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 In this paper, we study no-wait flow shop problem where setup times depend on sequence of 
operations. The proposed problem considers sequence-independent removal times, release date 
with an additional assumption that there are some preliminary setup times. There are two 
objectives of weighted mean tardiness and makespan associated with the proposed model of this 
paper. We formulate the resulted problem as a mixed integer programming, where a two-phase 
fuzzy programming is implemented to solve the model. To examine the performance of the 
proposed model, we generate several sample data, randomly and compare the results with other 
methods. The preliminary results indicate that the proposed two-phase model of this paper 
performed relatively better than Zimmerman's single-phase fuzzy method.      
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1. Introduction 

Flowshop is one of the well-known problems, which has attracted many researchers for a while. 
Manufacturing equipments, which produce one or two similar products using high-volume specialized 
equipments, are normally considered as an example of flowshop and as an example; we may consider 
an assembly line (Pinedo, 2008). No-wait flow shop problem (NWFP) is one of the primary restrictions 
in flowshop problem. According to this limitation, as soon as a job finishes its work on one machine, 
the operations of the next machine on this job must be initiated and no interruption is permitted. There 
are many industrial applications of NWFP such as steel industry, plastic injection, chemical and 
pharmaceutical industries (Hall & Sriskandarajah, 1996). There are literally various studies associated 
with NWFP problem. Liu et al. (2007), for instance presented particle swarm optimization to minimize 
makespan. Pen et al. (2008) presented a discrete PSO along with variable neighborhood descent to 
minimize makespan and total flowtime for NWFP problem. Tseng and Lin (2010) proposed a hybrid 
genetic algorithm for no-wait flowshop scheduling problem, which also uses a local search.  
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Wang et al. (2010) used accelerated Tabu search for NWFP problem for maximum lateness (ܮ௠௔௫). 
They increased the basic operations of generating better candidate solutions using Tabu search and 
reduced the complexity of the operations of NEH. Note that Hall et al. (1996) performed a 
comprehensive survey of scheduling problems with blocking and no-wait in process. There are many 
industries where setup times as well as processing times are independent from the operational times. 
Setup times include the necessary times for adding or exchanging equipments on facilities (Eren, 
2009). Setup times and other related times are divided into two groups of independent and dependent 
times. There are many industrial cases where setup times depend on the operations such producing 
different colors using some common machines and the problem is called sequence-dependent setup 
time flow shop problem (SDSTFP).  
 
Based on the notations developed by Graham et al. (1979), Allahvedi et al. (2008),  Eren (2007), 
different metaheuristics based on tabu search, random search for ܨଶ|ܵ ௦ܶ௜|ߙ ∑ ܥ ൅ ߚ ∑ ௠௔௫ܥ ൅
ߛ ∑ ௠ܶ௔௫ ൅ ߠ ∑  ,௠௔௫ have been developed.  There are some mixed integer programming techniquesܧ
which can be used to solve problems in small scales. For instance, Eren (2010) presented a 
mathematical programming to solve ܨ௠|ܵ ௦ܶௗ|ߙ ∑ ܥ ൅  ௠௔௫ for relatively large-scale problems andܥߚ
gave three heuristics to solve the resulted problem. Mirabi (2010) presented a hybrid ant colony to 
solve ܨ௠|ܵ ௦ܶௗ|ܥ௠௔௫. For a complete review of the literature, interested readers are referred to 
Allahverdi et al. (1999, 2008). Franca et al. (2006) proposed a genetic algorithm for ܨ௠|ݎ௝, ܵ ௦ܶௗ, ݋݊ െ
   .௠௔௫ and compared the performance of their method with Bianco et al. (1999)ܥ|ݐ݅ܽݓ
 
