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 Maximization of flow through the network is required in many practical applications such as 
water supply flow networks, Oil and Gas flow networks, and transportation networks etc. In this 
paper a new theorem is presented that has direct application on maximization of flow through the 
network. This theorem suggests that the maximization of network flow can be achieved by 
visiting only unbalanced nodes rather than the whole network. Therefore based on this theorem a 
method is developed that maximizes flow thorough the network by visiting only unbalanced 
nodes. Hence this method can achieve solution in a sub-linear time where network has fewer 
unbalanced nodes. However this method has worst case complexity of order O(m2-m), where m is 
the number of edges. Furthermore it is shown that this theorem has also potential to make 
optimization an easier task in a multi-commodity flow environment.      
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1. Introduction 

The network flow maximization problem has many practical applications in road, railway, water 
supply, oil & Gas, and other physical networks. The problem consists of maximizing the flow from a 
source to a sink in a network consisting of a number of nodes connected by a number of directed edges. 
This problem is well studied and a large volume of literature exists on this problem since the last fifty 
years. The first major breakthrough came in a form of max-flow min-cut theorem (Danzig & Fulkerson, 
1956; Ford & Fulkerson, 1956; Elias et al., 1956). According to this theorem maximum flow through 
the network is equal to its minimum cut. Minimum cut of the network is the cut of the minimum 
capacity that divides the network into two parts such that no flow could travel from the source to the 
sink. On the basis of this theorem augmenting path algorithms for the flow maximization have been 
proposed in (Ford & Fulkerson, 1956, Elias et al., 1956). This algorithm is iterative. In each iteration 
this algorithm finds a non-zero residual capacity path from source to the sink and augments flow on 
that path. It continues to augment flow on such paths until it fails to find any non-zero residual capacity 
path in the network. Since then, a number of Augmenting Path Algorithms have appeared in the 
literature. These algorithms were invented to improve worst case speed of the augmenting path 
algorithm by proposing some criterion to adopt some sequence in choosing paths for flow 
augmentations. Dinic (1970) and Edmonds and Karp (1972) proposed shortest augmenting path 
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algorithm where shortest paths were chosen first for flow augmentations. This algorithm was further 
improved by Orlin and Ahuja (1987) by using distance labels (Goldberg 1985) to find the shortest paths 
quickly. The capacity scaling algorithm was introduced by Gabow (1985). This algorithm first selects 
the paths with higher residual capacity to augment the flow on them. Other augmenting path algorithms 
can be found in Tarjan (1986), Ahuja and Orlin (1989, 1991), and Ahuja et al. (1988). The augmenting 
path algorithm is feasible flow algorithm where feasibility is maintained all the time. The major 
drawback of augmenting path algorithm is that in each augmentation we cannot augment the flow more 
than residual capacity of the path. This slows down its speed considerably. To overcome this drawback 
concept of pre-flow was developed to increase the algorithm speed. In pre-flows excess flow at nodes is 
allowed. According to this concept instead of choosing a complete path, flow can be pushed to 
individual edges that can be pushed further to other edges in the network. In this way flow on all the 
paths of the network is augmented in parallel. This class of algorithms is called pre-flow push 
algorithms. The concept of pre-flows was first suggested in (Boldyreff, 1955). However formal 
conceptual proposal of pre-flows first appeared in (Karzanov, 1974). To make this algorithm faster 
many improvements have been proposed in this algorithm based on selection of nodes for ‘push’ 
operation. Highest label pre-flow push algorithm was proposed by Goldberg and Tarjan (1986), where 
selection of node for push operation was based on its distance from the sink. More the distance more 
likely the node is selected. Excess scaling algorithm was proposed by Ahuja and Orlin (1989), where 
selection of node is based on amount of excess flow. Node having more excess flow is more likely to 
be selected. Other pre-flow push algorithms can be found in Cherkasky (1977), Malhotra et al., (1978), 
Galil (1980), Tarjan (1984), Goldberg and Tarjan (1988). In addition to these two major classes of 
algorithms, some other algorithms also appeared, such as a recent algorithm based on pseudo-flows 
(Hochbaum, 2008). In pseudo-flows both excess and deficit flows at nodes is allowed. The pseudo-flow 
algorithm has roots in certificate of optimality (Lerchs and Grossmann 1965), where link was 
established in Hochbaum (2001). The pseudo-flow algorithm first solves maximum blocking cut 
problem (Radzik, 1993), then quickly establishes maximum flow. Further literature about pseudo-flows 
can be seen in Hochbaum (1997, 2003, 2007), and Chandran and Hochbaum (2009). 

All the above algorithms only see the global view of the network, i.e., they visit each and every node 
and edge of the network to achieve maximum flow. However this problem can be solved with only 
local manipulations while still achieving the global optimum, i.e., it is not necessary to visit all nodes 
and edges of the network or it is not necessary to find all paths from source to sink. Flow can be 
maximized with only local interactions between the flows of neighbouring nodes. The objective of 
maximizing the flow through local interactions between the neighbouring nodes without traversing all 
possible paths from source to sink can be achieved if maximum flow problem is translated into the 
mass balancing problem. We define mass balancing problem as a network problem in which nodes 
have unbalanced flows, where sum of flows coming into the nodes is not equal to sum of flows getting 
out of the nodes. If mass balancing is performed between the nodes locally, the resultant network will 
represent solution of the maximum flow problem. A theorem is devised to make this point. It should be 
noted that other methods like pseudo-flows (Hochbaum, 2008) and draining algorithm (Dong et al., 
2009) are also somewhat close to this concept. However proposed method is very simple and doesn’t 
require any complex data structures (Hochbaum, 2008) or network modifications (Dong et al., 2009). 
The proposed method is also extendable to multi-commodity problem. Furthermore the idea of 
equivalence between flow maximization and flow balancing problems is innovative and is obtained by 
discovering a new property of the network that it acts as a balance between its two physical parts on the 
either side of the minimum cut. This claim is supported by a Mass Balancing Theorem that is first time 
presented in this paper. The resultant method works very fast on datasets with fewer unbalanced nodes. 

This paper is structured as follows. In section 2, Mass Balancing Theorem is presented which shows 
that solving the mass balancing problem yields the solution of maximum flow problem. Section 2 has 3 
subsections. In section 2.1 mass balancing method is explained and it is shown that this method always 
arrives at optimal solution by discovering a network balance property in section 2.2. Working examples 
of this method are presented in section 2.3. In section 3, Complexity analysis for this method is 
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presented. In section 4, this method is extended to multi-commodity flow problem. Finally some 
conclusions are made and future work is discussed.  

2. Mass Balance Theorem  

Consider a flow network consisting of a single source ‘s’, and a single sink ‘t’, a number of nodes 
(including s & t) V and number of edges E. Each edge eij connecting any two nodes i and j is directed 
from node i to node j and is characterized by the capacity cij. Each transmission node must have at least 
one incoming edge and one out going edge. Our objective is to maximize the flow Q through the 
network, considering unlimited input from the source. 

