
* Corresponding author.
E-mail: ziaursani@yahoo.com (Z. Ursani)

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2012.05.006

 International Journal of Industrial Engineering Computations 3 (2012) 843–858

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Introducing mass balancing theorem for network flow maximization

Ziauddin Ursani*

Department of Mechanical Engineering and Mathematical Sciences Faculty of Technology, Design and Environment Oxford Brookes University UK

A R T I C L E I N F O A B S T R A C T

Article history:
Received 27 March 2012
Received in revised format
31 May 2012
Accepted June 8 2012
Available online
9 June 2012

 Maximization of flow through the network is required in many practical applications such as
water supply flow networks, Oil and Gas flow networks, and transportation networks etc. In this
paper a new theorem is presented that has direct application on maximization of flow through the
network. This theorem suggests that the maximization of network flow can be achieved by
visiting only unbalanced nodes rather than the whole network. Therefore based on this theorem a
method is developed that maximizes flow thorough the network by visiting only unbalanced
nodes. Hence this method can achieve solution in a sub-linear time where network has fewer
unbalanced nodes. However this method has worst case complexity of order O(m2-m), where m is
the number of edges. Furthermore it is shown that this theorem has also potential to make
optimization an easier task in a multi-commodity flow environment.

© 2012 Growing Science Ltd. All rights reserved

Keywords:
Network flow maximization
Mass balance theorem
Multi-commodity flow
Flow dissipation

1. Introduction

The network flow maximization problem has many practical applications in road, railway, water
supply, oil & Gas, and other physical networks. The problem consists of maximizing the flow from a
source to a sink in a network consisting of a number of nodes connected by a number of directed edges.
This problem is well studied and a large volume of literature exists on this problem since the last fifty
years. The first major breakthrough came in a form of max-flow min-cut theorem (Danzig & Fulkerson,
1956; Ford & Fulkerson, 1956; Elias et al., 1956). According to this theorem maximum flow through
the network is equal to its minimum cut. Minimum cut of the network is the cut of the minimum
capacity that divides the network into two parts such that no flow could travel from the source to the
sink. On the basis of this theorem augmenting path algorithms for the flow maximization have been
proposed in (Ford & Fulkerson, 1956, Elias et al., 1956). This algorithm is iterative. In each iteration
this algorithm finds a non-zero residual capacity path from source to the sink and augments flow on
that path. It continues to augment flow on such paths until it fails to find any non-zero residual capacity
path in the network. Since then, a number of Augmenting Path Algorithms have appeared in the
literature. These algorithms were invented to improve worst case speed of the augmenting path
algorithm by proposing some criterion to adopt some sequence in choosing paths for flow
augmentations. Dinic (1970) and Edmonds and Karp (1972) proposed shortest augmenting path

 844

algorithm where shortest paths were chosen first for flow augmentations. This algorithm was further
improved by Orlin and Ahuja (1987) by using distance labels (Goldberg 1985) to find the shortest paths
quickly. The capacity scaling algorithm was introduced by Gabow (1985). This algorithm first selects
the paths with higher residual capacity to augment the flow on them. Other augmenting path algorithms
can be found in Tarjan (1986), Ahuja and Orlin (1989, 1991), and Ahuja et al. (1988). The augmenting
path algorithm is feasible flow algorithm where feasibility is maintained all the time. The major
drawback of augmenting path algorithm is that in each augmentation we cannot augment the flow more
than residual capacity of the path. This slows down its speed considerably. To overcome this drawback
concept of pre-flow was developed to increase the algorithm speed. In pre-flows excess flow at nodes is
allowed. According to this concept instead of choosing a complete path, flow can be pushed to
individual edges that can be pushed further to other edges in the network. In this way flow on all the
paths of the network is augmented in parallel. This class of algorithms is called pre-flow push
algorithms. The concept of pre-flows was first suggested in (Boldyreff, 1955). However formal
conceptual proposal of pre-flows first appeared in (Karzanov, 1974). To make this algorithm faster
many improvements have been proposed in this algorithm based on selection of nodes for ‘push’
operation. Highest label pre-flow push algorithm was proposed by Goldberg and Tarjan (1986), where
selection of node for push operation was based on its distance from the sink. More the distance more
likely the node is selected. Excess scaling algorithm was proposed by Ahuja and Orlin (1989), where
selection of node is based on amount of excess flow. Node having more excess flow is more likely to
be selected. Other pre-flow push algorithms can be found in Cherkasky (1977), Malhotra et al., (1978),
Galil (1980), Tarjan (1984), Goldberg and Tarjan (1988). In addition to these two major classes of
algorithms, some other algorithms also appeared, such as a recent algorithm based on pseudo-flows
(Hochbaum, 2008). In pseudo-flows both excess and deficit flows at nodes is allowed. The pseudo-flow
algorithm has roots in certificate of optimality (Lerchs and Grossmann 1965), where link was
established in Hochbaum (2001). The pseudo-flow algorithm first solves maximum blocking cut
problem (Radzik, 1993), then quickly establishes maximum flow. Further literature about pseudo-flows
can be seen in Hochbaum (1997, 2003, 2007), and Chandran and Hochbaum (2009).

All the above algorithms only see the global view of the network, i.e., they visit each and every node
and edge of the network to achieve maximum flow. However this problem can be solved with only
local manipulations while still achieving the global optimum, i.e., it is not necessary to visit all nodes
and edges of the network or it is not necessary to find all paths from source to sink. Flow can be
maximized with only local interactions between the flows of neighbouring nodes. The objective of
maximizing the flow through local interactions between the neighbouring nodes without traversing all
possible paths from source to sink can be achieved if maximum flow problem is translated into the
mass balancing problem. We define mass balancing problem as a network problem in which nodes
have unbalanced flows, where sum of flows coming into the nodes is not equal to sum of flows getting
out of the nodes. If mass balancing is performed between the nodes locally, the resultant network will
represent solution of the maximum flow problem. A theorem is devised to make this point. It should be
noted that other methods like pseudo-flows (Hochbaum, 2008) and draining algorithm (Dong et al.,
2009) are also somewhat close to this concept. However proposed method is very simple and doesn’t
require any complex data structures (Hochbaum, 2008) or network modifications (Dong et al., 2009).
The proposed method is also extendable to multi-commodity problem. Furthermore the idea of
equivalence between flow maximization and flow balancing problems is innovative and is obtained by
discovering a new property of the network that it acts as a balance between its two physical parts on the
either side of the minimum cut. This claim is supported by a Mass Balancing Theorem that is first time
presented in this paper. The resultant method works very fast on datasets with fewer unbalanced nodes.

This paper is structured as follows. In section 2, Mass Balancing Theorem is presented which shows
that solving the mass balancing problem yields the solution of maximum flow problem. Section 2 has 3
subsections. In section 2.1 mass balancing method is explained and it is shown that this method always
arrives at optimal solution by discovering a network balance property in section 2.2. Working examples
of this method are presented in section 2.3. In section 3, Complexity analysis for this method is

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

845

presented. In section 4, this method is extended to multi-commodity flow problem. Finally some
conclusions are made and future work is discussed.

2. Mass Balance Theorem

Consider a flow network consisting of a single source ‘s’, and a single sink ‘t’, a number of nodes
(including s & t) V and number of edges E. Each edge eij connecting any two nodes i and j is directed
from node i to node j and is characterized by the capacity cij. Each transmission node must have at least
one incoming edge and one out going edge. Our objective is to maximize the flow Q through the
network, considering unlimited input from the source.

