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 Wee et al. (2007) developed an optimal inventory model. In this technical note, we point out a 
contradiction between Wee et al.'s model and their assumption. A corrected model is developed 
based on their assumption. Numerical examples show that in terms of the two decision variables, 
there is a significant difference between the corrected model and Wee et al.'s model. The results 
also show that that the penalty of using Wee et al.'s model can be significant under certain 
situations.     
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1. Introduction 

Salameh and Jaber (2000) developed a model to determine the total profit per unit of time and the 
economic order quantity (EOQ) for a product purchased from a supplier. They assumed that each lot of 
the product received contained defective items with a known probability density function. Each order 
was subjected to a 100% screening process at a rate of x units per unit time with x > D (the annual 
demand). The defective items were sold at a discounted price at the end of the 100% screening process. 
Wee et al. (2007) extended the approach by Salameh and Jaber (2000) to consider permissible shortage 
backordering and the effect of varying backordering cost values. Maddah and Jaber (2008) identified a 
flaw in the work of Salameh and Jaber (2000) and proposed a new model that rectified the flaw using 
the renewal reward theorem. Chang and Ho (2010) revisited the work of Wee et al. (2007) and adopted 
the suggestion of Maddah and Jaber (2008) to use the renewal reward theorem to derive closed-form 
solutions for the optimal lot size and the maximum shortage level without using differential calculus. 
Since Salameh and Jaber (2000) assumed that the screening process and demand took place 
simultaneously, Wee et al. (2007) made the same assumption. However, in Wee et al.'s (2007) model, B 
units were backordered and then satisfied at the beginning of each cycle. They implicitly assumed that 
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the B units that were backordered were shipped to customers before the screening process (since they 
assumed that the maximum inventory level was the order size y minus B). In other words, the B units 
may have contained defective items. Moreover, if the B backordered units were shipped to customers 
before the screening process, the time at which the defective items were sold should not have been y/x. 

The purpose of this technical note is to point out the flaw in both Wee et al.'s (2007) and Chang and 
Ho's (2010) models and develop a corrected model. The rest of this paper is organized as follows: In 
section 2, we briefly review Wee et al.'s (2007) model and point out the flaw in the model. Then, in 
section 3 we develop a corrected model. Section 4 provides numerical examples to illustrate the 
differences between Wee et al.'s (2007) model and the corrected model.  

2. The model of Wee et al. 

The following notation and assumptions were used in Wee et al. (2007) and Chang and Ho (2010): 

 

y order size  
D the demand rate 
x the screening rate, x > D 
c the purchasing cost per unit 
K the ordering cost per order 
p the defective percentage in y 
f(p) the probability density function of p 
s the selling price per unit  
v the salvage value of per defective item, v < c 
d the screening cost per unit 
B the maximum backordering quantity in units  
b the backordering cost per unit per unit time 
h the holding cost per unit per unit time 
* the superscript representing optimal value 
Assumptions: 

(1) The demand rate is known, constant, and continuous. 

(2) The lead time is known and constant. 

(3) The replenishment is instantaneous. 

(4) The screening process and demand proceed simultaneously, but the screening rate is greater than 
demand rate, x > D. 

(5) The defective items exist in lot size y. The defective percentage, p, has a uniform 
      distribution with [ ,  ], where 0   <  <1. 

(6) Shortage is completely backordered. 

(7) A single product is considered. 
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Fig.1. Inventory system with complete backordering (Wee et al.'s (2007) model). 