There are some obvious physical constraints on maximum quantity of Q, i.e., it cannot exceed sum of 
capacity of edges directly connected to source or sum of capacity of edges directly connected to sink. 
These constraints are mathematically represented below in relation (1) and relation (2).  

0 ,
s

sk
k V

Q C


   (1)

ܳ଴ ൑ ෍ ܿ௞௧,

௞א௏೟ശሬሬሬ

 (2)

where  

ఫܸሬሬԦ = Set of nodes immediately succeeding source node s 

ఫܸശሬሬ = Set of nodes immediately preceding sink node t 
ܳ଴= Maximum possible flow through the network 

From 1 and 2 we can deduce 

ܳ଴ ൑ ݉݅݊ ቌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

, ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

ቍ. (3)

Eq. (3) means that maximum flow through the network can at most be equal to the lesser value of the 
two quantities i.e., sum of capacity of edges directly connected to source and sum of capacity of edges 
directly connected to sink. If the network bears the property having all balanced nodes i.e., 

׊
݆ א ܰ ෍ ܿ௜௝

௜א௏ണശሬሬሬ

ൌ ෍ ௝ܿ௞

௞א௏ണሬሬሬԦ

, (4)

where N = Number of transmission nodes i.e., nodes excluding source and sink 

then the relationship 3 will become: 

ܳ଴ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

ൌ  ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

. (5)

The equation 5 implies that if a network without unbalanced nodes (nodes which do not obey Eq. (4)) is 
fully saturated, the maximum flow can be determined immediately from the sum of the capacities of the 
outgoing edges at the source or from the sum of the capacities of the edges going into the sink. 

However fully saturated network with unbalanced nodes, violates the law of flow conservation at 
nodes. In such a case it is necessary to get rid of excess and deficit flows at nodes. Let ܳௗ be the sum of 
all excess and deficit flows i.e.,  

ܳௗ ൌ ܳ௦ ൅ |ܳ௧|, (6)

where 
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ܳ௦ = Sum of all excess flows at nodes 
ܳ௧ = Sum of all deficit flows at nodes 

ܳௗ can be dissipated in 3 different ways. 

1. By  dumping part of excess flow to the source node ሺݍ௦ሻ 
2. By dumping part of deficit flow to the sink node ሺݍ௧ሻ 
3. By cancelling rest of excess ሺܳ௦ െ ௦ሻ and deficit (ܳ௧ݍ െ  that,ݍ∆ ௧ሻflows i.e., mass balancingݍ
can be computed as; 

ݍ∆ ൌ ሺܳ௦ െ ௦ሻݍ ൅ |ሺܳ௧ െ ௧ሻ|. (7)ݍ

Therefore total flow to be dissipated from the network is given by: 

ܳௗ ൌ ௦ݍ  ൅ |௧ݍ| ൅ (8) .ݍ∆

Therefore after dumping the flow to the source and sink Eq. (5) becomes 

ܳ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ ௦ݍ ൌ  ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

െ ௧|. (9)ݍ|

This shows after dumping excess flow to source and deficit flow to sink the representative flow through 
the network may not be the maximum. From the above equation it is clear that capacities of edges are 
constants. However the two variables ݍ௦ and ݍ௧ can be minimized to maximize Q. Therefore equation 9 
can be modified as follows: 

ሺܳሻݔܽ݉ ൌ ܳ଴ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ ݉݅݊ሺݍ௦ሻ ൌ  ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

െ ݉݅݊ሺ|ݍ௧|ሻ  

 

(10)

Furthermore Eq. (8) can be rewritten as follows: 

ݍ∆ ൌ  ܳௗ െ ሺݍ௦ ൅ ௧|ሻ (11)ݍ|

From the Eq. (11), it can be seen that if ݍ௦ and ݍ௧ are minimized, then ∆ݍ is maximized because ܳௗ is a 
constant and is independent of ݍ௦ and ݍ௧. Therefore, Eq. (9) can be rewritten as: 

ሻݍ∆ሺݔܽ݉ ൌ  ܳௗ െ ݉݅݊ሺݍ௦ ൅ ௧|ሻ. (12)ݍ|

By comparing Eq. (10) and Eq. (12) we get  

ሻݍ∆ሺݔܽ݉ ൎ ሺܳሻ (13)ݔܽ݉

Relationship 13 is very fundamental relationship which shows that if cancelation of excess and deficit 
flows with each other is maximized or in other words mass balancing is maximized the flow in the 
network is also maximized, provided rest of excess and deficit flows are dissipated to source and sink 
respectively. 

It is very beneficial in terms of complexity to translate the objective function in this way, because for 
the new objective localized optimization method can be employed that manipulates excess and deficit 
flows locally at adjacent nodes, without looking at global view of the network. This is further explained 
in the next section. 

2.1 Mass balance method  

To explain this method four concepts are introduced here i.e., dissipative flow of node, dissipative flow 
of edge, dissipative flow of path, and flow dissipation on the path. 

The dissipative flow of node j is given by; 
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௝݀ ൌ ෍ ௜௝ݍ

௜א௏ണശሬሬሬ

െ ෍ ௝௞ݍ

௞א௏ണሬሬሬԦ

, (14)

where ݍ௜௝= flow in the edge ݁௜௝ 

Eq. (14) shows that dissipative flow of the node is the amount of excess or deficit flow at that node. 
Dissipative flow of source and sink is considered positive and negative infinity respectively. 

The dissipative flow of edge ݁௜௝ is given by; 

൜
݀௜௝ ൌ ௜௝ݍ

௝݀௜ ൌ ܿ௜௝ െ ௜௝ݍ
 (15)

Eq. (15) means that dissipative flow of edge is different in its forward and backward direction. In 
forward direction it is equal to the flow present in the edge, while in backward direction it is equal to 
residual capacity of the edge. The dissipative flow of path Pif from node i to node f is given by; 

݀௜՜௙ ൌ ,∆൫݊݅݉ט ,|௜݀ט| ห݀௙ห൯ (16)

where 

∆= Minimum dissipative flow among all edges included in the path from initial node i to final node f 

Equation 16 means dissipative flow of path is minimum of dissipative flows of initial and final nodes 
and all edges present in that path. Furthermore it is taken as negative if initial node is negative node 
else it is taken as positive. 

Flow dissipation on the path from node i to node f means applying following operation on each edge of 
the path. 

௜௝ݍ
′ ൌ ௜௝ݍ ט ݀௜՜௙ (17)

Where positive sign stands for forward edge and negative sign stands for backward edge. 
*This method can simply be described in following steps.  