There are some obvious physical constraints on maximum quantity of Q, i.e., it cannot exceed sum of
capacity of edges directly connected to source or sum of capacity of edges directly connected to sink.
These constraints are mathematically represented below in relation (1) and relation (2).

0 ,
s

sk
k V

Q C


  (1)

ܳ଴ ൑ ෍ ܿ௞௧,

௞א௏೟ശሬሬሬ

 (2)

where

ఫܸሬሬԦ = Set of nodes immediately succeeding source node s

ఫܸശሬሬ = Set of nodes immediately preceding sink node t
ܳ଴= Maximum possible flow through the network

From 1 and 2 we can deduce

ܳ଴ ൑ ݉݅݊ ቌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

, ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

ቍ. (3)

Eq. (3) means that maximum flow through the network can at most be equal to the lesser value of the
two quantities i.e., sum of capacity of edges directly connected to source and sum of capacity of edges
directly connected to sink. If the network bears the property having all balanced nodes i.e.,

׊
݆ א ܰ ෍ ܿ௜௝

௜א௏ണശሬሬሬ

ൌ ෍ ௝ܿ௞

௞א௏ണሬሬሬԦ

, (4)

where N = Number of transmission nodes i.e., nodes excluding source and sink

then the relationship 3 will become:

ܳ଴ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

. (5)

The equation 5 implies that if a network without unbalanced nodes (nodes which do not obey Eq. (4)) is
fully saturated, the maximum flow can be determined immediately from the sum of the capacities of the
outgoing edges at the source or from the sum of the capacities of the edges going into the sink.

However fully saturated network with unbalanced nodes, violates the law of flow conservation at
nodes. In such a case it is necessary to get rid of excess and deficit flows at nodes. Let ܳௗ be the sum of
all excess and deficit flows i.e.,

ܳௗ ൌ ܳ௦ ൅ |ܳ௧|, (6)

where

 846

ܳ௦ = Sum of all excess flows at nodes
ܳ௧ = Sum of all deficit flows at nodes

ܳௗ can be dissipated in 3 different ways.

1. By dumping part of excess flow to the source node ሺݍ௦ሻ
2. By dumping part of deficit flow to the sink node ሺݍ௧ሻ
3. By cancelling rest of excess ሺܳ௦ െ ௦ሻ and deficit (ܳ௧ݍ െ that,ݍ∆ ௧ሻflows i.e., mass balancingݍ
can be computed as;

ݍ∆ ൌ ሺܳ௦ െ ௦ሻݍ ൅ |ሺܳ௧ െ ௧ሻ|. (7)ݍ

Therefore total flow to be dissipated from the network is given by:

ܳௗ ൌ ௦ݍ ൅ |௧ݍ| ൅ (8) .ݍ∆

Therefore after dumping the flow to the source and sink Eq. (5) becomes

ܳ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ ௦ݍ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

െ ௧|. (9)ݍ|

This shows after dumping excess flow to source and deficit flow to sink the representative flow through
the network may not be the maximum. From the above equation it is clear that capacities of edges are
constants. However the two variables ݍ௦ and ݍ௧ can be minimized to maximize Q. Therefore equation 9
can be modified as follows:

ሺܳሻݔܽ݉ ൌ ܳ଴ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ ݉݅݊ሺݍ௦ሻ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

െ ݉݅݊ሺ|ݍ௧|ሻ

(10)

Furthermore Eq. (8) can be rewritten as follows:

ݍ∆ ൌ ܳௗ െ ሺݍ௦ ൅ ௧|ሻ (11)ݍ|

From the Eq. (11), it can be seen that if ݍ௦ and ݍ௧ are minimized, then ∆ݍ is maximized because ܳௗ is a
constant and is independent of ݍ௦ and ݍ௧. Therefore, Eq. (9) can be rewritten as:

ሻݍ∆ሺݔܽ݉ ൌ ܳௗ െ ݉݅݊ሺݍ௦ ൅ ௧|ሻ. (12)ݍ|

By comparing Eq. (10) and Eq. (12) we get

ሻݍ∆ሺݔܽ݉ ൎ ሺܳሻ (13)ݔܽ݉

Relationship 13 is very fundamental relationship which shows that if cancelation of excess and deficit
flows with each other is maximized or in other words mass balancing is maximized the flow in the
network is also maximized, provided rest of excess and deficit flows are dissipated to source and sink
respectively.

It is very beneficial in terms of complexity to translate the objective function in this way, because for
the new objective localized optimization method can be employed that manipulates excess and deficit
flows locally at adjacent nodes, without looking at global view of the network. This is further explained
in the next section.

2.1 Mass balance method

To explain this method four concepts are introduced here i.e., dissipative flow of node, dissipative flow
of edge, dissipative flow of path, and flow dissipation on the path.

The dissipative flow of node j is given by;

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

847

௝݀ ൌ ෍ ௜௝ݍ

௜א௏ണശሬሬሬ

െ ෍ ௝௞ݍ

௞א௏ണሬሬሬԦ

, (14)

where ݍ௜௝= flow in the edge ݁௜௝

Eq. (14) shows that dissipative flow of the node is the amount of excess or deficit flow at that node.
Dissipative flow of source and sink is considered positive and negative infinity respectively.

The dissipative flow of edge ݁௜௝ is given by;

൜
݀௜௝ ൌ ௜௝ݍ

௝݀௜ ൌ ܿ௜௝ െ ௜௝ݍ
 (15)

Eq. (15) means that dissipative flow of edge is different in its forward and backward direction. In
forward direction it is equal to the flow present in the edge, while in backward direction it is equal to
residual capacity of the edge. The dissipative flow of path Pif from node i to node f is given by;

݀௜՜௙ ൌ ,∆൫݊݅݉ט ,|௜݀ט| ห݀௙ห൯ (16)

where

∆= Minimum dissipative flow among all edges included in the path from initial node i to final node f

Equation 16 means dissipative flow of path is minimum of dissipative flows of initial and final nodes
and all edges present in that path. Furthermore it is taken as negative if initial node is negative node
else it is taken as positive.

Flow dissipation on the path from node i to node f means applying following operation on each edge of
the path.

௜௝ݍ
′ ൌ ௜௝ݍ ט ݀௜՜௙ (17)

Where positive sign stands for forward edge and negative sign stands for backward edge.
*This method can simply be described in following steps.

1. The Algorithm starts with the fully saturated network not observing the flow conservation law
at nodes.
2. Each node n is assigned value equal to dn as shown in equation 14.
3. The algorithm scans the node list to locate first node i with di < 0.
4. The algorithm starts search from node i through the network and establishes a path Pif as soon
as it strikes the first node f with df > 0. Please note that nodes i and f must not be sink and source
nodes. The first and last edge of this path must be forward edge and ݀௜՜௙(eq. 16) must not be zero.
Please also note that this path cannot contain another node with positive dissipative flow in its
middle because path is established at first encounter with such a node.
5. The algorithm dissipates the flow along this path according to equation 17 and updates the
dissipative flow of first and last nodes of the path accordingly.
6. The algorithm repeats the steps 3 to 5 iteratively until it fails to find a feasible Pif path. Feasible
path means path with non zero dissipative flow.
7. The algorithm repeats step 3.
8. The algorithm finds the path from node i to sink node f through the network. All the edges of
this path must be forward edges and ݀௜՜௙must not be zero.
9. The algorithm repeats step 5.
10. The algorithm repeats the steps 7 to 9 iteratively until there remains no node i with di < 0.

