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 In this paper, we develop an integrated vendor-buyer production-inventory model for items with 
imperfect quality and inspection errors. The production process is imperfect and produces a 
certain number of defective items with a known probability density function. We consider the 
policy in which the delivery quantity to the buyer is identical at each shipment. Once the buyer 
receives the lot, a 100% screening process of the lot is conducted, and the screening process and 
demand proceed simultaneously. The screening process is not perfect. The inspector may 
incorrectly classify a non-defective item as defective, or incorrectly classify a defective item as 
non-defective. The expected integrated total annual cost of the vendor and the buyer is derived 
and a solution procedure is provided to find the optimal solution. Numerical examples show that 
the integrated model gives an impressive cost reduction in comparison to an independent decision 
by the buyer.      

© 2012 Growing Science Ltd.  All rights reserved
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1. Introduction 

With the growing focus on supply chain management in the past few decades, firms have been 
attempting to achieve greater collaborative advantages with their supply chain partners. Since firms 
realize that inventory across the supply chain can be more efficiently managed through greater 
cooperation and better coordination, integrated inventory management has recently received a great 
deal of attention. Goyal (1976) considered the joint optimization problem of a single vendor and a 
single buyer, in which he assumed that the vendor's production rate is infinite. Banerjee (1986) 
assumed a finite rate of production and developed a joint economic-lot-size model for the product with 
a lot-for-lot shipment policy. Goyal (1988) developed a joint total relevant cost model for a single-
vendor single-buyer production inventory system in which each production batch was shipped to the 
buyer in smaller lots of equal size. Goyal and Gupta (1989) reviewed the related literature in integrated 
vendor-buyer inventory models. Aderohunmu et al. (1995) showed that a significant cost reduction 
could be achieved to the advantage of both the vendor and the buyer in a just-in-time environment 
when timely cost information was shared between the parties.  
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Lu (1995) considered the single-vendor multi-buyer integrated inventory problem with the objective of 
minimizing the vendor's total cost subject to the maximum costs which the buyers were prepared to 
incur. Goyal (1995) suggested an approach that was capable of obtaining lower total joint relevant costs 
of the single-vendor single-buyer production inventory systems; i.e., the ratio between the (i+1)st 
shipment and the ith shipment is equal to the ratio between the vendor's production rate and the demand 
rate of the buyer. Hill (1997) illustrated that, in general, neither of the two policies described in Lu 
(1995) and Goyal (1995) would be optimal. Ha and Kim (1997) developed an integrated just-in-time 
lot-splitting model of facilitating multiple shipments in small lots of  a single-vendor-single-buyer 
system under deterministic conditions for a single product, and showed that when the integrated 
optimal policy was adopted by both the vendor and the buyer in a cooperative manner, both parties 
could benefit. Viswanathan (1998) presented the results of a detailed numerical study that analyzed the 
relative performance of the two different strategies of equal- and unequal-sized batch shipments as 
described in Lu (1995) and Goyal (1995). The numerical study showed that neither strategy dominated 
the other for all problem parameters. In other words, the best policy for the model depended on the 
specific problem parameters.  

 

Hill (1999) determined the optimal production and inventory policy for a vendor manufacturing to 
supply to a single buyer. The policy turned out to be a combination of Goyal's (1995) policy and an 
equal shipment size policy. Hoque and Goyal (2000) extended the idea of Goyal and Szendrovits 
(1986) and developed an optimal solution procedure for the single-vendor single-buyer integrated 
production–inventory system with both equal and unequal sized shipments, in which capacity 
constraint of the transport equipment was considered. Goyal and Nebebe (2000) considered the 
problem of determining economic production and the shipment policy of a product supplied by a 
vendor to a buyer. The objective was to minimize the total joint costs incurred by the vendor and the 
buyer. Wu and Ouyang (2003) considered the integrated single-vendor single-buyer inventory system 
with shortage. They proposed an algebraic procedure to find the optimal order quantity, the maximum 
shortage level, and the optimal number of deliveries from the vendor to the buyer per order of the 
integrated total cost of the vendor and the buyer without using differential calculus. Ouyang et al. 
(2004) considered a stochastic lead time demand and assumed that shortages could happen during lead 
time, and lead time could be reduced at an added cost.  