1. The Algorithm starts with the fully saturated network not observing the flow conservation law 
at nodes. 
2. Each node n is assigned value equal to dn as shown in equation 14. 
3. The algorithm scans the node list to locate first node i with di < 0. 
4. The algorithm starts search from node i through the network and establishes a path Pif as soon 
as it strikes the first node f with df > 0. Please note that nodes i and f must not be sink and source 
nodes. The first and last edge of this path must be forward edge and ݀௜՜௙(eq. 16) must not be zero. 
Please also note that this path cannot contain another node with positive dissipative flow in its 
middle because path is established at first encounter with such a node. 
5. The algorithm dissipates the flow along this path according to equation 17 and updates the 
dissipative flow of first and last nodes of the path accordingly. 
6. The algorithm repeats the steps 3 to 5 iteratively until it fails to find a feasible Pif path. Feasible 
path means path with non zero dissipative flow. 
7. The algorithm repeats step 3. 
8. The algorithm finds the path from node i to sink node f through the network. All the edges of 
this path must be forward edges and ݀௜՜௙must not be zero. 
9. The algorithm repeats step 5. 
10. The algorithm repeats the steps 7 to 9 iteratively until there remains no node i with di < 0. 

                                                            
* It is gratefully acknowledged that Prof. Todinov in his review of this paper (Todinov 2011A) helped in description of this 
method that was later for its correct representation expanded into 14 step description by author of this paper. Later Todinov 
(2011B) extended this method to Repairable Flow Networks. 
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11. The algorithm scans the node list again to find the node i with di > 0. 
12.The algorithm finds the path from node i to source node through the network. All the edges of 
this path must be backward edges and ݀௜՜௙must not be zero. 
13. The algorithm repeats step 5. 
14. The algorithm repeats the steps 11 to 13 iteratively until there remains no node i with di > 0. 

2.2 Proof of Optimality  

It can be shown that this method always gives the optimal solution. According to law of flow 
conservation we have; 

∑ ܿ௦௞௞א௏ೞሬሬሬԦ െ  ∑ ܿ௞௧௞א௏೟ശሬሬሬ ൌ ׊
݅ א ܰ

∑ ݀௜. (18)

Eq. (18) means difference between sum of capacities of edges directly connected to source and sink 
must be equal to dissipative flow of all transmission nodes in the network. If the network is partitioned 
into two parts through the minimum cut, the result will be two disconnected parts of network one 
without sink (Part A) and another without source (Part B). Take part A of the network and connect all 
the edges of minimum cut directly to the sink. Hence in this modified network-A, all the edges 
connected to the sink represent the minimum cut C0, therefore 

଴ܥ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

. (19)

By comparing Eq. (18) and Eq. (19) we get 

଴ܥ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ
׊

ܽ א ஺ܰ
෍ ݀௔. (20)

Similarly take part B of the network and connect all the edges of the minimum cut directly with the 
source. Hence in this modified network-B, all the edges connected to the sink represent the minimum 
cut C0, therefore 

଴ܥ ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

. (21)

By comparing Eq. (18) and Eq. (21) we get 

଴ܥ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ (22)

By comparing Eq. (20) and Eq. (22) we get  

෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ
׊

ܽ א ஺ܰ
෍ ݀௔ ൌ ଴ܥ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ (23)

Eq. (23) is fundamental which establishes that value of the minimum cut can be calculated from both 
parts of the network. This is special property that shows network is a balance between two parts of 
either side of the minimum cut. This property can be used to establish that proposed method will 
always arrive at optimal solution. Since the proposed procedure starts with the saturated network hence 
initially minimum cut is saturated. Therefore at this stage minimum cut represents the maximum flow, 
therefore equation 23 becomes: 

෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ
׊

ܽ א ஺ܰ
෍ ݀௔ ൌ ܳ଴ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ (24)

 

At this stage, Eq. (24) represents the system of fully saturated network that doesn’t obey law of flow 
conservation at nodes. If minimum cut of above saturated network remains saturated after application 
of the proposed procedure then optimal solution is achieved. The proposed procedure has three 
sequential sub-procedures i.e., mass balancing (Steps 3-6), dumping to the sink (Steps 7-10) and then 



 Z. Ursani / International Journal of Industrial Engineering Computations 3 (2012) 
 

849

returning to the source (Steps 11-14). It is mathematically shown below that after application of each of 
these sub-procedures the minimum cut remains saturated. 

If mass balancing is done entirely within part A (Eq. (20)) or part B (Eq. (22)) of the network, this will 
not remove any flow from the minimum cut and hence it will remain saturated. However if the flow is 
dissipated across the two parts of the network (A & B) then flow may be removed from the minimum 
cut. For example, if we dissipate the flow by amount Δ along the path ௔ܲ௕ while deficit node a present 
in part A and excess node b present in part B, then this will remove amount Δ from the minimum cut 
and equation 24 will become  

ܳ଴ െ ∆ൌ ෍ ܿ௦௞

௞א௏ೞሬሬሬԦ

െ ቀ
׊

ܽ א ஺ܰ
෍ ݀௔ ൅ ∆ቁ ൌ ෍ ܿ௞௧

௞א௏೟ശሬሬሬ

൅
׊

ܾ א ஻ܰ
෍ ݀௕ െ ∆ (25) 

 

Above equation shows that this operation leaves extra amount of flow +Δ in part A and same amount 
of flow -Δ in part B of the network. To dissipate this amount a backward path from part B to part A 
will ultimately be found that will add back same amount Δ in the minimum cut, thus Eq. (25) will 
return to same status of equation 24 that fundamentally represent the balance of the network. This 
shows that any dissipation operation across two parts of the network will be matched by the equal 
operation in the opposite direction to satisfy the Eq. (24). Thus the network acts as a seesaw with 
support at the minimum cut and two pans A and B on either side of it. If the load is transfered from 
one pan to another, balance of seesaw is disturbed which is represented through Eq. (24). The load is 
then transferred back to satisfy this equation. Thus minimum cut will remain saturated after complete 
mass balancing (Steps 3-6) which is the key condition for the maximum flow. However it is not 
sufficient condition. The solution may not be optimal after dumping the flow to the sink (Steps 7-10) 
and returning the flow to the source (Steps 11-14). Because solution may become sub-optimal if any 
of above two actions dissipate the flow from the minimum cut. However it can be shown here this is 
not possible. 

The above two actions can only dissipate flow from minimum cut if there remains negative dissipative 
flow in part A of the network or positive dissipative flow in part B of the network. In such a case flow 
will be again dissipated through the minimum cut to get rid of infeasible flows thus ending up in sub-
optimal solution. 

From Eq. (20) and Eq. (22) it can be shown that this cannot happen. If after the mass balancing there 
is a node i having di < 0 then it will always be in the part B of the network and node j having dj > 0 
will always be in the part A of the network.  