The behavior of the inventory level is illustrated in Fig. 1, where T is the cycle length, py is the number 
of defective items in each order, and t is the total screening time of y units ordered. Eqs. (1) - (8) were 
developed in Wee et al. (2007). To avoid shortages within the screening time t, p is restricted to 
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The net profit per unit time, ),,( yBTPU  is determined by the revenue per unit time less the average cost 
per unit time, which is 
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The expected value of ),( yBTPU  is ),,( yBETPU  where   p . 
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(6)

By taking the first derivative of ),( yBETPU with respect to B and y, and setting the result to zero, one has 
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(8) 

Wee et al. (2007) then suggested solving Eqs. (7) and (8) simultaneously for B*  and y* using Maple. 
Note that both Wee et al. (2007) and Chang and Ho (2010) assumed that the maximum inventory level 
was y-B, and the total screening time for the y units ordered was y/x. In other words, the B items 
intended to satisfy the backorders were shipped to customers upon receipt of the new order before 
screening. After that, the screening process of the y units ordered (including the B units shipped to 
customers) began. The problem was that if B units were shipped to customers in the beginning of each 
cycle, the B units may have contained defective items, and the screening time should not have included 
the B units shipped to customers. In that case, Wee et al. should have discussed what happened to the 
defective items contained in the B units. If the B units intended to satisfy the backorders were shipped 
to customers after screening, then the backordering period should have included the screening time for 
the satisfied backorders and the maximum inventory level in each cycle should have been y instead of 
y-B. Based on Wee et al.'s (2007) assumption that the screening process and demand proceed 
simultaneously, the correct behavior of the inventory system over time is depicted in Fig. 2 and the 
corrected mathematical model is developed as follows. 
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Fig. 2. Behavior of the inventory level over time for the corrected model 
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3. The corrected model 

In the beginning of each cycle, the inventory level begins with the order quantity y. The B items 
intended to satisfy the backorders in each cycle will be filled at a rate of Dpx  )1( . After 3t , the time 

taken to fill B, the maximum shortage level per cycle, the inventory level will be reduced by 
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The backordering cost per cycle is given as 
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and the holding cost per cycle is 
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The total cost per cycle for this case is   
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and the expected profit per cycle is given by 
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Since the expected cycle time is 
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by taking the first derivative of ),( yBETPU with respect to B and y, we have 
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Taking the second derivative, we have 





















])[1(])[1(

1

])[1(

),( 31
2

2

pExy

DA

pEy
b

pEy

hA

B

yBETPU
,  

(20)
























])[1(])[1(

1

])[1(])[1(

2),(
3

3
3

2
3

1
2

32

2

pExy

DA

pEy
bB

pEy

AhB

pEy

KD

y

yBETPU
, 

 

(21)





















])[1(])[1(

1

])[1(

),(
2

3
22

1
2

pExy

DA

pEy
bB

pEy

BhA

yB

yBETPU
, 

 

(22)

and 

22

2

2

2

2 ),(),(),(


































yB

yBETPU

y

yBETPU

B

yBETPU
= 

24
31

])[1(

)/(2

pEy

xDbAbhAKD




 .  
(23) 

Note that if the value of  p <
x

D
1 , we have 

2

2 ),(

B

yBETPU




 < 0, 
2

2 ),(

y

yBETPU




 < 0, and 

22

2

2

2

2 ),(),(),(


































yB

yBETPU

y

yBETPU

B

yBETPU
> 0, which implies that there exist unique 
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4. Numerical examples 

For the purpose of comparison, we apply the same parameters as in Wee et al. (2007):  

Demand rate, D    = 50,000 units/year, 

Ordering cost, K    = 100/cycle, 

Holding cost, h    = $5/unit/year 

Screening rate, x    = 1 unit/min = 175,200 units/year  
 

Screening cost, d    = $0.5/unit 

Purchase cost, c    = $25/unit 

Backordering cost, b    = $10/unit/year 

Selling price of good quality items, s  = $50/unit 

The salvage value of defective items, v =$20/unit 

If the defective percentage follows a uniform distribution with 
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Specifically, if   = 0.04, we obtain the results given in Tables 1-4. Numerical examples show that in 
terms of the two decision variables (order size y and the maximum backordering quantity in units B), 
there is a significant difference between the corrected model and Wee et al.'s (2007) model. The results 
also show that that the penalty of using Wee et al.'s (2007) model can be significant when the screening 
rate x is small. 