Chang et al. (2006) studied the lead time and ordering cost reduction problem in the single-vendor 
single-buyer integrated inventory model. Hill and Omar (2006) revisited the single-vendor single-buyer 
integrated production inventory problem by allowing the holding cost to decrease down the supply 
chain. Hoque and Goyal (2006) developed a heuristic solution procedure to minimize the total cost of 
setup or ordering, inventory holding and lead time crashing for an integrated inventory system under 
controllable lead time between a vendor and a buyer. Sarmah et al. (2006) reviewed literature dealing 
with buyer vendor coordination models that have used quantity discount as a coordination mechanism 
under a deterministic environment and classified the various models. Siajadi et al. (2006) presented a 
new methodology to obtain the joint economic lot size in the case where multiple buyers were 
demanding one type of item from a single vendor. Chan and Kingsman (2007) proposed a coordinated 
single-vendor multi-buyer supply chain by synchronizing delivery and production cycles. Ertogral et al. 
(2007) incorporated transportation cost explicitly into a joint vendor-buyer inventory model under 
equal-shipment policy. Zhou and Wang (2007) developed a more general production-inventory model 
for a single-vendor-single-buyer integrated system. Their model neither requires that the buyer's unit 
holding cost be greater than the vendor's nor assumes the structure of shipment policy. Other studies on 
the joint economic lot sizing problem up to the year 2007 can be found in Ben-Daya et al.(2008). 
Chung (2008) showed that Wu and Ouyang's (2003) proof of a global cost minimum was incomplete. 
He then justified the algorithm described in Wu and Ouyang (2003). Ben-Daya and Al-Nassar (2008) 
developed a cost minimization supply chain coordination model for a three-layer supply chain 
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involving suppliers, manufacturers, and retailers, and derived a solution procedure for the model. 
Huang et al. (2010a, 2010b), by using different cost structures for the two studies, incorporated order-
processing cost reduction and permissible delay in payments into the integrated vendor-buyer inventory 
policy. 

The classical economic order quantity (EOQ) model assumes that items produced are of perfect quality, 
which is usually not the case in real production. Porteus (1986) introduced a model that showed a 
significant relationship between quality and lot size. Lee and Rosenblatt (1987) addressed the problem 
of joint control of production cycles or manufacturing quantities, and maintenance by inspections. 
Schwaller (1988) extended the EOQ model by adding the assumptions that defective items of a known 
proportion were present in incoming lots, and that fixed and variable inspection costs were incurred in 
finding and removing these defective items. It was also assumed that the supplier reimbursed the buyer 
for any defective items found and removed. Ben-Daya and Hariga (2000) studied the effect of 
imperfect production processes on the economic lot sizing policy (ELSP). They developed a 
mathematical model for ELSP, taking into account the effect of imperfect quality and process 
restoration. Salameh and Jaber (2000) developed an economic order quantity model where a random 
proportion of the items in a lot are defective.  

Huang (2002) extended the integrated vendor-buyer inventory model by accounting for imperfect 
quality items. He considered the situation where the delivery quantity sent to the buyer was identical 
for each shipment. Goyal et al. (2003) used the Goyal and Cárdenas-Barrón (2002) model to determine 
an optimal integrated vendor-buyer inventory policy for an item with imperfect quality. Huang (2004) 
extended the model of Ha and Kim (1997) by incorporating imperfect items into the production-
inventory model. Lo et al. (2007) assumed a varying rate of deterioration, partial backordering, 
inflation, imperfect production processes, and multiple deliveries, and developed an integrated 
production and inventory model from the perspectives of both the manufacturer and the retailer.  