Since minimum cut cannot be greater than the sum of capacities of edges directly connected to source 
i.e.,  

C଴ ج ෍ ݇ݏܿ

ሬሬሬሬሬԦݏܸא݇

 (26) 

Therefore by comparing Eq. (20) and relation 26, we get 

׊
ܽ א ஺ܰ

෍ ݀௔ ث 0 (27)

From the above equation it is clear that total of all dissipative flows of nodes in part A of the network 
cannot be less than 0 hence any nodes left after the mass balancing will always have ௝݀ ൐ 0. Similarly 
minimum cut cannot be greater than the sum of capacities of edges directly connected to sink i.e.,  

C଴ ج ෍ ݐ݇ܿ

ശሬሬሬሬሬݐܸא݇

 (28) 

Therefore, by comparing Eq. (22) and relation 28, we get 
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׊
ܾ א ஻ܰ

෍ ݀௕ ج 0 (29)

From the above equation it is clear that total of all dissipative flows of nodes in part B of the network 
cannot be greater than 0 hence any nodes left after the mass balancing will always have ݀௜ ൏ 0. 
Therefore even after dumping flow to the sink and returning the flow to the source the minimum cut is 
not disturbed and remains saturated. Thus final solution represents the optimal solution, as there will 
not be any st-path with non-zero residual capacity. 

2.3 Working Examples  

Now the working of the proposed method is shown below through some examples. Consider the 
network in Fig. 1a, which is taken from (Ahuja, et al. 1988). 

 

Fig. 1a. A simple network showing nodes with dissipative flows Fig.1b. A maximum flow solution through mass balancing 
 

Fig. 1a shows a simple network with only two nodes in addition to source and sink. The two nodes 
have dissipative flows +1 and -1. Since the node with negative dissipative flow is directly linked to 
node with positive dissipative flow hence flow can be dissipated in their connecting edge (steps 3-5). 
Fig.1b shows the resultant solution of the problem. In Fig. 1b it can be seen that solution of maximum 
is actually achieved through a simple mass balancing between two nodes. Conventional augmenting 
path algorithm would have required more iterations and sequential augmentations of paths from the 
source to the sink. However this is a simplified example. Let us look at a more complex example. 

  
Fig. 2a. A more complex network requiring route 

selection 
Fig. 2b. A maximum flow solution for the 

network in Fig.2a 
In Fig. 2a, it can be seen that there are two unbalanced nodes. Any other existing method would require 
a full scanning of the network to arrive at the optimal solution. However the mass balance method just 
dissipates the flow in the edge connecting the two unbalanced nodes (steps 3-5) and arrives directly at 
the optimal solution as shown in Fig. 2b. Now let us consider another example which has added 
complexity specifically for the mass balancing method. 

 
Fig. 3a. A network with added complexity Fig. 3b. Optimal solution of the-a network with 

added complexity 
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In Fig.3a, there are 4 nodes numbered 1, 2, 3, and 4 and all the 4 nodes are unbalanced nodes. If 
fortunately enough the flow is dissipated between right nodes i.e., node-1 with node-2 (steps 3-5) and 
node-3 with node-4 (steps 3-5) then the optimal solution can be achieved directly as shown in Figure-
3b. In case, wrong nodes are chosen to dissipate the flow, then it may need some undirected moves to 
arrive at the same optimal solution of Fig. 3b. For example, if node-1 and node-4 are chosen to 
dissipate the flow in first iteration (steps 3-5), then node-1 and node-2 are chosen to dissipate the flow 
in next iteration (steps 3-5) and finally node-3 and node-4 are chosen to dissipate the flow in last 
iteration (steps 3-5). The resultant network after these 3 actions in sequence is given in Fig. 3c. 

 

 

 

 

 

 

 

Fig. 3c. Sub-optimal solution of a network with added complexity 

It can be seen in Fig. 3c, that sub-optimal solution has been achieved, with still two unbalanced nodes 2 
and 3 having no directed link with each other. To solve this problem a path having backward edges i.e., 
3՜4՚1՜2, can be established. This path fullfils the conditions that its initial and final edges are 
forward edges, initial node has di < 0 and final node has df > 0 and also dissipative flow of path di՜f = -
5 ് 0. If flow dissipation operation (Eq. (17)) on this path is applied, the optimal solution of Figure-3b 
is obtained. This experiment was designed specifically to show that it doesn’t matter if initially wrong 
paths are established to dissipate the flow there is always a way to arrive at optimal solution. Now to 
give a full grasp of the theorem, described in section-2, example of a representative network is 
presentd, in which all the dissipative flow cannot be dissipated through mass balancing (Step 3-5), as 
shown in Figure-4a. 

 

Fig. 4a. A representative network Fig. 4b. Solution of a representative network 

In the Fig. 4a, it  can be seen that the flow can be dissipated between nodes 1 and 3 (Step 3-5). 
However no further flow can be dissipated. Nodes 2 and 4 remain unbalanced as any connection 
between them cannot be seen. In such a case negative dissipative flow of node 4 is dumpt to sink (Step 
7-9) and positive dissipative flow of node 2 is sent back to source (Step 11-13). The final solution can 
be seen in Fig. 4b.To see this example in eyes of theorem, following variable values used in a theorem 
can be established. Qୱ  = 10, Q୲  = -10, Qୢ  = 20, qୱ  = 5, q୲  = -5 and ∆q  = 10. It can be seen that these 
figures satisfy Eqs. (6-12).Therefore as per this theorem the solution in Figure-4b is an optimal 
solution. In the next section the complexity of this method is discussed. 
 

3. Complexity analysis of mass balancing method  

First of all it is needed to be checked that whether or not this method terminates within a finite time. If 
capacities of edges are considered as integer quantities then each mass dissipation operation will either 
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add at least +1 to node with negative dissipative flow or subtract the same quantity from the node with 
positive dissipative flow. The algorithm terminates as soon as all nodes become neutral with zero 
dissipative flow. Therefore the algorithm will terminate within a finite time. As it can be seen that this 
method is localized optimization method strives for balancing the node flows with neighbouring nodes. 
The worst case problem for this method can be the problem with all nodes n having either dn > 0 or all 
nodes having dn < 0. In such a case any oppositely charged nodes cannot be found to bring them into 
equilibrium. In such a scenario all unbalanced flows have to be dumped into source or a sink. Fig. 5, 
shows example of such a problem, where all the deficit flow need to be dumped to the sink. 
 

 
 

Fig. 5. Worst Case Network 

In Fig. 5, there are total of 7 edges in the dataset. To remove deficit flow from node-1 the flow needs to 
traverse 6 edges to get dumped at the sink. Similarly to remove the flow from node-2, 5 edges are 
required to be traversed by the flow for the same action and so on. Thus to arrive at the final solution 
total edges to be traversed by the flow are equal to ½ (m2-m) edges. Therefore worst case complexity of 
proposed algorithm is of order O(m2-m). Fully balanced network is the best case for this algorithm 
where its complexity is nil, because fully saturated network will represent the optimal solution. This 
algorithm has capability to provide optimal solution in sublinear time in networks with fewer 
unbalanced nodes (example Fig 2).  