* It is gratefully acknowledged that Prof. Todinov in his review of this paper (Todinov 2011A) helped in description of this
method that was later for its correct representation expanded into 14 step description by author of this paper. Later Todinov
(2011B) extended this method to Repairable Flow Networks.

 848

11. The algorithm scans the node list again to find the node i with di > 0.
12.The algorithm finds the path from node i to source node through the network. All the edges of
this path must be backward edges and ݀௜՜௙must not be zero.
13. The algorithm repeats step 5.
14. The algorithm repeats the steps 11 to 13 iteratively until there remains no node i with di > 0.

2.2 Proof of Optimality

It can be shown that this method always gives the optimal solution. According to law of flow
conservation we have;

∑ ܿ௦௞௞א௏ೞሬሬሬԦ െ ∑ ܿ௞௧௞א௏೟ശሬሬሬ ൌ ׊
݅ א ܰ

∑ ݀௜. (18)

Eq. (18) means difference between sum of capacities of edges directly connected to source and sink
must be equal to dissipative flow of all transmission nodes in the network. If the network is partitioned
into two parts through the minimum cut, the result will be two disconnected parts of network one
without sink (Part A) and another without source (Part B). Take part A of the network and connect all
the edges of minimum cut directly to the sink. Hence in this modified network-A, all the edges
connected to the sink represent the minimum cut C0, therefore

଴ܥ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

. (19)

By comparing Eq. (18) and Eq. (19) we get

଴ܥ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ
׊

ܽ א ஺ܰ
෍ ݀௔. (20)

Similarly take part B of the network and connect all the edges of the minimum cut directly with the
source. Hence in this modified network-B, all the edges connected to the sink represent the minimum
cut C0, therefore

଴ܥ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

. (21)

By comparing Eq. (18) and Eq. (21) we get

଴ܥ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ (22)

By comparing Eq. (20) and Eq. (22) we get

෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ
׊

ܽ א ஺ܰ
෍ ݀௔ ൌ ଴ܥ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ (23)

Eq. (23) is fundamental which establishes that value of the minimum cut can be calculated from both
parts of the network. This is special property that shows network is a balance between two parts of
either side of the minimum cut. This property can be used to establish that proposed method will
always arrive at optimal solution. Since the proposed procedure starts with the saturated network hence
initially minimum cut is saturated. Therefore at this stage minimum cut represents the maximum flow,
therefore equation 23 becomes:

෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ
׊

ܽ א ஺ܰ
෍ ݀௔ ൌ ܳ଴ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ (24)

At this stage, Eq. (24) represents the system of fully saturated network that doesn’t obey law of flow
conservation at nodes. If minimum cut of above saturated network remains saturated after application
of the proposed procedure then optimal solution is achieved. The proposed procedure has three
sequential sub-procedures i.e., mass balancing (Steps 3-6), dumping to the sink (Steps 7-10) and then

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

849

returning to the source (Steps 11-14). It is mathematically shown below that after application of each of
these sub-procedures the minimum cut remains saturated.

If mass balancing is done entirely within part A (Eq. (20)) or part B (Eq. (22)) of the network, this will
not remove any flow from the minimum cut and hence it will remain saturated. However if the flow is
dissipated across the two parts of the network (A & B) then flow may be removed from the minimum
cut. For example, if we dissipate the flow by amount Δ along the path ௔ܲ௕ while deficit node a present
in part A and excess node b present in part B, then this will remove amount Δ from the minimum cut
and equation 24 will become

ܳ଴ െ ∆ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ ቀ
׊

ܽ א ஺ܰ
෍ ݀௔ ൅ ∆ቁ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ െ ∆ (25)

Above equation shows that this operation leaves extra amount of flow +Δ in part A and same amount
of flow -Δ in part B of the network. To dissipate this amount a backward path from part B to part A
will ultimately be found that will add back same amount Δ in the minimum cut, thus Eq. (25) will
return to same status of equation 24 that fundamentally represent the balance of the network. This
shows that any dissipation operation across two parts of the network will be matched by the equal
operation in the opposite direction to satisfy the Eq. (24). Thus the network acts as a seesaw with
support at the minimum cut and two pans A and B on either side of it. If the load is transfered from
one pan to another, balance of seesaw is disturbed which is represented through Eq. (24). The load is
then transferred back to satisfy this equation. Thus minimum cut will remain saturated after complete
mass balancing (Steps 3-6) which is the key condition for the maximum flow. However it is not
sufficient condition. The solution may not be optimal after dumping the flow to the sink (Steps 7-10)
and returning the flow to the source (Steps 11-14). Because solution may become sub-optimal if any
of above two actions dissipate the flow from the minimum cut. However it can be shown here this is
not possible.

The above two actions can only dissipate flow from minimum cut if there remains negative dissipative
flow in part A of the network or positive dissipative flow in part B of the network. In such a case flow
will be again dissipated through the minimum cut to get rid of infeasible flows thus ending up in sub-
optimal solution.

From Eq. (20) and Eq. (22) it can be shown that this cannot happen. If after the mass balancing there
is a node i having di < 0 then it will always be in the part B of the network and node j having dj > 0
will always be in the part A of the network.

Since minimum cut cannot be greater than the sum of capacities of edges directly connected to source
i.e.,

C଴ ج ෍ ݇ݏܿ

ሬሬሬሬሬԦݏܸא݇

 (26)

Therefore by comparing Eq. (20) and relation 26, we get

׊
ܽ א ஺ܰ

෍ ݀௔ ث 0 (27)

From the above equation it is clear that total of all dissipative flows of nodes in part A of the network
cannot be less than 0 hence any nodes left after the mass balancing will always have ௝݀ ൐ 0. Similarly
minimum cut cannot be greater than the sum of capacities of edges directly connected to sink i.e.,

C଴ ج ෍ ݐ݇ܿ

ശሬሬሬሬሬݐܸא݇

 (28)

Therefore, by comparing Eq. (22) and relation 28, we get

 850

׊
ܾ א ஻ܰ

෍ ݀௕ ج 0 (29)

From the above equation it is clear that total of all dissipative flows of nodes in part B of the network
cannot be greater than 0 hence any nodes left after the mass balancing will always have ݀௜ ൏ 0.
Therefore even after dumping flow to the sink and returning the flow to the source the minimum cut is
not disturbed and remains saturated. Thus final solution represents the optimal solution, as there will
not be any st-path with non-zero residual capacity.

2.3 Working Examples

Now the working of the proposed method is shown below through some examples. Consider the
network in Fig. 1a, which is taken from (Ahuja, et al. 1988).

Fig. 1a. A simple network showing nodes with dissipative flows Fig.1b. A maximum flow solution through mass balancing

Fig. 1a shows a simple network with only two nodes in addition to source and sink. The two nodes
have dissipative flows +1 and -1. Since the node with negative dissipative flow is directly linked to
node with positive dissipative flow hence flow can be dissipated in their connecting edge (steps 3-5).
Fig.1b shows the resultant solution of the problem. In Fig. 1b it can be seen that solution of maximum
is actually achieved through a simple mass balancing between two nodes. Conventional augmenting
path algorithm would have required more iterations and sequential augmentations of paths from the
source to the sink. However this is a simplified example. Let us look at a more complex example.

Fig. 2a. A more complex network requiring route

selection
Fig. 2b. A maximum flow solution for the

network in Fig.2a
In Fig. 2a, it can be seen that there are two unbalanced nodes. Any other existing method would require
a full scanning of the network to arrive at the optimal solution. However the mass balance method just
dissipates the flow in the edge connecting the two unbalanced nodes (steps 3-5) and arrives directly at
the optimal solution as shown in Fig. 2b. Now let us consider another example which has added
complexity specifically for the mass balancing method.