Ruiz and Allahverdi (2007) investigated on SDSTFP problem in a form of ܨ௠|ܵ ௦ܶௗ, ݋݊ െ  .௠௔௫ܮ|ݐ݅ܽݓ
They investigated different heuristics as well as metaheuristics to solve the resulted problem and 
presented a dominance ratio for three-machine problem. Aldowaisan and Allahverdi (1998) provided a 
solution methodology for ܨଶ|ܵ ௦ܶௗ, ݋݊ െ |ݐ݅ܽݓ ∑  and presented one elimination criterion and ܥ
developed optimal solution for two special cases. Aldowaisan (2001)  considered ܨଶ|ܵ ௦ܶௗ, ݋݊ െ
|ݐ݅ܽݓ ∑  ,problem one more time and tried to find a local and global dominance relations. In addition ܥ
they proposed some metaheuristics to solve the resulted problem, which seem to provide better quality 
solutions. They also used branch and bound method to provide a lower bound on this problem. Stafford 
and Tseng (2002) developed two models for family of flowshop sequencing problems of the form 
ܵ|௠ܨ ௦ܶௗ, ݋݊ െ   .௠௔௫ܥ|ݐ݅ܽݓ
 
Gupta et al. (1997) provided a two-stage operations research models with setup and removal times 
separated. In their method, they considered setup times independent from operational times and 
proposed a method for minimizing makespan, which could be solved in polynomial time. Wang and 
Cheng (2006) proposed a heuristic approach for two-machine no-wait flowshop scheduling with due 
dates and class setups. They divided jobs to different groups with various setup times with an objective 
of minimizing the maximum lateness. The proposed model of this paper was developed for multi-
objective problems. Jenabi et al. (2010) considered a bi-objective NWFP problem. They first proposed 
two multi-objective mixed integer programming techniques and presented a local search to find 
efficient solutions. Javadi et al. (2008) presented fuzzy multi-objective problem for ܨ௠|݊݋ െ
,ҧܥ|ݐ݅ܽݓ   .ത to find efficient solutionsܧ
 
They proposed fuzzy goal programming technique to solve the resulted problem. Fuzzy programming 
has been considered in different ways to handle uncertainty associated with this type of problem. 
Ishibuchi et al. (1994) presented local search algorithms for flow shop scheduling with fuzzy due-dates 
where the primary objective was to maximize the minimum grade of satisfaction. Yao and Feng (2002) 
constructed a fuzzy flow-shop sequencing model based on statistical data. Wu (2010) presented the 
fuzzy earliness and tardiness in scheduling problems by using genetic algorithms. They presented a 
method to minimize the weighted lateness. The concept of fuzzy programming can be also used in 
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different areas of scheduling (Gharegozli et al., 2009; Tavakkoli-Moghaddam et al., 2010; Khademi-
Zare & Fakhrzad, 2011). 
 
In this paper, we present a multi-objective NWFP problem where the first objective is the minimization 
of weighted average of lateness and the other objective is minimization of makespan.  All setup times 
depend on the sequences of different jobs and machines. We also consider a preliminary setup time 
when the operations start, which is independent from the sequence of operations and only depends on 
the machines. The other assumption with the proposed model of this paper is that not all jobs are 
available at the beginning of the operations. In summary, the proposed model is denoted as ܨ௠ห݊݋ െ
,ݐ݅ܽݓ ,௝ݎ ܵ ௦ܶௗ, ܴ௦௜, |ܶܵܫ തܶ,  ௠௔௫.  There are literally many real-world applications where we can use theܥ
proposed model of this paper (Ruiz et al., 2008). The proposed model of this paper considers two 
objectives and it is formulated in a form of mixed integer programming and it is solved using the 
method proposed by Li et al. (2006). The organization of this paper first presents the mathematical 
model in section 2. The proposed solution methodology is given in section 3 and the performance of 
the proposed model is examined using different test problems and the results are given in section 4. 
Finally, concluding remarks are given in the last to summarize the contribution of the paper. 
 
2. The proposed model 
 
The proposed model of this paper considers  ܨ௠ห݊݋ െ ,ݐ݅ܽݓ ,௝ݎ ܵ ௦ܶௗ, ܴ௦௜, หܶܵܫ തܶ,  ௠௔௫ where IST is theܥ
initial setup times for processing jobs located in the first stage of operations.  
 