Cárdenas-Barrón (2009) developed an economic production quantity (EPQ) inventory model with 
planned backorders for determining the economic production quantity and the size of backorders for a 
single product, which was made in a single-stage manufacturing process that generated imperfect 
quality products and required that all defective products be reworked at the same cycle. Sana (2010) 
investigated an EPL (Economic Production Lot size) model in an imperfect production system in which 
the production facility could shift from an ‘in-control’ state to an ‘out-of-control’ state at any random 
time. He formulated the model assuming that a certain percent of total product was defective 
(imperfect) in an ‘out-of-control’ state. This percentage also varied with production rate and production 
run time. Chung (2011) revisited the work of Cárdenas-Barrón (2009) and developed the sufficient and 
necessary condition for the existence of the solution satisfying the first derivative condition of the 
annual total relevant cost and presented a concrete solution procedure to find the optimal solution. Liao 
and Sheu (2011) described an integrated EPQ model that incorporated EPQ and maintenance programs. 
For more recent works on inventory models with imperfect quality items, we refer the readers to Khan 
et al. (2011a).  

The Salameh and Jaber (2000) model assumed that there is no human error in the screening process. 
Raouf et al.(1983) studied human errors in inspection. They came up with one of the first inspection 
plans with misclassifications for multi-characteristic critical components. Duffuaa and Khan (2002) 
proposed a general inspection plan for quality assurance of critical multi-characteristic components. 
They extended the Raouf et al.(1983) inspection  plan for the case of six types of misclassification 
errors, where an inspector could classify an item to be good, rework or scrap. Duffuaa and Khan (2005) 
carried out a sensitivity analysis to investigate the statistical and economic impact of the several types 
of misclassification errors on the performance measures of the inspection plan. Kok and Shang (2007) 
studied a single-period inventory system with inventory record inaccuracy. Yoo et al. (2009) proposed 
a profit-maximizing economic production quantity model that incorporated both imperfect production 
quality and two-way imperfect inspection; i.e., the Type I inspection error of incorrectly classifying a 
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non-defective item as defective and the Type II inspection error of incorrectly classifying a defective as 
non-defective. Lin (2009) developed a production-inventory model for a simple supply chain system 
with defective items and inspection errors, where he assumed that both the Type I and Type II 
inspection errors are known constants. Khan et al. (2011b) extended the work of Salameh and Jaber 
(2000) model by assuming that the inspection process was not error-free. Hsu (2012) pointed out a 
contradiction in Khan et al.'s (2011b) mathematical model and developed a corrected EOQ. 

The purpose of this paper is to develop an integrated vendor-buyer inventory model with imperfect 
product quality and inspection errors. The rest of this paper is organized as follows: In section 2, the 
notation and assumptions used in this paper are introduced. In section 3, we develop a mathematical 
model that integrates the vendor's and the buyer's annual cost and takes into consideration imperfect 
production processes and inspection errors. Section 4 provides a numerical example and its sensitivity 
analysis to various parameters to illustrate important aspects of the model. Finally, in section 5 we 
summarize and conclude the paper and provide directions for future research. 

2. Notation and assumptions 

We consider a two-stage supply chain problem with a single vendor and a single buyer. The buyer has 
an annual demand of D units for the given product, and places regular orders of fixed size PQ . The 

vendor prepares for the repeating flow of orders of size nQQP   from the buyer by producing items in 

batches of size PQ  and by planning to have each batch delivered to the buyers in n deliveries, each 
with a lot of Q units. The vendor fulfills the deliveries of Q units with a known and fixed lead time. 
Since the production system is not perfect, some of the items produced may be defective. Once the 
buyer receives the items, a 100% screening process is conducted. We assume the screening process and 
demand take place simultaneously. The screening process is also not perfect, involving Type I and 
Type II inspection errors. The objective is to minimize the total joint annual costs incurred by the 
vendor and the buyer. The following notation and assumptions are used in our model: 

