y*) 185.17 127.93 97.88 0

_ ETPU (BWee, yWee)
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