2.1 Assumptions 
 

• All parameters are assumed deterministic. 
• There must be no interruption when an operation starts on a particular machine.  
• All jobs must precede the other operations on other machines as soon as they are finished with a 

particular machine unless the operations belong to the last machine.  
• Each machine can only process one job at the same time. 
• Processing times do not depend on sequence and they are all deterministic.  
• Not all jobs can be processed at the beginning of the operations.  
• All machines are available in planning time horizon and there is no failure or interruption. 
• Removal time is independent from the processing and order of sequence and it is predefined.  

   
Sets and indexes 
J: Set of jobs ሺܬ ൌ ሼ1,2, … , ݊ሽ; ݊: ݄݁ݐ ݎܾ݁݉ݑ݊ ݂݋  ሻݏܾ݋݆
I: Set of machines ሺܫ ൌ ሼ1,2, … , ݉ሽ; ݉: ݄݁ݐ ݎܾ݁݉ݑ݊ ݂݋  ሻݏ݄݁݊݅ܿܽ݉
P: Set of positions ሺܲ ൌ ሼ1,2, … , ;ሽ݌ :݌ ݄݁ݐ ݎܾ݁݉ݑ݊ ݂݋ ;ݏ݊݋݅ݐ݅ݏ݋݌ ݊ ൌ  ሻ݌
j,k: Job indexes  ሺ݆, ݇ א  (ܬ
i: Machine indexes ሺ݅ א  ሻܫ
p: Index of positions ሺ݌ א ܲሻ 
 
Parameters 

Weight of job ݆   wj: 
Release date for job ݆ rj: 
Due date of job ݆ dj: 
Processing time of job ݆ on machine ݅ pji: 
Removal time of job ݆ on machine ݅   rtji: 
Setup time of job ݇ on machine ݅ if it is processed immediately after job ݆ sjik : 
Initial setup time of job ݆ on machine ݅ if the job is in the first position of the sequence. istji1: 
Big number M: 
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Variables 
Tardiness of job ݆  Tj: 
Maximum completion time  Cmax: 

1 if job  is in position 
0 otherwise

j p⎧
⎨
⎩

 Xjp:  

1 if job  is processed right after job  in position 
0 otherwise

k j p⎧
⎨
⎩

 Yjkp: 

The completion time of job ݆ on machine ݆ if it is in position ݌ in terms of sequenceCjip: 
The completion time of job ݆ on the last  machine if it is in position ݌ in terms of 
sequence 

Cjmp: 

The earliest starting time of processing job ݆ on machine ݅ if it is in position ݌ STjip: 
The earliest starting time of processing job ݆ on the first machine ݅ if it is in position ݌ STj1p: 
The weighted mean lateness ൬

∑ ∑ ௪ೕ்ೕೕೕ

∑ ௪ೕೕ
൰ തܶ: 

 

2.2. The proposed bi-objective mixed integer programming (BMILP) 

 (1)min ܼଵ ൌ തܶ  
(2) min ܼଶ ൌ  ௠௔௫ܥ

 subject to: 
∑ ݌׊;(3) ௝ܺ௣௝ ൌ 1   
(4); ∑ ݆׊ ௝ܺ௣௣ ൌ 1   
(5); ,݆׊ ݇; ݇ ് ݆; ݌ ൒ 2 ௝ܻ௞௣ ൑ ௝ܺሺ௣ିଵሻ   
(6); ,݆׊ ݇; ݇ ് ݆; ݌ ൒ 2 ௝ܻ௞௣ ൑ ܺ௞௣   
(7); ݇ ് ݆; ݌ ൒ 2 ∑ ∑ ௝ܻ௞௣௞௝ ൌ 1   
(8); ,݆׊ ݅, ܵ ݌ ௝ܶ௜௣ ൒ .௝ݎ ௝ܺ௣   
(9); ݌ ൌ 1; ,݆׊ ݅ ܵ ௝ܶ௜௣ ൒ .௝௜ଵݐݏ݅ ௝ܺ௣   