PQ  the size of a production batch of items at the vendor 
Q the size of the deliveries from the vendor to the buyer 
n the number of deliveries per batch production run, a positive integer ( nQQP  ) 
D the annual demand of the buyer 
P the annual production rate (P > D ) at the vendor 
x the screening (inspection) rate 

vS  the setup cost per production run for the vendor 

BS  the ordering cost per order for the buyer 
  the probability that an item produced is defective 
f( ) the probability density function of   

1e  the probability of a Type I error (classifying a non-defective item as defective) 

f( 1e ) the probability density function of 1e  

2e  the probability of a Type II error (classifying a defective item as non-defective) 

f( 2e ) the probability density function of 2e  

ic  the buyer's inspection cost per unit 

wc  the vendor's unit cost for producing a defective item 

aBc  the buyer's cost of a post-sale defective item 

avc  the vendor's cost of a post-sale defective item 

ac  the cost of accepting a defective item ( avaBa ccc  ) 

rc  the cost of rejecting a non-defective item 
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vh  the holding cost per unit per year for the vendor 

Bh  the holding cost per unit per year for the buyer 
F the freight (transportation) cost per delivery (including the delivery of Q units from the vendor 

to the buyer and the returned items from the buyer to the vendor) 

1B  the number of items that are classified as defective in each delivery of Q units 

2B  the number of items that are returned from the market in each delivery of Q units 
T the time interval between successive deliveries of Q units 

1T  the period during which the vendor produces 

2T  the period during which the vendor supplies from inventory 

cT  the cycle time = nTTT  21  

* the superscript representing optimal value 
 

Assumptions: 

  1. The demand rate is known, constant, and continuous. 

  2. The lead time is known and constant. 

  3. The production processes are imperfect and may produce defective items. The defective percentage
  has a probability density function f( ).  

  4. The inspection process is also imperfect. The probability of classifying a non-defective item as 
defective is 1e  with a probability density function f( 1e ). 

  5. The probability of classifying a defective item as non-defective is 2e  with a probability density 

function f( 2e ). 

  6. The buyer returns all items classified as defective and those returned from the customers to the 
vendor at the end of the 100% screening process, and receives a full price refund from the vendor. 
Thus, a defective item incurs a cost of wc  for the vendor. The vendor will sell the returned items at 

a discounted price to a secondary market. Therefore, rc (the cost of rejecting a non-defective item) 
is the difference between the regular and the discounted prices. 

  7. Customers who buy the defective items will detect the quality problem and return them to the buyer 
and receive a good (replaced) item from the buyer. Both the vendor and the buyer incur a post-sale 
failure cost (e.g., loss of good will) for the items returned from the market. 

  8. Shortages are not allowed. 

  9. A single product is considered. 

10. There is a single vendor and a single buyer. 

3. Mathematical model 

3.1 The buyer's cost per cycle 

Consider a lot of size Q being delivered to the buyer. It is assumed that the lot is 100% screened at the 
beginning of each replenishment cycle. Each lot contains a percentage   of defective items with the 
probability density function ).(f  While screening the items, an inspector may incorrectly classify a 

non-defective item as defective with probability 1e  and the probability density function f( 1e ), or the 
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inspector may incorrectly classify a defective item as non-defective with probability 2e  and the 

probability density function f( 2e ). It is assumed that the buyer returns all the items classified as 
defective by the inspector and the items returned from the market to the vendor as a single batch at the 
end of the screening process and receives a full price refund from the vendor. Thus, each defective item 
will incur a cost of wc  and each non-defective item classified as defective will incur a cost of rc  for the 

vendor. For example, if the production cost is $30/unit, the regular selling price is $50/unit, and the 
discounted selling price is $20/unit, then 10$wc  and .30$rc  For each item being returned from 

the market, the buyer and the vendor incur a post-sale failure cost (e.g., the loss of good will) aBc  and

avc  respectively. If the vendor and the buyer do not work together in a cooperative manner towards 

maximizing their mutual benefits, and the buyer makes his own decisions independent of the vendor, 
then the vendor will produce and deliver the items to the buyer on a lot-for-lot basis. Fig. 1 illustrates 
the behavior of the inventory level over time for the buyer.  