Table 1  
Numerical results, p is uniformly distributed between 0 and 0.04, D=50,000, K =100, h = 5, b =10. 
x 75,000 125,000 150,000 175,200 
Corrected B* 156.87 308.13 349.03 379.32 
Corrected *y  1,503.34 1,594.05 1,619.40 1,638.40 

*)*,( yBETPU  1,212,600.16 1,212,986.38 1,213,086.60 1,213,159.67 

WeeB  (Wee et al.'s  B*) 565.63 570.21 571.37 572.21 
Weey  (Wee et al.'s  y*) 1,731.53 1,745.54 1,749.10 1,751.67 

),( WeeWee yBETPU  1,210,481.87 1,212,558.45 1,212,817.31 1,212,974.50 

),(

*)*,(
WeeWee yBETPU

yBETPU


 

2,118.29 427.93 269.29 185.17 

 

Table 2  
Numerical results, p is uniformly distributed between 0 and  , D=50,000, x=175,200, K=100,  h = 5, b =10 

  0.04 0.06 0.08 0.10 0.20 0.30 0.40 0.50 

Corrected  B* 379.32 375.86 372.29 368.63 348.68 325.69 299.01 267.34 

Corrected *y  1,638.40 1,647.32 1,656.16 1,664.90 1,706.79 1,744.81 1,777.62 1,803.55 

*)*,( yBETPU  1,213,159.67 1,210,236.65 1,207,252.02 1,204,203.81 1,187,934.48 1,169,727.90 1,149,218.14 1,125,940.50 

WeeB  (Wee et al.'s  B*) 
572.21 569.50 566.676 563.75 547.535 528.52 506.60 481.78 

Weey  (Wee et al.'s  y*) 
1,751.67 1,761.33 1,770.86 1,780.27 1,825.12 1,865.36 1,899.76 1,927.13 

),( WeeWee yBETPU  
1,212,974.50 1,210,047.83 1,207,059.39 1,204,007.22 1,187,715.25 1,169,479.38 1,148,928.90 1,125,587.61 

( *, *)

( , )Wee Wee

ETPU B y

ETPU B y
 

185.17 188.82 192.63 196.59 219.23 248.52 289.24 352.89 

 

Table 3  
Numerical results for different holding cost, p is uniformly distributed between 0 and 0.04, D =50,000, x=175,200, K= 100,  b=10 
h 1 3 5 8 10 
Corrected B* 209.30 324.18 379.32 421.82 436.97 

Corrected *y  3,314.84 2,022.53 1,638.40 1,366.48 1,258.27 

*)*,( yBETPU  1,216,309.45 1,214,342.54 1,213,159.67 1,211,920.31 1,211,278.13 

WeeB  (Wee et al.'s  B*) 299.54 476.67 572.21 659.57 698.75 

Weey  (Wee et al.'s  y*) 
3,362.15 2,107.74 1,751.67 1,514.31 1,426.03 

),( WeeWee yBETPU  
1,216,291.22 1,214,252.66 1,212,974.50 1,211,565.07 1,210,796.32 

),(

*)*,(
WeeWee yBETPU

yBETPU


 

18.23 89.88 185.17 355.24 481.81 
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Table 4  
Numerical results for different backordering cost, p is uniformly distributed between 0 and 0.04, 

D=50,000, x=175,200, K=100, h=5 
b 5 10 15 20 ∞ 
Corrected B* 617.97 379.32 274.24 214.88 0 
Corrected *y  1,779.46 1,638.40 1,579.38 1,546.89 1,434.48 

*)*,( yBETPU  1,213,653.39 1,213,159.67 1,212,926.94 1,212,791.24 1,212,274.30 

WeeB  (Wee et al.'s  B*) 988.187 572.21 405.01 313.88 0 
Weey  (Wee et al.'s  y*) 2,016.71 1,751.67 1,653.119 1,601.42 1,434.48 

),( WeeWee yBETPU  1,213,312.69 1,212,974.50 1,212,799.01 1,212,693.36 1,212,274.30 

),(

*)*,(
WeeWee yBETPU

yBETPU


 

340.70 185.17 127.93 97.88 0 
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