To compare proposed method with two other popular methods in the literature 30 acyclic dense 
datasets (CATS, 2007) of the size of 10 nodes on different random seeds are generated. Since datasets 
are random hence all nodes are unbalanced. The datasets are given in Appendix-A.  The results on 
those datasets are presented in Table-1. In Table-1 column-1 shows the dataset number, column-2 
presents maximum flow obtained, column 3 gives total number of edges traversed by conventioal 
augmenting paths, preflow push and the proposed MBT method.  

In Table 1 it can be seen that total edges traversed by MBT method are approximately only 50% of the 
number of edges traversed by conventional augmenting path method. However MBT method has 
traversed only 3% lesser edges than preflow push method. This is because these datasets have all 
unbalanced nodes which is not a good case for MBT method. To present systematic comparative 
analysis of proposed algorithm with  conventional augmenting paths and preflow push methods a 
dataset is designed. In this dataset variations in the capacity of output edges are introduced to study 
effect of those changes on the performance of algorithms. The dataset is shown in Fig. 6. 
 

 

 

 

 

 

 

 

Fig. 6. Analytical Network 
In Fig. 6, analytical network is presented that has two edges C1 and C2 connected to the sink. Any 
variations in the capacity of these edges result in the changes in the flow balances x and y of node 3 and 
node 4 respectively. A total of 5 different datasets are composed out of this structure by assigning 
different values to C1 and C2. 
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Table 1  
Comparison on 10-node Acyclic Dense  Datasets 

 

The details of datasets are presented in column-1 of Table 2. In the column-1 of Table 2 it can be seen 
that variations in the capacity of edges C1 and C2 introduce corresponding variations in the values of x 
and y that represent flow balances of node 3 and node 4 respectively. The values of x and y are changed 
in the range of -1 to +1. In all cases maximum flow of the network is 30.  

Table 2  
Analytical Datasets 

Dataset   (1) # of Edge Traversals (2) 
# C1 C2 x y z Aug_Paths Preflow_Push MBT 
1 9 25 -1 -1 4 33 43 20 
2 8 25 0 -1 3 33 43 15 
3 7 25 +1 -1 2 29 51 12 
4 7 24 +1 0 1 29 51 8 
5 7 23 +1 +1 0 29 51 5 
 

Three methods are tested on these datasets, i.e., conventional augmenting paths and preflow push 
methods and the proposed method of this paper. The results in terms of number of edge traversals are 
presented in column 2 of Table-2. It can be seen in Table-2 that there is no significant variation in 
number of edge traversals in augmenting paths and preflow push methods in all the 5 datasets. 
However number of edge traversals are consistently reduced from 20 (Dataset 1) to 5 (Dataset 5) in 
case of MBT method. This is because Augmenting paths and preflow push methods largely depend on 

Dataset# (1) Max Flow (2) Edges traversed (3) 
  Aug_Paths Preflow_Push MBT 
1 37 114 72 57 
2 51 159 112 58 
3 44 176 136 68 
4 37 108 95 97 
5 33 115 52 95 
6 42 179 41 104 
7 47 209 131 72 
8 43 174 134 79 
9 43 129 32 101 

10 42 99 34 87 
11 49 189 125 63 
12 39 129 62 86 
13 40 178 119 54 
14 35 126 98 104 
15 45 180 55 78 
16 51 174 62 69 
17 44 185 63 83 
18 50 168 72 88 
19 34 162 81 86 
20 26 106 73 79 
21 47 223 124 66 
22 38 135 106 77 
23 43 131 69 84 
24 51 199 53 100 
25 49 164 59 83 
26 53 193 178 55 
27 31 129 43 106 
28 55 208 74 95 
29 45 94 36 102 
30 56 214 124 63 

Total 4749 2515 2439 
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the size of the dataset. However MBT method depends on how flow balances on nodes are distributed 
along the network. When all the four transmission nodes had negative flow balances (Dataset 1) the 
speed of MBT was slowest i.e. it traversed 20 edges. However when flow balances at two nodes are 
changed to positive (Dataset 5) the MBT speed was fastest i.e. it traversed only 5 edges (Sublinear 
Time). This is because when all the nodes have negative flow balances then mass balancing (Steps 3-6) 
cannot be performed and number of unbalanced nodes remain the same after the mass balancing. 
Therefore in Dataset 1 number of unbalanced nodes after the mass balancing remains 4. These nodes 
can be called unbalanceable nodes and are represented by z in Table-1. Subsequently these 
unbalanceable nodes reduce to 3, 2, 1, and 0 in Datasets 2, 3, 4, and 5 respectively, and these changes 
have consistently positive effect on speed on the algorithm. Therefore it can be concluded that number 
of unbalanceable nodes are directly proportional to edges traversed in MBT method, i.e.,  

߳ ן   ݖ

߳ ൌ ݖ݇ ൅ ݇ (30)  

߳ ൌ ݇ሺݖ ൅ 1ሻ  

where 

߳ = Number of edges traversed by the MBT method,  ݖ = Number of unbalanceable nodes, 

k = Coofficient depending on initial number of unbalanced nodes and problem size. 

For the above problem value of k roughly equals 4, that gives approximate number of edge traversals 
for MBT method on all the 5 datasets. From the equation 30 it can be deduced that the proposed 
algorithm works based on the datasets with fewer unbalanced nodes and it has ability to solve the 
problem even in sublinear time if those fewer unbalanced nodes could be balanced through mass 
balancing (Steps 3-6). The examples of this are dataset in Figure-2 and dataset 5 of Table 2. 

4. Maximization in multi-commodity flow environment  
 
Suppose the network has more than one source. Each source delivers mixture of number of 
commodities and each source have mixture of commodities in different proportions. Our objective is to 
maximize one of those commodities. Let us call it a prime commodity. To explain the proposed 
algorithm it is needed to be introduced the term prime ratio, which is the ratio of prime commodity in 
the overall mixture for each source i, and is given by: 

׊
݅ ൌ 1, ܴ݊௜ ൌ ௜ܲ

ܳ௜
 (31)

n = Total number of sources 

ܴ௜= Ratio of prime commodity to overall mixture in source i 

௜ܲ = Flow of prime commodity in source i 

ܳ௜ = Total flow of mixture in source i 

 The algorithm can be summarized in the following steps. 

1. Calculate R௜ for each source i present in the network. 
2. Sort the sources from the minimum R௜ to the maximum R௜, such that source S1 refers to the 
source with minimum R௜ and Sn refers to the source with maximum R௜.  
3. Apply first 10 steps of algorithm for single commodity presented in section 2. 
4. The algorithm scans the node list to find the node i with di > 0. 
5. The algorithm tries to find the path from node i to source node S1 through the network. If it fails 
to find then it looks for source S2 and so on until it find such a path. All the edges of this path must 
be backward edges and ݀௜՜௙must not be zero. 
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6. The algorithm dissipates the flow along this path according to equation 17 and updates the 
dissipative flow of first node of the path accordingly. 
7. The algorithm repeats the steps 4 to 6 iteratively until there remains no node i with di > 0. 