 

T
1t 2t

T

1B

Q

2B

Time

Inventory Level

1BQ

 

Fig.1. Behavior of the buyer's inventory level over time 

By definition, we have 

),1()1( 211 eQeQB    (1)
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and 

22 eQB  . (2)

We assume that for each item returned from the market, a good item is replaced for the customer. 
Based on this assumption, there are two streams of demand; namely, the regular demand and the 
demand to replace the returned items. Let D' be the effective demand; then we have ./2

' TBDD   

By definition, the cycle length of each delivery of size Q is './)( 1 DBQT   Substituting 
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'   and solving the equation, we have 
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The holding cost per delivery cycle is 















 


22

)( 21
11

TB
h

TBQ
tBhHC BB . 

 

Substituting 1t  with Q/x, 1B  with ),1()1( 21 eQeQ    2B  with 2eQ  and T with ,/)1)(1( 1 DeQ   
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After adding the ordering, transportation, inspection, and post-sale failure costs, the cost per production 
cycle for the buyer is 
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3.2 The vendor's cost per cycle 

Fig. 2 shows the vendor's holding cost per cycle can be obtained as (see, for example, Goyal et al. 
(2003) and Huang (2004)). 
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Fig. 2.Time-weighted inventory for the vendor 

After adding the costs of setup, warranty, and Type I and Type II errors, the vendor's total cost per 
cycle ),( QnTCv  is 
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3.3 The integrated vendor-buyer inventory model 

The total vendor-buyer integrated cost per production cycle is 
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Using the renewal reward theorem, the expected total annual cost of the vendor and the buyer is 
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3.4  Solution procedure 

The problem is to determine the value of n that minimizes ).,( QnETC  Because the number of shipments 
per batch production run, n, is a discrete variable, one can find the optimal value of n from the following 
procedure: 

1. For a range of n values, determine the corresponding Q*(n) using Eq.( 12), and compute 
))(*,( nQnETC by substituting Q*(n) into Eq.(9). 

2. Derive the optimal value of n, denoted by n*, such that )),1(*,1())(*,(  nQnETCnQnETC and 
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Once we obtain the n* value, the optimal size of a production batch *PQ  is given by *).(*** nQnQP   

3.5 The buyer's independent optimal solution 

If the vendor and the buyer do not work together in a cooperative manner towards maximizing their 
mutual benefits, and the buyer makes his own decisions independent of the vendor, then the vendor will 
produce and deliver the items to the buyer on a lot-for-lot basis. The buyer's expected annual cost is 
given as 
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and the optimal solution is 
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The vendor's expected annual cost is given as 
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If the decision is made solely from the buyer's perspective, then substituting *
BQ  into Eqs. (13) and 

(15), we obtain the buyer's and the vendor's expected annual costs respectively. 

4. Numerical examples and sensitivity analysis 

Consider an integrated vendor-buyer cooperative inventory model with the following parameters: 

Production rate, P     = 160,000 units/year 

Demand rate, D     = 50,000 units/year 

Inspection rate, x     = 175,200 units/year 

Setup cost for vendor, vS     = $300/production run 

Ordering cost for buyer, BS     = $100/order 

Holding cost for vendor, vh     = $2/unit/year 

Holding cost for buyer, Bh     = $5/unit/year 

Freight (transportation) cost, F   = $25/delivery 

Inspection cost, ic      = $0.5/unit 

The cost of producing a defective item, wc   = $50/unit 

The cost of rejecting a non-defective item, rc  = $100/unit 

The buyer's post-sale failure cost, Bac   = $200/unit 

The vendor's post-sale failure cost, vac   = $300/unit 

If the defective percentage and inspections errors follow a uniform distribution with 
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the buyer as a function of n and Q, which is given in Fig. 3.  