(10); ,݆׊ ݇; ݇ ് ݆; ݌ ൒ 2 ܵ ௞ܶଵ௣ െ ܵ ௝ܶଵሺ௣ିଵሻ ൅ ൫1ܯ െ ௝ܻ௞௣൯ ൒ ௝ଵ௞ݏ ൅ ௝ଵ݌ ൅    ௝ଵݐݎ
(11); ݅ ൌ 1; ,݆׊ ௝௜௣ܥ ݌ ൌ ܵ ௝ܶ௜௣ ൅ .௝௜݌ൣ ௝ܺ௣൧   
(12); ݅ ൒ 2; ,݆׊ ௝௜௣ܥ ݌ ൌ ௝ሺ௜ିଵሻ௣ܥ ൅ .௝௜݌ൣ ௝ܺ௣൧   
(13); ,݆׊ ݇; ݇ ് ݆; ݌ ൒ ௞௜௣ܥ 2 െ ௝௜ሺ௣ିଵሻܥ ൅ ൫1ܯ െ ௝ܻ௞௣൯ ൒ ௝௜௞ݏ ൅ ௞௜݌ ൅    ௝௜ݐݎ
(14); ,݆׊ ݅, ܵ ݌ ௝ܶ௜௣ ൑ ܯ ௝ܺ௣   
(15); ,݆׊ ݅, ௝௜௣ܥ ݌ ൑ ܯ ௝ܺ௣   
(16); ,݆׊ ௠௔௫ܥ ݌ ൒    ௝௠௣ܥ
(17); ,݆׊ ݅, ௝ܶ ݌ ൒ ௝௜௣ܥ െ ௝݀   
(18); ,݆׊ ௝ܺ௣ ݌ א ሼ0,1ሽ   
(19); ,݇׊ ݆; ݇ ് ݆ ௝ܻ௞௣ א ሼ0,1ሽ   
(20); ,݆׊ ݅, ௝ܶ ݌ , ܵ ௝ܶ௜௣, ௝௜௣ܥ ൒ 0  

Eq. (1) and Eq. (2) are associated with minimization of weighted mean tardiness and makespan, 
respectively. Eq. (3) determines that in each position only one job can be located and Eq. (4) guarantees 
that each job can be only in one position. According to Eq. (5) and Eq. (6), ௝ܻ௞௣ is equal to one if both 

௝ܺ௣ and ௝ܺሺ௣ିଵሻ are equal to one. Eq. (7) indicates that for each position ሺ݌ ൒ 2ሻ only one job can be 
started after another one. Eq. (8) indicates that the earliest time for processing job ݆ on machine ݅ 
cannot be less than its release date ݎ୨. Eq. (9) guarantees that earliest time to process job j cannot be 
sooner than its initial setup time if job ݆ is in the first position of sequence. Eq. (10) indicates that there 
is no interruption between jobs and machines. Eq. (11) computes the completion time of job ݆ on the 
first machine if job ݆ is located in position ݌ in terms of sequence. Eq. (12) computes the completion 
times of job j on the second machine and after and it guarantees that there is no interruption. Eq. (13) 
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shows the relationship between completion times of two sequential jobs. According to Eq. (14) and Eq. 
(15), we can make sure that if job ݆ in not in position ݌ then the earliest starting and completion times 
are equal to zero, otherwise, ௝ܺ௣ ൌ 1.  Eq. (16) shows that makespan cannot be less than completion 
time of the last machine. Eq. (17) is also associated with the tardiness of job ݆. Finally, Eqs. (18-20) 
show variable types definitions.  
 
3. The proposed model 
 
The proposed model of this paper uses a two-stage fuzzy programming, which is based on the method 
developed by Li et al. (2006) and the first stage uses Zimmerman's method (Zimmerman, 1978). We 
first present the necessary notations associated with the proposed model.  
 