Fig. 3a. A network with added complexity Fig. 3b. Optimal solution of the-a network with

added complexity

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

851

In Fig.3a, there are 4 nodes numbered 1, 2, 3, and 4 and all the 4 nodes are unbalanced nodes. If
fortunately enough the flow is dissipated between right nodes i.e., node-1 with node-2 (steps 3-5) and
node-3 with node-4 (steps 3-5) then the optimal solution can be achieved directly as shown in Figure-
3b. In case, wrong nodes are chosen to dissipate the flow, then it may need some undirected moves to
arrive at the same optimal solution of Fig. 3b. For example, if node-1 and node-4 are chosen to
dissipate the flow in first iteration (steps 3-5), then node-1 and node-2 are chosen to dissipate the flow
in next iteration (steps 3-5) and finally node-3 and node-4 are chosen to dissipate the flow in last
iteration (steps 3-5). The resultant network after these 3 actions in sequence is given in Fig. 3c.

Fig. 3c. Sub-optimal solution of a network with added complexity

It can be seen in Fig. 3c, that sub-optimal solution has been achieved, with still two unbalanced nodes 2
and 3 having no directed link with each other. To solve this problem a path having backward edges i.e.,
3՜4՚1՜2, can be established. This path fullfils the conditions that its initial and final edges are
forward edges, initial node has di < 0 and final node has df > 0 and also dissipative flow of path di՜f = -
5 ് 0. If flow dissipation operation (Eq. (17)) on this path is applied, the optimal solution of Figure-3b
is obtained. This experiment was designed specifically to show that it doesn’t matter if initially wrong
paths are established to dissipate the flow there is always a way to arrive at optimal solution. Now to
give a full grasp of the theorem, described in section-2, example of a representative network is
presentd, in which all the dissipative flow cannot be dissipated through mass balancing (Step 3-5), as
shown in Figure-4a.

Fig. 4a. A representative network Fig. 4b. Solution of a representative network

In the Fig. 4a, it can be seen that the flow can be dissipated between nodes 1 and 3 (Step 3-5).
However no further flow can be dissipated. Nodes 2 and 4 remain unbalanced as any connection
between them cannot be seen. In such a case negative dissipative flow of node 4 is dumpt to sink (Step
7-9) and positive dissipative flow of node 2 is sent back to source (Step 11-13). The final solution can
be seen in Fig. 4b.To see this example in eyes of theorem, following variable values used in a theorem
can be established. Qୱ = 10, Q୲ = -10, Qୢ = 20, qୱ = 5, q୲ = -5 and ∆q = 10. It can be seen that these
figures satisfy Eqs. (6-12).Therefore as per this theorem the solution in Figure-4b is an optimal
solution. In the next section the complexity of this method is discussed.

3. Complexity analysis of mass balancing method

First of all it is needed to be checked that whether or not this method terminates within a finite time. If
capacities of edges are considered as integer quantities then each mass dissipation operation will either

S T

10
0

10
15

0/1

‐5/3

10

5

20

+5/2

0/4

 852

add at least +1 to node with negative dissipative flow or subtract the same quantity from the node with
positive dissipative flow. The algorithm terminates as soon as all nodes become neutral with zero
dissipative flow. Therefore the algorithm will terminate within a finite time. As it can be seen that this
method is localized optimization method strives for balancing the node flows with neighbouring nodes.
The worst case problem for this method can be the problem with all nodes n having either dn > 0 or all
nodes having dn < 0. In such a case any oppositely charged nodes cannot be found to bring them into
equilibrium. In such a scenario all unbalanced flows have to be dumped into source or a sink. Fig. 5,
shows example of such a problem, where all the deficit flow need to be dumped to the sink.

Fig. 5. Worst Case Network

In Fig. 5, there are total of 7 edges in the dataset. To remove deficit flow from node-1 the flow needs to
traverse 6 edges to get dumped at the sink. Similarly to remove the flow from node-2, 5 edges are
required to be traversed by the flow for the same action and so on. Thus to arrive at the final solution
total edges to be traversed by the flow are equal to ½ (m2-m) edges. Therefore worst case complexity of
proposed algorithm is of order O(m2-m). Fully balanced network is the best case for this algorithm
where its complexity is nil, because fully saturated network will represent the optimal solution. This
algorithm has capability to provide optimal solution in sublinear time in networks with fewer
unbalanced nodes (example Fig 2).

To compare proposed method with two other popular methods in the literature 30 acyclic dense
datasets (CATS, 2007) of the size of 10 nodes on different random seeds are generated. Since datasets
are random hence all nodes are unbalanced. The datasets are given in Appendix-A. The results on
those datasets are presented in Table-1. In Table-1 column-1 shows the dataset number, column-2
presents maximum flow obtained, column 3 gives total number of edges traversed by conventioal
augmenting paths, preflow push and the proposed MBT method.

In Table 1 it can be seen that total edges traversed by MBT method are approximately only 50% of the
number of edges traversed by conventional augmenting path method. However MBT method has
traversed only 3% lesser edges than preflow push method. This is because these datasets have all
unbalanced nodes which is not a good case for MBT method. To present systematic comparative
analysis of proposed algorithm with conventional augmenting paths and preflow push methods a
dataset is designed. In this dataset variations in the capacity of output edges are introduced to study
effect of those changes on the performance of algorithms. The dataset is shown in Fig. 6.

Fig. 6. Analytical Network
In Fig. 6, analytical network is presented that has two edges C1 and C2 connected to the sink. Any
variations in the capacity of these edges result in the changes in the flow balances x and y of node 3 and
node 4 respectively. A total of 5 different datasets are composed out of this structure by assigning
different values to C1 and C2.

S 1 2 3 4 5 6 T
5 10 15 20 25 30 35

S
T

10

20

7

7

7

9

9

C1

8

C2

x/3

y/4‐1/2

‐1/1

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

853

Table 1
Comparison on 10-node Acyclic Dense Datasets

The details of datasets are presented in column-1 of Table 2. In the column-1 of Table 2 it can be seen
that variations in the capacity of edges C1 and C2 introduce corresponding variations in the values of x
and y that represent flow balances of node 3 and node 4 respectively. The values of x and y are changed
in the range of -1 to +1. In all cases maximum flow of the network is 30.

Table 2
Analytical Datasets

Dataset (1) # of Edge Traversals (2)
C1 C2 x y z Aug_Paths Preflow_Push MBT
1 9 25 -1 -1 4 33 43 20
2 8 25 0 -1 3 33 43 15
3 7 25 +1 -1 2 29 51 12
4 7 24 +1 0 1 29 51 8
5 7 23 +1 +1 0 29 51 5

Three methods are tested on these datasets, i.e., conventional augmenting paths and preflow push
methods and the proposed method of this paper. The results in terms of number of edge traversals are
presented in column 2 of Table-2. It can be seen in Table-2 that there is no significant variation in
number of edge traversals in augmenting paths and preflow push methods in all the 5 datasets.
However number of edge traversals are consistently reduced from 20 (Dataset 1) to 5 (Dataset 5) in
case of MBT method. This is because Augmenting paths and preflow push methods largely depend on

Dataset# (1) Max Flow (2) Edges traversed (3)
 Aug_Paths Preflow_Push MBT
1 37 114 72 57
2 51 159 112 58
3 44 176 136 68
4 37 108 95 97
5 33 115 52 95
6 42 179 41 104
7 47 209 131 72
8 43 174 134 79
9 43 129 32 101