 

Fig. 3. The expected total annual cost of the vendor and the buyer 

The three dimensional graph shows that the integrated expected total annual cost is convex, and that 
there exists a unique solution minimizing the integrated expected total annual cost. For the given 
example, the optimal solution is (see Table 1) n* = 7, Q* = 791, and the minimum total expected 
annual cost is $201,358.50. 

Table 1  
Optimal solutions of n, P=160,000, D=50,000, x = 175,200, 300vS , 100BS , 

2vh , 5Bh , F=25, ic =0.5, wc =50, rc =100, Bac =200, vac =300, 04.0   

n Q*(n) ETC(n, Q*(n)) n Q*(n) ETC(n, Q*(n)) 
1 2,817.4942 206,251.9011 9 664.6448 201,424.7759 
2 1,839.4721 203,281.7266 10 618.0560 201,496.0917 
3 1,411.6533 202,224.2429 11 578.8818 201,583.0628 
4 1,163.0292 201,736.5636 12 545.4389 201,681.3327 
5 998.2423 201,497.8012 13 516.5219 201,787.8688 
6 880.1603 201,389.8054 14 491.2447 201,900.5034 
 7*  790.9983*   201,358.5041* 15 468.9401 202,017.6520 
8 721.0770 201,375.5820    
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Table 2 shows the optimal solutions for different freight costs. When the freight cost increases, the 
optimal number of deliveries per production batch from the vendor to the buyer decreases while the 
optimal size of the deliveries increases. The smaller the freight cost, the larger the cost reduction of the 
integrated model in comparison to an independent decision by the buyer is. 

Table 2  
Optimal solutions for different freight cost F, P=160,000, D=50,000, x = 175,200, 300vS , 100BS

2vh , 5Bh , ic =0.5, wc =50, rc =100, Bac =200, vac =300, 04.0  . 

 
F 

Buyer's independent decision Integrated model Cost 

*BQ  *)( BB QETC  *)( Bv QETC  n* Q*(n*) ETC(n*,Q*(n*)) reduction 

5 1,490.11 37,532.75 171,316.14 16 347.87 199,525.14 9,323.75 
15 1,559.46 37,874.19 170,872.63 9 614.93 200,611.04 8,135.78 
25 1,625.84 38,201.07 170,485.27 7 791.00 201,358.50 7,327.84 
50 1,781.02 38,965.14 169,698.76 5 1,110.74 202,732.08 5,931.82 
100 2,056.55 40,321.77 168,613.54 4 1,471.13 204,701.17 4,234.14 

 

From Table 3, one can see that the smaller the vendor's holding cost is, the greater the advantages to 
deliver the items more frequently from the vendor to the buyer are, and the larger the cost reduction of 
the integrated model in comparison to an independent decision by the buyer is. Note that the optimal 
size of the production batch *)(*** nQnQP  decreases as the vendor's holding cost increases. 

Table 3  
Optimal solutions for different vendor's holding cost vh , P=160,000, D=50,000, x = 175,200, 300vS

100BS , 5Bh , F=25, ic =0.5, wc =50, rc =100, Bac =200, vac =300, 04.0   

 

vh  
Buyer's independent decision Integrated model Cost 

*BQ  *)( BB QETC  *)( Bv QETC  n* Q*(n*) ETC(n*,Q*(n*)) reduction 

1 1,625.84 38,201.07 170,220.75 10 773.20 199,298.82 9,123.00 
2 1,625.84 38,201.07 170,485.27 7 791.00 201,358.50 7,327.84 
3 1,625.84 38,201.07 170,749.78 6 771.90 202,910.76 6,040.09 
4 1,625.84 38,201.07 171,014.29 5 801.49 204,186.34 5,029.02 
5 1,625.84 38,201.07 171,278.80 4 883.61 205,275.37 4,204.50 

 

Table 4 shows that the buyer's holding cost has a reverse impact as the vendor's holding cost does on 
the optimal solution. As the buyer's holding cost increases, the optimal number of deliveries per 
production batch increases, the optimal size of the deliveries decreases, and the cost reduction of the 
integrated model increases. 