To show working of above algorithm the network in Fig. 2 is modified, as shown in Fig.7a. 

 
Fig. 7a.  Multi-commodity Network Fig. 7b. Multi-commodity Maximized Flow Network 

In Fig.7a, the network has two sources with prime commodity ratios 0.8 and 0.9. The sources are sorted 
from minimum to maximum prime commodity ratio, hence source with lesser ratio 0.8 is labelled S1 
and source with higher ratio 0.9 is labelled S2. The network has 3 unbalanced nodes, two with positive 
dissipative flows +10 and +5 and one with negative dissipative flow -10. The dissipative flows +10 and 
-10 can easily be cancelled as they are directly connected. However node with +5 dissipative flow still 
remains, that needs to be sent back to the source. To do this it is first needed to be seen whether path is 
available to connect this node to source S1. If it is not available then it is needed to be established the 
path to source S2. However path to source S1 is available in this case and the positive dissipative flow 
can be removed along this path. The resultant network is shown in Fig. 7b, which represents maximum 
flow on the multi-commodity network. The interesting thing about this method is that it exactly works 
with same simplicity on multicommodity as that of single commodity. It saturates the network, 
performs mass balancing, dissipate the remaining negative flows to the sink without any knowledge of 
flow constituent ratios. Only when dissipating remaining positive flows to sources it chooses the 
sources from already sorted list based on prime commodity ratios.  

5. Conclusion and future work  

In this paper a mass balancing theorem is presented, in which it is shown that optimal solution of the 
maximum flow problem can be achieved just by balancing the flow between the unbalanced nodes. 
Therefore flow balancing objective has the same effect as that of maximum flow objective. Based on 
these results Mass Balancing Method is developed that balances the flow between unbalanced nodes 
with their localized interactions. Second part of mass balancing theorem is also presented in which it is 
shown that this method always arives at optimal solution. It is shown with examples that this method 
based on localized balancing between nodes end up in a maximum flow solution. It is also shown that 
this method has worst case complexity of order O(m2-m), where m is the number of edges. 30 random 
acyclic dense datasets were also generated and the mass balance method maximized the flow much 
faster than the conventional augmenting paths method and little faster than the conventional preflow 
push algorithm. The method is also anaysed and compared with other methods on a analytical dataset 
by introducing variations in it, where it is shown that proposed method performs much faster than other 
methods when the dataset has very good mass ballancing opportunity to cancel excess and deficit 
flows. It is shown experimentally and emperically (Equation 30) that the proposed method can solve 
some of the problems even in sublinear time. This approach is also extended to multicommodity 
problem and have shown that how this approach has made this task easier. To this end it can be 
concluded that Mass Balancing Theorem has potential to become a major player in devising the new 
optimization methods of sublinear time complexity for various network related problems for the 
coming decades.  
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Appendix-A 
 