10 42 99 34 87
11 49 189 125 63
12 39 129 62 86
13 40 178 119 54
14 35 126 98 104
15 45 180 55 78
16 51 174 62 69
17 44 185 63 83
18 50 168 72 88
19 34 162 81 86
20 26 106 73 79
21 47 223 124 66
22 38 135 106 77
23 43 131 69 84
24 51 199 53 100
25 49 164 59 83
26 53 193 178 55
27 31 129 43 106
28 55 208 74 95
29 45 94 36 102
30 56 214 124 63

Total 4749 2515 2439

 854

the size of the dataset. However MBT method depends on how flow balances on nodes are distributed
along the network. When all the four transmission nodes had negative flow balances (Dataset 1) the
speed of MBT was slowest i.e. it traversed 20 edges. However when flow balances at two nodes are
changed to positive (Dataset 5) the MBT speed was fastest i.e. it traversed only 5 edges (Sublinear
Time). This is because when all the nodes have negative flow balances then mass balancing (Steps 3-6)
cannot be performed and number of unbalanced nodes remain the same after the mass balancing.
Therefore in Dataset 1 number of unbalanced nodes after the mass balancing remains 4. These nodes
can be called unbalanceable nodes and are represented by z in Table-1. Subsequently these
unbalanceable nodes reduce to 3, 2, 1, and 0 in Datasets 2, 3, 4, and 5 respectively, and these changes
have consistently positive effect on speed on the algorithm. Therefore it can be concluded that number
of unbalanceable nodes are directly proportional to edges traversed in MBT method, i.e.,

߳ ן ݖ

߳ ൌ ݖ݇ ൅ ݇ (30)

߳ ൌ ݇ሺݖ ൅ 1ሻ

where

߳ = Number of edges traversed by the MBT method, ݖ = Number of unbalanceable nodes,

k = Coofficient depending on initial number of unbalanced nodes and problem size.

For the above problem value of k roughly equals 4, that gives approximate number of edge traversals
for MBT method on all the 5 datasets. From the equation 30 it can be deduced that the proposed
algorithm works based on the datasets with fewer unbalanced nodes and it has ability to solve the
problem even in sublinear time if those fewer unbalanced nodes could be balanced through mass
balancing (Steps 3-6). The examples of this are dataset in Figure-2 and dataset 5 of Table 2.

4. Maximization in multi-commodity flow environment

Suppose the network has more than one source. Each source delivers mixture of number of
commodities and each source have mixture of commodities in different proportions. Our objective is to
maximize one of those commodities. Let us call it a prime commodity. To explain the proposed
algorithm it is needed to be introduced the term prime ratio, which is the ratio of prime commodity in
the overall mixture for each source i, and is given by:

׊
݅ ൌ 1, ܴ݊௜ ൌ ௜ܲ

ܳ௜
 (31)

n = Total number of sources

ܴ௜= Ratio of prime commodity to overall mixture in source i

௜ܲ = Flow of prime commodity in source i

ܳ௜ = Total flow of mixture in source i

 The algorithm can be summarized in the following steps.

1. Calculate R௜ for each source i present in the network.
2. Sort the sources from the minimum R௜ to the maximum R௜, such that source S1 refers to the
source with minimum R௜ and Sn refers to the source with maximum R௜.
3. Apply first 10 steps of algorithm for single commodity presented in section 2.
4. The algorithm scans the node list to find the node i with di > 0.
5. The algorithm tries to find the path from node i to source node S1 through the network. If it fails
to find then it looks for source S2 and so on until it find such a path. All the edges of this path must
be backward edges and ݀௜՜௙must not be zero.

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

855

6. The algorithm dissipates the flow along this path according to equation 17 and updates the
dissipative flow of first node of the path accordingly.
7. The algorithm repeats the steps 4 to 6 iteratively until there remains no node i with di > 0.

To show working of above algorithm the network in Fig. 2 is modified, as shown in Fig.7a.

Fig. 7a. Multi-commodity Network Fig. 7b. Multi-commodity Maximized Flow Network

In Fig.7a, the network has two sources with prime commodity ratios 0.8 and 0.9. The sources are sorted
from minimum to maximum prime commodity ratio, hence source with lesser ratio 0.8 is labelled S1
and source with higher ratio 0.9 is labelled S2. The network has 3 unbalanced nodes, two with positive
dissipative flows +10 and +5 and one with negative dissipative flow -10. The dissipative flows +10 and
-10 can easily be cancelled as they are directly connected. However node with +5 dissipative flow still
remains, that needs to be sent back to the source. To do this it is first needed to be seen whether path is
available to connect this node to source S1. If it is not available then it is needed to be established the
path to source S2. However path to source S1 is available in this case and the positive dissipative flow
can be removed along this path. The resultant network is shown in Fig. 7b, which represents maximum
flow on the multi-commodity network. The interesting thing about this method is that it exactly works
with same simplicity on multicommodity as that of single commodity. It saturates the network,
performs mass balancing, dissipate the remaining negative flows to the sink without any knowledge of
flow constituent ratios. Only when dissipating remaining positive flows to sources it chooses the
sources from already sorted list based on prime commodity ratios.

5. Conclusion and future work

In this paper a mass balancing theorem is presented, in which it is shown that optimal solution of the
maximum flow problem can be achieved just by balancing the flow between the unbalanced nodes.
Therefore flow balancing objective has the same effect as that of maximum flow objective. Based on
these results Mass Balancing Method is developed that balances the flow between unbalanced nodes
with their localized interactions. Second part of mass balancing theorem is also presented in which it is
shown that this method always arives at optimal solution. It is shown with examples that this method
based on localized balancing between nodes end up in a maximum flow solution. It is also shown that
this method has worst case complexity of order O(m2-m), where m is the number of edges. 30 random
acyclic dense datasets were also generated and the mass balance method maximized the flow much
faster than the conventional augmenting paths method and little faster than the conventional preflow
push algorithm. The method is also anaysed and compared with other methods on a analytical dataset
by introducing variations in it, where it is shown that proposed method performs much faster than other
methods when the dataset has very good mass ballancing opportunity to cancel excess and deficit
flows. It is shown experimentally and emperically (Equation 30) that the proposed method can solve
some of the problems even in sublinear time. This approach is also extended to multicommodity
problem and have shown that how this approach has made this task easier. To this end it can be
concluded that Mass Balancing Theorem has potential to become a major player in devising the new
optimization methods of sublinear time complexity for various network related problems for the
coming decades.

Acknowledgement
It is gratefully acknowledged that Professor Michael Todinov arranged financial help from the
Leverhulme trust with the research grant F/00 382/J ‘High-speed algorithms for the output flow in
repairable flow networks’, for this piece of research.

 856

References

Ahuja, R. K., Magnanti, T. L., & Orlin J. B. (1988). Network flows. Working paper: OR 185-88. Sloan
School of Management, Massachusetts Institute of Technology, Cambridge, MA.

Ahuja, R. K., & Orlin, J. B. (1989). A fast and simple algorithm for the maximum flow problem.
Operations Research, 37(5), 748-759.

Ahuja, R. K., & Orlin, J. B. (1991). Distance-directed augmenting path algorithms for maximum flow
and parametric maximum flow problems. Naval Research Logistics, 38, 413-430.

Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1), 47-97.

Boldyreff, A. W. (1955). Determination of the maximal Steady State Flow of Traffic Through a
Railroad Network. JORSA, 3(4), 443-465.