3.1. Notations    

 
Satisfaction degree ߣ: 
Satisfaction degree after the first stage λ_ܲ1ܪ: 
Satisfaction degree after the second stage   λ_ܲ2ܪ: 
Satisfaction degree of the thf objective function  after the second stage  ሺ݂ ൌ 1,2ሻ ߣ௙: 
weight of satisfaction degree of the thf objective function in the second stage ሺ݂ ൌ 1,2ሻ     ݒ௙: 
The lower bound of the first objective function ݖଵ

௟ : 
The lower bound of the second objective function ݖଶ

௟ : 
The value of the first objective function when the second objective function has the minimum 
value ൫ݖଵ

୳ ൐ zଵ
୪ ൯  

ଵݖ
௨: 

The value of the second objective function when the first objective function has the minimum 
value ൫ݖଶ

୳ ൐ zଶ
୪ ൯  

ଶݖ
௨: 

The value of the first objective function after the first stage terminates ݖଵ
଴: 

The value of the second objective function after the first stage terminates ݖଶ
଴: 

 
3.2 Solution procedure  

 
3.2.1 Phase one 

 
Step 1. The proposed BMILP is solved based on ܼଵ and the optimal value is called ܼଵ

୪ . 
Step 2.  Based on the solution obtained from the first step, ܼଶ

௨ is computed. 
Step 3. The proposed BMILP is solved based on ܼଶ and the optimal value is called ܼଶ

୪ . 
Step 4. Based on the solution obtained from the third step, ܼଵ

௨ is computed. 
Step 5. Solve the following linear programming problem. 
 

 (21)max   ߣ

subject to: 

(22)     ഥܶ ൑ ଵݖ
௨ െ ଵݖሺߣ

௨ െ ଵݖ
௟ ሻ 

௠௔௫ܥ    (23) ൑ ଶݖ
௨ െ ଶݖሺߣ

௨ െ ଶݖ
௟ ሻ 

ߣ    (24) א ሾ0,1ሿ 

(25)    Constraints (5-19) 
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Step 6. Set λ_ܲ1ܪ to computed λ in step 5.  

3.2.2 Phase two 

Step 7. Compute തܶ و   ୫ୟ୶ based on the results of step 5 and store them in ܼଵܥ
଴ and ܼଶ

଴, respectively. 
Solve the following linear programming problem, 

 (26)max  vଵλଵ ൅ vଶλଶ  
subject to  

(27)    തܶ ൑ ଵݖ
௨ െ ଵݖଵሺߣ

௨ െ ଵݖ
௟ ሻ 

ଵߣ    (28) ൒ ௭భ
ೠି௭భ

బ

௭భ
ೠି௭భ

೗  
௠௔௫ܥ    (29) ൑ ଶݖ

௨ െ ଶݖଶሺߣ
௨ െ ଶݖ

௟ ሻ 
ଶߣ    (30) ൒ ௭మ

ೠି௭మ
బ

௭మ
ೠି௭మ

೗   
ଵݒ    (31) ൅ ଶݒ ൌ 1  
,ଵߣ    (32) ଶߣ א ሾ0,1ሿ  
(33)    Constraints (5-19) 

Step 8. 2ܪܲ_ߣ is equal to optimal value obtained from Eq. (26) achieved from step 7. 

Step 9. Repeat computations to calculate തܶ and ܥ୫ୟ୶  until the final solutions are achieved. 

4. Numerical examples 

In order to measure the relative efficiency of the proposed model of this paper, we have solved 102 
randomly generated test problems. Except  ݒଵand ݒଶ, which are determined by decision maker, all other 
values are predefined. Table 1 shows details of our input parameters.  

 Table 1  
The method of generating input parameters 
Parameters Values 

The number of machines (m) 2,3,4 

The number of jobs (n) 6,7,8 

Processing time (pji) ~ܷܦሾ1,50ሿ 
Release date (rj) ~ܷܦሾ0.100ሿ 

Due date (dj) ቈ݉ ቆ
∑ ∑ ௝௜݌

݉݊
ቇ ൅

∑ ∑ ∑ ௝௜௞ݏ

݉݊ଶ ൅
∑ ∑ ௝௜ଵݐݏ݅

݉݊
൅ ݉ ቆ

∑ ∑ ௝௜ݐݎ

݉݊
ቇ ൅ ௝቉ݎ ൅ 1 

Weight (wj) ~ܷܦሾ1,10ሿ 
Removal time (rtji) ~ܷܦሾ1,17ሿ 
Setup time (sjik) ~ܷܦሾ1,17ሿ 
Initial setup time (istji1) ~ܷܦሾ1,25ሿ 