Acyclic Dense Datasets 

In this appendix details of 30 randomly generated acyclic dense datasets is given. Code is downloaded 
from (CATS, 2007). The left most column shows the tail node. The main column contains the list of 
head nodes along with the capacity of the edge connecting them to the tail node. 
 Dataset #1 Dataset #2 Dataset #3 
1 2-3, 3-1, 4-6, 5-3, 6-9, 7-4, 8-5, 9-2, 10-6 2-7, 3-5, 4-9, 5-4, 6-8, 7-4, 8-7, 9-3, 10-9 2-3, 3-10, 4-7, 5-9, 6-8, 7-3, 8-3, 9-7, 10-6 
2 3-8, 4-8, 5-7, 6-1, 7-1, 8-3, 9-7, 10-9 3-8, 4-3, 5-1, 6-3, 7-3, 8-6, 9-7, 10-3 3-6, 4-8, 5-1, 6-10, 7-7, 8-5, 9-1, 10-2 
3 4-6, 5-1, 6-10, 7-1, 8-10, 9-2, 10-4 4-1, 5-3, 6-1, 7-7, 8-2, 9-10, 10-9 4-7, 5-10, 6-6, 7-10, 8-8, 9-6, 10-8 
4 5-6, 6-10, 7-6, 8-4, 9-1, 10-9 5-1, 6-5, 7-4, 8-4, 9-10, 10-8 5-2, 6-6, 7-2, 8-4, 9-3, 10-5 
5 6-2, 7-9, 8-8, 9-5, 10-5 6-4, 7-9, 8-3, 9-5, 10-3 6-10, 7-8, 8-9, 9-4, 10-6 
6 7-3, 8-4, 9-2, 10-9 7-10, 8-3, 9-4, 10-5 7-7, 8-8, 9-10, 10-1 
7 8-8, 9-9, 10-2 8-8, 9-9, 10-7 8-5, 9-10, 10-7 
8 9-4, 10-2 9-3, 10-4 9-9, 10-6 
9 10-5 10-3 10-3 
 Dataset #4 Dataset #5 Dataset #6 
1 2-1, 3-3, 4-7, 5-2, 6-10, 7-9, 8-2, 9-8, 10-10 2-9, 3-6, 4-4, 5-1, 6-1, 7-7, 8-1, 9-10, 10-3 2-9, 3-6, 4-5, 5-7, 6-2, 7-6, 8-2, 9-8, 10-3 
2 3-4, 4-1, 5-10, 6-7, 7-5, 8-7, 9-3, 10-9 3-1, 4-7, 5-4, 6-3, 7-4, 8-4, 9-1, 10-2 3-6, 4-5, 5-3, 6-1, 7-1, 8-8, 9-2, 10-7 
3 4-8, 5-9, 6-10, 7-6, 8-6, 9-7, 10-9 4-8, 5-8, 6-7, 7-10, 8-4, 9-3, 10-9 4-8, 5-4, 6-1, 7-5, 8-7, 9-6, 10-5 
4 5-1, 6-4, 7-8, 8-4, 9-7, 10-2 5-5, 6-3, 7-9, 8-10, 9-8, 10-8 5-7, 6-7, 7-10, 8-4, 9-10, 10-10 
5 6-2, 7-7, 8-2, 9-5, 10-7 6-5, 7-7, 8-4, 9-8, 10-9 6-1, 7-10, 8-5, 9-8, 10-6 
6 7-7, 8-7, 9-9, 10-3 7-6, 8-7, 9-8, 10-2 7-1, 8-2, 9-9, 10-10 
7 8-10, 9-8, 10-4 8-10, 9-4, 10-3 8-7, 9-9, 10-9 
8 9-3, 10-10 9-6, 10-9 9-3, 10-6 
9 10-1 10-1 10-2 
 Dataset #7 Dataset #8 Dataset #9 
1 2-3, 3-9, 4-5, 5-9, 6-7, 7-3, 8-9, 9-5, 10-2 2-4, 3-5, 4-5, 5-10, 6-4, 7-9, 8-9, 9-6, 10-5 2-10, 3-1, 4-8, 5-1, 6-5, 7-1, 8-2, 9-5, 10-10 
2 3-6, 4-3, 5-1, 6-6, 7-2, 8-6, 9-4, 10-9 3-4, 4-9, 5-3, 6-6, 7-10, 8-9, 9-1, 10-2 3-5, 4-4, 5-1, 6-2, 7-3, 8-2, 9-9, 10-8 
3 4-2, 5-6, 6-5, 7-2, 8-3, 9-10, 10-8 4-1, 5-5, 6-2, 7-1, 8-6, 9-1, 10-1 4-1, 5-4, 6-10, 7-1, 8-5, 9-1, 10-10 
4 5-5, 6-7, 7-3, 8-8, 9-1, 10-1 5-7, 6-7, 7-4, 8-4, 9-8, 10-5 5-8, 6-2, 7-7, 8-5, 9-8, 10-8 
5 6-2, 7-6, 8-8, 9-8, 10-4 6-6, 7-10, 8-5, 9-9, 10-7 6-5, 7-9, 8-1, 9-5, 10-4 
6 7-2, 8-1, 9-2, 10-4 7-1, 8-3, 9-8, 10-7 7-2, 8-1, 9-3, 10-8 
7 8-3, 9-8, 10-10 8-10, 9-8, 10-2 8-2, 9-4, 10-6 
8 9-7, 10-8 9-5, 10-8 9-5, 10-2 
9 10-7 10-6 10-8 
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 Dataset #10 Dataset #11 Dataset #12 
1 2-2, 3-2, 4-4, 5-5, 6-4, 7-9, 8-3, 9-3, 10-10 2-9, 3-10, 4-7, 5-10, 6-5, 7-10, 8-3, 9-5, 10-4 2-3, 3-2, 4-3, 5-9, 6-1, 7-6, 8-6, 9-7, 10-4 
2 3-4, 4-5, 5-5, 6-4, 7-9, 8-6, 9-4, 10-3 3-7, 4-7, 5-4, 6-7, 7-2, 8-3, 9-8, 10-4 3-7, 4-1, 5-10, 6-10, 7-1, 8-2, 9-2, 10-10 
3 4-2, 5-7, 6-8, 7-9, 8-2, 9-3, 10-7 4-4, 5-7, 6-6, 7-9, 8-4, 9-2, 10-8 4-1, 5-7, 6-5, 7-7, 8-3, 9-6, 10-5 
4 5-10, 6-2, 7-6, 8-3, 9-3, 10-7 5-10, 6-9, 7-8, 8-7, 9-8, 10-7 5-10, 6-8, 7-9, 8-9, 9-4, 10-3 
5 6-7, 7-10, 8-6, 9-2, 10-1 6-10, 7-4, 8-5, 9-10, 10-6 6-8, 7-3, 8-10, 9-2, 10-8 
6 7-2, 8-8, 9-8, 10-7 7-4, 8-2, 9-6, 10-4 7-10, 8-9, 9-10, 10-3 
7 8-1, 9-6, 10-9 8-6, 9-10, 10-3 8-3, 9-7, 10-3 
8 9-6, 10-7 9-5, 10-8 9-10, 10-5 
9 10-8 10-5 10-9 
 Dataset #13 Dataset #14 Dataset #15 
1 2-9, 3-1, 4-9, 5-7, 6-9, 7-6, 8-10, 9-2, 10-6 2-1, 3-2, 4-10, 5-2, 6-4, 7-3, 8-5, 9-6, 10-9 2-8, 3-10, 4-3, 5-4, 6-2, 7-2, 8-3, 9-3, 10-10 
2 3-2, 4-10, 5-5, 6-6, 7-9, 8-6, 9-1, 10-9 3-3, 4-5, 5-10, 6-1, 7-3, 8-7, 9-2, 10-8 3-4, 4-1, 5-8, 6-2, 7-4, 8-10, 9-7, 10-9 
3 4-2, 5-4, 6-5, 7-3, 8-5, 9-9, 10-2 4-10, 5-1, 6-6, 7-5, 8-4, 9-2, 10-8 4-2, 5-5, 6-2, 7-3, 8-6, 9-6, 10-6 
4 5-8, 6-6, 7-6, 8-8, 9-8, 10-3 5-1, 6-6, 7-4, 8-2, 9-10, 10-1 5-1, 6-2, 7-4, 8-9, 9-2, 10-9 
5 6-3, 7-5, 8-8, 9-6, 10-6 6-5, 7-3, 8-2, 9-9, 10-8 6-1, 7-9, 8-1, 9-5, 10-1 