CATS. (2007). Combinatorial Algorithms Test Sets.
http://www.avglab.com/andrew/CATS/gens/, accessed January 2012.
Cherkasky, R. V. (1977). Algorithm for construction of maximum flow in networks with complexity of

O(V2√E) operation. Mathematical Methods of Solution of Economical Problems, 7, 112-125 (in
Russian).

Chandran, B. G., & Hochbaum, D. S. (2009). A Computational Study of the Pseudoflow and Push-
Relabel Algorithms for the Maximum Flow Problem. Operations Research Vol. 57, No. 2, March–
April 2009, pp. 358–376 issn 0030-364X _ eissn 1526-5463 _ 09 _ 5702 _ 0358.

Danzig, G. B., & Fulkerson, D. R. (1956). On Max-Flow Min-Cut Theorem of Networks. In H.W. Kuhn
and A. W. Tucker (ed.), Linear Inequalities and Related Systems, Annals of Mathematics Study 38,
Princeton University Press, 215-221.

Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Dokl. 11, 1277-1280.

Dong, J., Wei, L., Cai, C., & Chen, Z. (2009). Draining algorithm for the maximum flow problem.
International Conference on Communications and Mobile Computing.

Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19, 248-264.

Elias, P., Feinstein, A., & Shanon C. E. (1956). Note on maximum flow through a network. IRE
Transactions on Information Theory, 117-119.

Ford, L. R. Jr., & Fulkerson D. R. (1956). Maximal flow through a network. Canadian Journal of
Mathematics, 8, 399-404.

Gabow, H. N. (1985). Scaling algorithms for network problems. Journal of Computer and System
Sciences, 31, 148-168.

Galil, Z. (1980). O(V5/3E2/3) algorithm for the maximum flow problem. Acta Informatica, 14, 221-242.
Goldberg, A. V. (1985). A new max-flow algorithm. Technical Report MIT/LCS/TM-291, Laboratory

for Computer Science, MIT, Cambridge, Mass.
Goldberg, A. V., & Tarjan R. E. (1986). A new approach to the maximum flow problem, in Proc. 18th

Annual ACM Symposium on the Theory of Computing. Association for Computing Machinery, New
York, pp. 136-146.

Goldberg, A. V., & Tarjan, R.E. (1988). A New Approach to the Maximum-Flow Problem. Journal of
the Association for Computing Machinery, 35(4), 921-940.

Hochbaum, D. S. (1997). The pseudoflow algorithm and the pseudoflow-based simplex for the
maximum flow problem. Integer Programming and Combinatorial Optimization, 1412, 325-337.

Hochbaum D. S. (2001). A new-old algorithm for minimum-cut and maximum-flow in closure graphs.
Networks, 37(4) 171-193.

Hochbaum D. S. (2003). A pseudoflow algorithm for the directed minimum cut problem. Manuscript,
UC Berkeley.

Hochbaum, D. S., & Orlin, J.B. (2007). The pseudoflow algorithm in O(mnlog n2/m) and O(n3). UC
Berkeley manuscript. Submitted.

 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012)

857

Hochbaum, D. S. (2008). The Pseudo-flow Algorithm. A new algorithm for the maximum flow
problem. Operations Research (Informs) 56(4), 992-1009.

Karzanov, A. V. (1974). Determining the maximal flow in a network by the method of pre-flows.
Soviet Mathematics Doklady, 15, 434-437.

Lerchs, H., & Grossman, I. (1965). Optimum design of open pit mines. Transactions, C.I.M, 68, 17-24.
Malhotra, V. M., Kumar, M. P., & Maheshwari S. N. (1978). An O(V3) Algorithm for Finding

Maximum Flows in Networks. Information Processing Letters, 7, 277-278.
Orlin, J. B., & Ahuja R. K. (1987). New distance-directed algorithms for maximum flow and

parametric maximum flow problems. Working Paper 1908-87, Sloan School of Management,
Massachusetts Institute of Technology, Cambridge, MA.

Radzik T. (1993). Parametric Flows, Weighted means of cuts, and fractional combinatorial
optimization. In Complexity in Numerical Optimization, World Scientific, P. M. Pardalos Ed. 351-
386.

Sawitzki D. (2004) Implicit flow maximization by iterative squaring. P. Van Emde Boas et al. (Eds.):
SOFSEM 2004, Lecture Notes in Computer Science, 2932, 301–313.

Tarjan, R. E. (1984). A simple version of Karzanov’s blocking flow algorithm. Operations Research
Letters, 2, 265-268.

Tarjan, R. E. (1986). Algorithms for Maximum Network Flow. Mathematical Programming, 26, 1-11.
Todinov, M. (2011A). Extended comments. A review of this paper, private communication, email

dated: 04-02-2011.
Todinov, M. (2011B). Fast augmentation algorithms for maximising the flow in repairable flow

networks after a component failure. IEEE 11th International Conference on Computer and
Information Technology.