Table 4  
Optimal solutions for different buyer's holding cost Bh , P=160,000, D=50,000, x = 175,200, 300vS , 

100BS , 2vh , F=25, ic =0.5, wc =50, rc =100, Bac =200, vac =300, 04.0   

 

Bh  
Buyer's independent decision Integrated model Cost 

*BQ  *)( BB QETC  *)( Bv QETC  n* Q*(n*) ETC(n*,Q*(n*)) reduction 

2 2,570.69 35,258.76 167,261.93 4 1,397.11 199,861.53 2,659.16 
3 2,098.96 36,396.65 168,473.90 5 1,102.05 200,466.19 4,404.36 
5 1,625.84 38,201.07 170,485.27 7 791.00 201,358.50 7,327.84 
8 1,285.34 40,321.77 172,919.31 9 611.73 202,365.85 10,875.23 
10 1,149.65 41,516.99 174,309.41 10 546.74 202,924.52 12,901.88 
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Table 5 shows the sensitivity analysis on the defective percentage   (we assume that   is uniformly 
distributed between 0 and β). It is interesting to note that when β increases, the optimal size of the 
deliveries first increases until it reaches its maximum value (at β =0.3) and then begins to decrease. The 
larger the β value, the greater the cost reduction of the integrated model in comparison to an 
independent decision by the buyer is. 

Table 5  
Optimal solutions when the defective percentage  is uniformly distributed between 0 and β, 

P=160,000, D=50,000, x = 175,200, 300vS , 100BS , 2vh , 5Bh , F=25, ic =0.5, wc =50, rc

=100, Bac =200, vac =300, 04.0 . 

 
  

Buyer's independent decision Integrated model Cost 

*BQ  *)( BB QETC  *)( Bv QETC  n* Q*(n*) ETC(n*,Q*(n*)) reduction 

0.04 1,625.84 38,201.07 170,485.27 7 791.00 201,358.50 7,327.84 
0.06 1,636.89 40,644.24 200,584.08 7 796.51 233,865.75 7,362.57 
0.08 1,647.95 43,139.00 231,310.79 7 802.11 267,050.22 7,399.57 
0.1 1,659.01 45,687.01 262,685.25 7 807.79 300,933.30 7,438.96 
0.2 1,714.14 59,288.32 430,029.96 7 837.43 481,642.81 7,675.47 
0.3 1,768.32 74,512.44 617,089.11 7 869.36 683,611.83 7,989.72 
0.4 1,820.53 91,666.00 827,561.59 8 825.82 910,818.78 8,408.81 

From Table 6, one can see that the Type I error 1e  (we assume 1e  is uniformly distributed between 0 
and  ) has a similar impact as the defective percentage   does on the optimal solution. When   
increases, the optimal size of the deliveries first increases until it reaches its maximum value (at   
=0.3) and then begins to decrease. The larger the   value, the greater the cost reduction of the 
integrated model in comparison to an independent decision by the buyer is. 

Table 6  
Optimal solutions when the probability of Type I error 1e  is uniformly distributed between 0 and  ,  

P=160,000, D=50,000, x = 175,200, 300vS , 100BS , 2vh , 5Bh , F=25, ic =0.5, wc =50, rc

=100, Bac =200, vac =300, 04.0 . 