ଵݒ ൌ  ଶ 0.5ݒ

Total problem 3 ൈ 3 ൈ 5 ൌ 45 

 
4.1. Discussion 
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In this section, we discuss the performance of the proposed model of this paper and compare the 
performance of two phase fuzzy method with Zimmerman's approach. We have solved all our test 
problems using LINGO-8 and the results are summarized in Table 2, Table 3 and Table 4.   
Table 2        

Results for 2-machine problems 
Number of 
machines 

Number 
of jobs 

Number of 
test 

λ of phase 1 
ሺλ_PH1ሻ 

λ of phase 2 
ሺλ_PH1ሻ 

Objectives values of 
phase 1 

ሺTഥ, C୫ୟ୶ሻ

Objectives values of 
phase 2 

ሺTഥ, C୫ୟ୶ሻ 

Improvement 
in objectives 

values 
2 6 1 0.900 0.917 (33.533,305) (33.533,305) No 
  2 0.297 0.379 (65.476,314) (65.476,311) Yes 
  3 0.714 0.814 (52.963,302) (52.963,302) No 
  4 0.431 0.599 (71.792,331) (71.792,320) Yes 
  5 0.384 0.513 (72.844,334) (72.844,330) Yes 
 7 1 0.737 0.772 (59.342,358) (57.368,358) Yes 
  2 0.741 0.759 (60.089,295) (58.489,295) Yes 
  3 0.660 0.713 (64.65,343) (64.65,336) Yes 
  4 0.500 0.571 (74.586,416) (74.448,416) Yes 
  5 0.556 0.563 (63.407,351) (63.407,351) No 
 8 1 0.627 0.767 (70.830,459) (70.830,459) No 
  2 0.420 0.467 (60.830,420) (60.830,413) Yes 
  3 0.579 0.757 (85.587,398) (81.239,398) Yes
  4 0.750 0.781 (58.745,348) (58.745,348) No 
  5 0.722 0.755 (44.789,363) (44.000,363) Yes 
 

Table 3        
Results for 3-machine problems 
Number of 
machines 

Number 
of jobs 

Number of 
test 

λ of phase 1 
ሺλ_PH1ሻ 

λ of phase 2 
ሺλ_PH2ሻ 

Objectives values of 
phase 1 

ሺTഥ, C୫ୟ୶ሻ

Objectives values of 
phase 2 

ሺTഥ, C୫ୟ୶ሻ 

Improvement 
in objectives 

values 
3 6 1 0.533 0.594 (50.263,317) (43.688,317) Yes 
  2 0.755 0.801 (40.333,298) (40.333,296) Yes 
  3 0.475 0.593 (47.684,347) (43.895,347) Yes 
  4 0.465 0.625 (66.273,345) (66.273,340) Yes
  5 0.579 0.640 (58.879,390) (58.879,390) No 
 7 1 0.551 0.627 (97.206,412) (82.5,412) Yes 
  2 0.778 0.836 (73.788,427) (73.788,418) Yes 
  3 0.428 0.507 (45.767,375) (45.767,367) Yes 
  4 0.555 0.635 (52.118,408) (52.118,404) Yes 
  5 0.243 0.312 (72.364,448) (72.364,442) Yes 
 8 1 0.475 0.679 (93.796,442) (93.796,435) Yes 
  2 0.404 0.450 (71.245,427) (68.981,427) Yes 
  3 0.384 0.387 (74.889,441) (74.889,440) Yes 
  4 0.750 0.817 (67.265,418) (67.265,418) No 
  5 0.772 0.781 (68.870,429) (68.870,427) Yes 
 