Appendix-A

Acyclic Dense Datasets

In this appendix details of 30 randomly generated acyclic dense datasets is given. Code is downloaded
from (CATS, 2007). The left most column shows the tail node. The main column contains the list of
head nodes along with the capacity of the edge connecting them to the tail node.
 Dataset #1 Dataset #2 Dataset #3
1 2-3, 3-1, 4-6, 5-3, 6-9, 7-4, 8-5, 9-2, 10-6 2-7, 3-5, 4-9, 5-4, 6-8, 7-4, 8-7, 9-3, 10-9 2-3, 3-10, 4-7, 5-9, 6-8, 7-3, 8-3, 9-7, 10-6
2 3-8, 4-8, 5-7, 6-1, 7-1, 8-3, 9-7, 10-9 3-8, 4-3, 5-1, 6-3, 7-3, 8-6, 9-7, 10-3 3-6, 4-8, 5-1, 6-10, 7-7, 8-5, 9-1, 10-2
3 4-6, 5-1, 6-10, 7-1, 8-10, 9-2, 10-4 4-1, 5-3, 6-1, 7-7, 8-2, 9-10, 10-9 4-7, 5-10, 6-6, 7-10, 8-8, 9-6, 10-8
4 5-6, 6-10, 7-6, 8-4, 9-1, 10-9 5-1, 6-5, 7-4, 8-4, 9-10, 10-8 5-2, 6-6, 7-2, 8-4, 9-3, 10-5
5 6-2, 7-9, 8-8, 9-5, 10-5 6-4, 7-9, 8-3, 9-5, 10-3 6-10, 7-8, 8-9, 9-4, 10-6
6 7-3, 8-4, 9-2, 10-9 7-10, 8-3, 9-4, 10-5 7-7, 8-8, 9-10, 10-1
7 8-8, 9-9, 10-2 8-8, 9-9, 10-7 8-5, 9-10, 10-7
8 9-4, 10-2 9-3, 10-4 9-9, 10-6
9 10-5 10-3 10-3
 Dataset #4 Dataset #5 Dataset #6
1 2-1, 3-3, 4-7, 5-2, 6-10, 7-9, 8-2, 9-8, 10-10 2-9, 3-6, 4-4, 5-1, 6-1, 7-7, 8-1, 9-10, 10-3 2-9, 3-6, 4-5, 5-7, 6-2, 7-6, 8-2, 9-8, 10-3
2 3-4, 4-1, 5-10, 6-7, 7-5, 8-7, 9-3, 10-9 3-1, 4-7, 5-4, 6-3, 7-4, 8-4, 9-1, 10-2 3-6, 4-5, 5-3, 6-1, 7-1, 8-8, 9-2, 10-7
3 4-8, 5-9, 6-10, 7-6, 8-6, 9-7, 10-9 4-8, 5-8, 6-7, 7-10, 8-4, 9-3, 10-9 4-8, 5-4, 6-1, 7-5, 8-7, 9-6, 10-5
4 5-1, 6-4, 7-8, 8-4, 9-7, 10-2 5-5, 6-3, 7-9, 8-10, 9-8, 10-8 5-7, 6-7, 7-10, 8-4, 9-10, 10-10
5 6-2, 7-7, 8-2, 9-5, 10-7 6-5, 7-7, 8-4, 9-8, 10-9 6-1, 7-10, 8-5, 9-8, 10-6
6 7-7, 8-7, 9-9, 10-3 7-6, 8-7, 9-8, 10-2 7-1, 8-2, 9-9, 10-10
7 8-10, 9-8, 10-4 8-10, 9-4, 10-3 8-7, 9-9, 10-9
8 9-3, 10-10 9-6, 10-9 9-3, 10-6
9 10-1 10-1 10-2
 Dataset #7 Dataset #8 Dataset #9
1 2-3, 3-9, 4-5, 5-9, 6-7, 7-3, 8-9, 9-5, 10-2 2-4, 3-5, 4-5, 5-10, 6-4, 7-9, 8-9, 9-6, 10-5 2-10, 3-1, 4-8, 5-1, 6-5, 7-1, 8-2, 9-5, 10-10
2 3-6, 4-3, 5-1, 6-6, 7-2, 8-6, 9-4, 10-9 3-4, 4-9, 5-3, 6-6, 7-10, 8-9, 9-1, 10-2 3-5, 4-4, 5-1, 6-2, 7-3, 8-2, 9-9, 10-8
3 4-2, 5-6, 6-5, 7-2, 8-3, 9-10, 10-8 4-1, 5-5, 6-2, 7-1, 8-6, 9-1, 10-1 4-1, 5-4, 6-10, 7-1, 8-5, 9-1, 10-10
4 5-5, 6-7, 7-3, 8-8, 9-1, 10-1 5-7, 6-7, 7-4, 8-4, 9-8, 10-5 5-8, 6-2, 7-7, 8-5, 9-8, 10-8
5 6-2, 7-6, 8-8, 9-8, 10-4 6-6, 7-10, 8-5, 9-9, 10-7 6-5, 7-9, 8-1, 9-5, 10-4
6 7-2, 8-1, 9-2, 10-4 7-1, 8-3, 9-8, 10-7 7-2, 8-1, 9-3, 10-8
7 8-3, 9-8, 10-10 8-10, 9-8, 10-2 8-2, 9-4, 10-6
8 9-7, 10-8 9-5, 10-8 9-5, 10-2
9 10-7 10-6 10-8