 
  

Buyer's independent decision Integrated model Cost 

*BQ  *)( BB QETC  *)( Bv QETC  n* Q*(n*) ETC(n*,Q*(n*)) reduction 

0.04 1,625.84 38,201.07 170,485.27 7 791.00 201,358.50 7,327.84 
0.06 1,637.12 38,539.19 223,726.09 7 796.55 254,904.55 7,360.73 
0.08 1,648.41 38,885.07 278,076.98 7 802.19 309,566.14 7,395.91 
0.1 1,659.70 39,238.99 333,573.00 7 807.91 365,378.51 7,433.48 
0.2 1,715.94 41,139.06 629,566.68 7 837.75 663,044.47 7,661.27 
0.3 1,771.15 43,286.37 960,411.21 7 869.87 995,730.00 7,967.58 
0.4 1,824.25 45,729.78 1,332,643.69 8 826.39 1,369,994.36 8,379.11 

Table 7 shows the sensitivity analysis of the Type II error 2e . (We assume 2e  is uniformly distributed 
between 0 and ). When   increases, the optimal size of the shipments decreases, and the cost 
reduction increases. Both of the changes are slight, indicating that the optimal solution is not sensitive 
to the Type II error. From the numerical examples, one can see that the integrated model results in an 
impressive cost reduction in comparison to an independent decision by the buyer. 
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Table 7  
Optimal solutions when the probability of Type II error 2e  is uniformly distributed between 0 and , 

P=160,000, D=50,000, x = 175,200, 300vS , 100BS , 2vh , 5Bh , F=25, ic =0.5, wc =50, rc

=100, Bac =200, vac =300, 04.0   

 
  

Buyer's independent decision Integrated model Cost 

*BQ  *)( BB QETC  *)( Bv QETC  n* Q*(n*) ETC(n*,Q*(n*)) reduction 

0.04 1,625.84 38,201.07 170,485.27 7 791.00 201,358.50 7,327.84 
0.06 1,625.62 40,284.67 173,610.25 7 790.96 206,565.22 7,329.70 
0.08 1,625.39 42,368.27 176,735.23 7 790.92 211,771.93 7,331.57 
0.1 1,625.16 44,451.86 179,860.21 7 790.88 216,978.65 7,333.42 
0.2 1,624.01 54,869.85 195,485.11 7 790.68 243,012.22 7,342.74 
0.3 1,622.87 65,287.82 211,110.01 7 790.48 269,045.79 7,352.04 
0.4 1,621.72 75,705.80 226,734.91 7 790.27 295,079.36 7,361.35 

5. Conclusion and future research 

In this paper, we develop an integrated vendor-buyer production-inventory model for items with 
imperfect quality and inspection errors. The objective is to minimize the total joint annual costs 
incurred by the vendor and the buyer. The production process is imperfect and produces a certain 
number of defective items with a known probability density function. We consider the policy in which 
the delivery quantity to the buyer is identical at each delivery. Once the buyer receives the lot, a 100% 
screening process of the lot is conducted, and the screening process and demand proceed 
simultaneously. The screening process is not perfect. The inspector may incorrectly classify a non-
defective item as defective (a Type I inspection error), or incorrectly classify a defective item as non-
defective (a Type II inspection error). The expected total integrated annual cost of the vendor and the 
buyer is derived and a solution procedure is provided to find the optimal solution that minimizes the 
expected total integrated annual cost. Numerical examples show that the integrated model gives an 
impressive cost reduction in comparison to an independent decision by the buyer. 

This paper assumes that the defective items are sold to a secondary market at a discounted price. One 
possible extension of this research is to have the vendor rework the defective items and convert the 
defective items into good quality products to satisfy the buyer's demand. Another possible extension of 
our model is to consider the case where, while some customers are willing to exchange the defective 
items with good ones, others may be disappointed at the product quality and ask for a full price refund 
(i.e., the case of lost sales). Finally, we use the just in time philosophy to assume that the successive 
deliveries of the items from the vendor to the buyer are arranged in such a way that the items arrive at 
the buyer's place when the buyer's inventories from the previous delivery have just been depleted. 
Thus, one may extend our model by allowing shortages to occur and to be completely or partially 
backordered. 
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