6 7-6, 8-9, 9-1, 10-2 7-6, 8-10, 9-2, 10-2 7-7, 8-1, 9-3, 10-4 
7 8-10, 9-2, 10-3 8-1, 9-4, 10-8 8-9, 9-7, 10-9 
8 9-2, 10-2 9-7, 10-8 9-2, 10-2 
9 10-8 10-1 10-6 
 Dataset #16 Dataset #17 Dataset #18 
1 2-3, 3-10, 4-3, 5-5, 6-10, 7-10, 8-2, 9-8, 10-6 2-10, 3-1, 4-8, 5-10, 6-2, 7-2, 8-5, 9-4, 10-2 2-9, 3-3, 4-6, 5-8, 6-1, 7-8, 8-4, 9-8, 10-6 
2 3-8, 4-6, 5-10, 6-3, 7-2, 8-6, 9-4, 10-4 3-6, 4-7, 5-9, 6-2, 7-2, 8-1, 9-4, 10-7 3-8, 4-1, 5-9, 6-3, 7-8, 8-8, 9-1, 10-5 
3 4-3, 5-5, 6-8, 7-2, 8-6, 9-6, 10-4 4-9, 5-6, 6-8, 7-3, 8-1, 9-9, 10-8 4-8, 5-2, 6-8, 7-9, 8-6, 9-4, 10-1 
4 5-7, 6-5, 7-9, 8-4, 9-1, 10-8 5-6, 6-3, 7-9, 8-6, 9-5, 10-8 5-9, 6-5, 7-3, 8-2, 9-9, 10-9 
5 6-1, 7-4, 8-5, 9-8, 10-9 6-4, 7-1, 8-2, 9-5, 10-8 6-4, 7-5, 8-3, 9-10, 10-3 
6 7-2, 8-7, 9-2, 10-10 7-5, 8-4, 9-8, 10-4 7-7, 8-6, 9-1, 10-8 
7 8-1, 9-9, 10-7 8-8, 9-1, 10-6 8-9, 9-5, 10-10 
8 9-7, 10-2 9-6, 10-3 9-9, 10-5 
9 10-5 10-8 10-5 
 Dataset #19 Dataset #20 Dataset #21 
1 2-2, 3-4, 4-9, 5-1, 6-5, 7-9, 8-3, 9-8, 10-1 2-1, 3-3, 4-3, 5-5, 6-4, 7-3, 8-2, 9-10, 10-4 2-10, 3-9, 4-5, 5-5, 6-8, 7-7, 8-9, 9-9, 10-4 
2 3-10, 4-7, 5-9, 6-8, 7-2, 8-4, 9-4, 10-8 3-9, 4-6, 5-5, 6-6, 7-8, 8-7, 9-6, 10-4 3-7, 4-1, 5-4, 6-4, 7-9, 8-5, 9-10, 10-9 
3 4-9, 5-8, 6-4, 7-4, 8-1, 9-10, 10-6 4-6, 5-4, 6-4, 7-10, 8-8, 9-8, 10-5 4-7, 5-5, 6-1, 7-10, 8-7, 9-1, 10-3 
4 5-6, 6-7, 7-1, 8-4, 9-1, 10-5 5-2, 6-5, 7-8, 8-7, 9-7, 10-8 5-2, 6-8, 7-6, 8-5, 9-4, 10-2 
5 6-1, 7-1, 8-2, 9-9, 10-6 6-6, 7-4, 8-10, 9-9, 10-3 6-7, 7-7, 8-6, 9-10, 10-10 
6 7-6, 8-5, 9-1, 10-3 7-10, 8-2, 9-7, 10-5 7-7, 8-8, 9-7, 10-9 
7 8-8, 9-6, 10-2 8-7, 9-4, 10-1 8-10, 9-10, 10-3 
8 9-2, 10-7 9-5, 10-2 9-6, 10-3 
9 10-5 10-4 10-4 
 Dataset #22 Dataset #23 Dataset #24 
1 2-2, 3-7, 4-3, 5-9, 6-5, 7-1, 8-5, 9-6, 10-4 2-1, 3-2, 4-10, 5-8, 6-1, 7-2, 8-10, 9-4, 10-8 2-9, 3-6, 4-5, 5-9, 6-2, 7-4, 8-9, 9-7, 10-8 
2 3-2, 4-10, 5-9, 6-6, 7-6, 8-10, 9-4, 10-1 3-9, 4-8, 5-4, 6-8, 7-6, 8-2, 9-2, 10-1 3-3, 4-2, 5-3, 6-7, 7-4, 8-7, 9-2, 10-9 
3 4-8, 5-4, 6-2, 7-9, 8-9, 9-3, 10-8 4-7, 5-10, 6-6, 7-6, 8-9, 9-7, 10-7 4-7, 5-4, 6-5, 7-5, 8-1, 9-5, 10-7 
4 5-8, 6-6, 7-10, 8-9, 9-8, 10-5 5-1, 6-9, 7-2, 8-4, 9-6, 10-10 5-10, 6-9, 7-10, 8-3, 9-1, 10-6 
5 6-7, 7-2, 8-6, 9-4, 10-5 6-7, 7-8, 8-9, 9-6, 10-1 6-9, 7-8, 8-9, 9-1, 10-6 
6 7-1, 8-2, 9-10, 10-1 7-10, 8-2, 9-2, 10-5 7-1, 8-2, 9-1, 10-8 
7 8-6, 9-6, 10-6 8-4, 9-3, 10-6 8-8, 9-10, 10-9 
8 9-9, 10-3 9-8, 10-5 9-5, 10-7 
9 10-9 10-6 10-1 
 Dataset #25 Dataset #26 Dataset #27 
1 2-3, 3-7, 4-5, 5-3, 6-6, 7-3, 8-6, 9-10, 10-9 2-6, 3-10, 4-10, 5-2, 6-10, 7-5, 8-6, 9-7, 10-10 2-1, 3-6, 4-6, 5-2, 6-3, 7-3, 8-3, 9-8, 10-1 
2 3-9, 4-2, 5-5, 6-9, 7-3, 8-6, 9-2, 10-8 3-2, 4-8, 5-1, 6-2, 7-5, 8-5, 9-6, 10-2 3-9, 4-3, 5-6, 6-7, 7-10, 8-8, 9-8, 10-8 
3 4-9, 5-10, 6-4, 7-8, 8-2, 9-4, 10-6 4-3, 5-6, 6-5, 7-9, 8-5, 9-2, 10-1 4-1, 5-5, 6-4, 7-9, 8-3, 9-3, 10-5 
4 5-7, 6-4, 7-8, 8-3, 9-9, 10-2 5-9, 6-5, 7-6, 8-5, 9-1, 10-4 5-8, 6-4, 7-3, 8-6, 9-3, 10-8 
5 6-5, 7-6, 8-1, 9-4, 10-7 6-2, 7-9, 8-2, 9-7, 10-4 6-4, 7-5, 8-2, 9-1, 10-8 
6 7-6, 8-9, 9-5, 10-1 7-2, 8-1, 9-1, 10-6 7-8, 8-9, 9-6, 10-3 
7 8-1, 9-5, 10-7 8-7, 9-8, 10-8 8-6, 9-10, 10-1 
8 9-5, 10-10 9-1, 10-8 9-9, 10-7 
9 10-7 10-10 10-6 
 Dataset #28 Dataset #29 Dataset #30 
1 2-10, 3-2, 4-10, 5-6, 6-3, 7-10, 8-3, 9-7, 10-7 2-2, 3-3, 4-2, 5-8, 6-8, 7-3, 8-1, 9-8, 10-10 2-10, 3-7, 4-2, 5-4, 6-8, 7-7, 8-7, 9-8, 10-10 
2 3-5, 4-2, 5-1, 6-1, 7-10, 8-2, 9-6, 10-9 3-5, 4-2, 5-7, 6-8, 7-1, 8-5, 9-3, 10-8 3-1, 4-1, 5-4, 6-7, 7-1, 8-8, 9-3, 10-3 
3 4-2, 5-10, 6-10, 7-10, 8-1, 9-10, 10-2 4-4, 5-3, 6-9, 7-4, 8-7, 9-5, 10-6 4-7, 5-10, 6-10, 7-2, 8-1, 9-1, 10-6 
4 5-3, 6-9, 7-7, 8-9, 9-8, 10-10 5-5, 6-4, 7-6, 8-3, 9-9, 10-1 5-10, 6-8, 7-9, 8-7, 9-1, 10-8 
5 6-5, 7-8, 8-10, 9-2, 10-3 6-4, 7-8, 8-7, 9-6, 10-7 6-5, 7-2, 8-2, 9-5, 10-3 
6 7-2, 8-5, 9-3, 10-10 7-10, 8-10, 9-9, 10-4 7-5, 8-10, 9-1, 10-9 
7 8-4, 9-4, 10-5 8-4, 9-4, 10-9 8-5, 9-5, 10-7 
8 9-4, 10-7 9-8, 10-7 9-8, 10-9 
9 10-5 10-8 10-4 
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