 858

 Dataset #10 Dataset #11 Dataset #12
1 2-2, 3-2, 4-4, 5-5, 6-4, 7-9, 8-3, 9-3, 10-10 2-9, 3-10, 4-7, 5-10, 6-5, 7-10, 8-3, 9-5, 10-4 2-3, 3-2, 4-3, 5-9, 6-1, 7-6, 8-6, 9-7, 10-4
2 3-4, 4-5, 5-5, 6-4, 7-9, 8-6, 9-4, 10-3 3-7, 4-7, 5-4, 6-7, 7-2, 8-3, 9-8, 10-4 3-7, 4-1, 5-10, 6-10, 7-1, 8-2, 9-2, 10-10
3 4-2, 5-7, 6-8, 7-9, 8-2, 9-3, 10-7 4-4, 5-7, 6-6, 7-9, 8-4, 9-2, 10-8 4-1, 5-7, 6-5, 7-7, 8-3, 9-6, 10-5
4 5-10, 6-2, 7-6, 8-3, 9-3, 10-7 5-10, 6-9, 7-8, 8-7, 9-8, 10-7 5-10, 6-8, 7-9, 8-9, 9-4, 10-3
5 6-7, 7-10, 8-6, 9-2, 10-1 6-10, 7-4, 8-5, 9-10, 10-6 6-8, 7-3, 8-10, 9-2, 10-8
6 7-2, 8-8, 9-8, 10-7 7-4, 8-2, 9-6, 10-4 7-10, 8-9, 9-10, 10-3
7 8-1, 9-6, 10-9 8-6, 9-10, 10-3 8-3, 9-7, 10-3
8 9-6, 10-7 9-5, 10-8 9-10, 10-5
9 10-8 10-5 10-9
 Dataset #13 Dataset #14 Dataset #15
1 2-9, 3-1, 4-9, 5-7, 6-9, 7-6, 8-10, 9-2, 10-6 2-1, 3-2, 4-10, 5-2, 6-4, 7-3, 8-5, 9-6, 10-9 2-8, 3-10, 4-3, 5-4, 6-2, 7-2, 8-3, 9-3, 10-10
2 3-2, 4-10, 5-5, 6-6, 7-9, 8-6, 9-1, 10-9 3-3, 4-5, 5-10, 6-1, 7-3, 8-7, 9-2, 10-8 3-4, 4-1, 5-8, 6-2, 7-4, 8-10, 9-7, 10-9
3 4-2, 5-4, 6-5, 7-3, 8-5, 9-9, 10-2 4-10, 5-1, 6-6, 7-5, 8-4, 9-2, 10-8 4-2, 5-5, 6-2, 7-3, 8-6, 9-6, 10-6
4 5-8, 6-6, 7-6, 8-8, 9-8, 10-3 5-1, 6-6, 7-4, 8-2, 9-10, 10-1 5-1, 6-2, 7-4, 8-9, 9-2, 10-9
5 6-3, 7-5, 8-8, 9-6, 10-6 6-5, 7-3, 8-2, 9-9, 10-8 6-1, 7-9, 8-1, 9-5, 10-1
6 7-6, 8-9, 9-1, 10-2 7-6, 8-10, 9-2, 10-2 7-7, 8-1, 9-3, 10-4
7 8-10, 9-2, 10-3 8-1, 9-4, 10-8 8-9, 9-7, 10-9
8 9-2, 10-2 9-7, 10-8 9-2, 10-2
9 10-8 10-1 10-6
 Dataset #16 Dataset #17 Dataset #18
1 2-3, 3-10, 4-3, 5-5, 6-10, 7-10, 8-2, 9-8, 10-6 2-10, 3-1, 4-8, 5-10, 6-2, 7-2, 8-5, 9-4, 10-2 2-9, 3-3, 4-6, 5-8, 6-1, 7-8, 8-4, 9-8, 10-6
2 3-8, 4-6, 5-10, 6-3, 7-2, 8-6, 9-4, 10-4 3-6, 4-7, 5-9, 6-2, 7-2, 8-1, 9-4, 10-7 3-8, 4-1, 5-9, 6-3, 7-8, 8-8, 9-1, 10-5
3 4-3, 5-5, 6-8, 7-2, 8-6, 9-6, 10-4 4-9, 5-6, 6-8, 7-3, 8-1, 9-9, 10-8 4-8, 5-2, 6-8, 7-9, 8-6, 9-4, 10-1
4 5-7, 6-5, 7-9, 8-4, 9-1, 10-8 5-6, 6-3, 7-9, 8-6, 9-5, 10-8 5-9, 6-5, 7-3, 8-2, 9-9, 10-9
5 6-1, 7-4, 8-5, 9-8, 10-9 6-4, 7-1, 8-2, 9-5, 10-8 6-4, 7-5, 8-3, 9-10, 10-3
6 7-2, 8-7, 9-2, 10-10 7-5, 8-4, 9-8, 10-4 7-7, 8-6, 9-1, 10-8
7 8-1, 9-9, 10-7 8-8, 9-1, 10-6 8-9, 9-5, 10-10
8 9-7, 10-2 9-6, 10-3 9-9, 10-5
9 10-5 10-8 10-5
 Dataset #19 Dataset #20 Dataset #21
1 2-2, 3-4, 4-9, 5-1, 6-5, 7-9, 8-3, 9-8, 10-1 2-1, 3-3, 4-3, 5-5, 6-4, 7-3, 8-2, 9-10, 10-4 2-10, 3-9, 4-5, 5-5, 6-8, 7-7, 8-9, 9-9, 10-4
2 3-10, 4-7, 5-9, 6-8, 7-2, 8-4, 9-4, 10-8 3-9, 4-6, 5-5, 6-6, 7-8, 8-7, 9-6, 10-4 3-7, 4-1, 5-4, 6-4, 7-9, 8-5, 9-10, 10-9
3 4-9, 5-8, 6-4, 7-4, 8-1, 9-10, 10-6 4-6, 5-4, 6-4, 7-10, 8-8, 9-8, 10-5 4-7, 5-5, 6-1, 7-10, 8-7, 9-1, 10-3
4 5-6, 6-7, 7-1, 8-4, 9-1, 10-5 5-2, 6-5, 7-8, 8-7, 9-7, 10-8 5-2, 6-8, 7-6, 8-5, 9-4, 10-2
5 6-1, 7-1, 8-2, 9-9, 10-6 6-6, 7-4, 8-10, 9-9, 10-3 6-7, 7-7, 8-6, 9-10, 10-10
6 7-6, 8-5, 9-1, 10-3 7-10, 8-2, 9-7, 10-5 7-7, 8-8, 9-7, 10-9
7 8-8, 9-6, 10-2 8-7, 9-4, 10-1 8-10, 9-10, 10-3
8 9-2, 10-7 9-5, 10-2 9-6, 10-3
9 10-5 10-4 10-4
 Dataset #22 Dataset #23 Dataset #24
1 2-2, 3-7, 4-3, 5-9, 6-5, 7-1, 8-5, 9-6, 10-4 2-1, 3-2, 4-10, 5-8, 6-1, 7-2, 8-10, 9-4, 10-8 2-9, 3-6, 4-5, 5-9, 6-2, 7-4, 8-9, 9-7, 10-8
2 3-2, 4-10, 5-9, 6-6, 7-6, 8-10, 9-4, 10-1 3-9, 4-8, 5-4, 6-8, 7-6, 8-2, 9-2, 10-1 3-3, 4-2, 5-3, 6-7, 7-4, 8-7, 9-2, 10-9
3 4-8, 5-4, 6-2, 7-9, 8-9, 9-3, 10-8 4-7, 5-10, 6-6, 7-6, 8-9, 9-7, 10-7 4-7, 5-4, 6-5, 7-5, 8-1, 9-5, 10-7
4 5-8, 6-6, 7-10, 8-9, 9-8, 10-5 5-1, 6-9, 7-2, 8-4, 9-6, 10-10 5-10, 6-9, 7-10, 8-3, 9-1, 10-6
5 6-7, 7-2, 8-6, 9-4, 10-5 6-7, 7-8, 8-9, 9-6, 10-1 6-9, 7-8, 8-9, 9-1, 10-6
6 7-1, 8-2, 9-10, 10-1 7-10, 8-2, 9-2, 10-5 7-1, 8-2, 9-1, 10-8
7 8-6, 9-6, 10-6 8-4, 9-3, 10-6 8-8, 9-10, 10-9
8 9-9, 10-3 9-8, 10-5 9-5, 10-7
9 10-9 10-6 10-1
 Dataset #25 Dataset #26 Dataset #27
1 2-3, 3-7, 4-5, 5-3, 6-6, 7-3, 8-6, 9-10, 10-9 2-6, 3-10, 4-10, 5-2, 6-10, 7-5, 8-6, 9-7, 10-10 2-1, 3-6, 4-6, 5-2, 6-3, 7-3, 8-3, 9-8, 10-1
2 3-9, 4-2, 5-5, 6-9, 7-3, 8-6, 9-2, 10-8 3-2, 4-8, 5-1, 6-2, 7-5, 8-5, 9-6, 10-2 3-9, 4-3, 5-6, 6-7, 7-10, 8-8, 9-8, 10-8
3 4-9, 5-10, 6-4, 7-8, 8-2, 9-4, 10-6 4-3, 5-6, 6-5, 7-9, 8-5, 9-2, 10-1 4-1, 5-5, 6-4, 7-9, 8-3, 9-3, 10-5
4 5-7, 6-4, 7-8, 8-3, 9-9, 10-2 5-9, 6-5, 7-6, 8-5, 9-1, 10-4 5-8, 6-4, 7-3, 8-6, 9-3, 10-8
5 6-5, 7-6, 8-1, 9-4, 10-7 6-2, 7-9, 8-2, 9-7, 10-4 6-4, 7-5, 8-2, 9-1, 10-8
6 7-6, 8-9, 9-5, 10-1 7-2, 8-1, 9-1, 10-6 7-8, 8-9, 9-6, 10-3
7 8-1, 9-5, 10-7 8-7, 9-8, 10-8 8-6, 9-10, 10-1
8 9-5, 10-10 9-1, 10-8 9-9, 10-7
9 10-7 10-10 10-6
 Dataset #28 Dataset #29 Dataset #30
1 2-10, 3-2, 4-10, 5-6, 6-3, 7-10, 8-3, 9-7, 10-7 2-2, 3-3, 4-2, 5-8, 6-8, 7-3, 8-1, 9-8, 10-10 2-10, 3-7, 4-2, 5-4, 6-8, 7-7, 8-7, 9-8, 10-10
2 3-5, 4-2, 5-1, 6-1, 7-10, 8-2, 9-6, 10-9 3-5, 4-2, 5-7, 6-8, 7-1, 8-5, 9-3, 10-8 3-1, 4-1, 5-4, 6-7, 7-1, 8-8, 9-3, 10-3
3 4-2, 5-10, 6-10, 7-10, 8-1, 9-10, 10-2 4-4, 5-3, 6-9, 7-4, 8-7, 9-5, 10-6 4-7, 5-10, 6-10, 7-2, 8-1, 9-1, 10-6
4 5-3, 6-9, 7-7, 8-9, 9-8, 10-10 5-5, 6-4, 7-6, 8-3, 9-9, 10-1 5-10, 6-8, 7-9, 8-7, 9-1, 10-8
5 6-5, 7-8, 8-10, 9-2, 10-3 6-4, 7-8, 8-7, 9-6, 10-7 6-5, 7-2, 8-2, 9-5, 10-3
6 7-2, 8-5, 9-3, 10-10 7-10, 8-10, 9-9, 10-4 7-5, 8-10, 9-1, 10-9
7 8-4, 9-4, 10-5 8-4, 9-4, 10-9 8-5, 9-5, 10-7
8 9-4, 10-7 9-8, 10-7 9-8, 10-9
9 10-5 10-8 10-4

	Introducing mass balancing theorem for network flow maximization
	1. Introduction
	2. Mass Balance Theorem
	2.1 Mass balance method
	2.2 Proof of Optimality
	2.3 Working Examples

	3. Complexity analysis of mass balancing method
	4. Maximization in multi-commodity flow environment
	5. Conclusion and future work
	References