Table 4        
Results for 4-machine problems 
Number of 
machines 

Number of 
jobs 

Number of 
test 

λ of phase 1 
ሺλ_PH1ሻ 

λ of phase 2 
ሺλ_PH1ሻ 

Objectives values of 
phase 1 

ሺTഥ, C୫ୟ୶ሻ

Objectives values of 
phase 2 

ሺTഥ, C୫ୟ୶ሻ 

Improvement 
in objectives 

values 
4 6 1 0.324 0.638 (45.472,427) (45.672,400) Yes 
  2 0.243 0.590 (53.256,391) (53.256,368) Yes 
  3 0.557 0.716 (56.027,400) (56.027,387) Yes 
  4 0.696 0.765 (74.263,410) (74.263,408) Yes 
  5 0.533 0.535 (60.65,374) (60.65,374) No 
 7 1 0.625 0.653 (69.341,482) (69.431,480) Yes 
  2 0.704 0.736 (48.829,380) (48.829,377) Yes 
  3 0.571 0.620 (81.697,477) (74.485,477) Yes 
  4 0.545 0.547 (65.151,446) (65.151,445) Yes 
  5 0.500 0.613 (102.389,453) (102.389,453) No 
 8 1 0.909 0.942 (50.855,401) (49.873,401) Yes 
  2 0.612 0.682 (158.568,523) (88.864,523) Yes 
  3 0.130 0.322 (98.841,512) (96.884,512) Yes 
  4 0.393 0.562 (74.553,489) (72.319,489) Yes 
  5 0.508 0.592 (84.725,505) (46.025,505) Yes 
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As we can observe from the results of Tables, the level of satisfaction degree of phase 2 is relatively 
better than the first level. In addition, Li et al. (2006) proved that the level of second level satisfaction 
will not be worse than the first level. Besides, 36 out of 45 sample test problems yields better results, 
which implies that the two-phase method performs better than the Zimmerman's method. Table 5 
shows details of our results for different values of ݒଵ and ݒଶ. As we can observe the final solutions are 
sensitive to all these values.  

 

 
Fig .2. Comparison between satisfaction degrees of phase one and phase two for 3-machine problems 

 
Fig .3. Comparison between satisfaction degrees of phase one and phase two for 4-machine problems 

5. Conclusions 
 
In this paper, we have presented a no-wait flow shop problem where setup times depend on sequence of 
operations. The proposed problem considered sequence-independent removal times, release date with an 
additional assumption that there were some preliminary setup times. There were two objectives of weighted 
mean tardiness and makespan associated with the proposed model of this paper. The proposed model of this 
paper formulated the resulted problem as a mixed integer programming, where a two phase fuzzy programming 
was implemented to solve the model. To examine the performance of the proposed model, we have generated 
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Fig. 1. Comparison between satisfaction degrees of phase one and phase two for 2-machine problems 
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several sample data, randomly and compared the results with other methods. The results indicated that the 
proposed two-phase model of this paper performed relatively better than Zimmerman's single phase fuzzy 
method. 
    
Table 5 
The result of the implementation of the proposed 2-phase fuzzy programming with changing in value of ݒଵ 
 
Phase-1 

m=2,n=6 m=3,n=6 m=4,n=6 
തܶ ܥ௠௔௫ ߣ തܶ ܥ௠௔௫ ߣ തܶ ܥ௠௔௫ ߣ 

42.400 295 0.208 67.036 377 0.609 61.763 444 0.762 

Ph
as

e-
2 

ݒ ଵ
 

0.05 42.400 294 0.248 64.286 377 0.614 61.763 441 0.804 
0.10 42.400 294 0.246 64.286 377 0.620 61.763 441 0.802 
0.15 42.400 294 0.244 64.286 377 0.625 61.763 441 0.800 
0.20 42.400 294 0.242 64.286 377 0.631 61.763 441 0.798 
0.25 42.400 294 0.240 64.286 377 0.636 61.763 441 0.795 
0.30 42.400 294 0.237 64.286 377 0.642 61.763 441 0.793 
0.35 42.400 294 0.235 64.286 377 0.647 61.763 441 0.791 
0.40 42.400 294 0.233 64.286 377 0.653 61.763 441 0.789 
0.45 42.400 294 0.231 64.286 377 0.658 61.763 441 0.786 
0.50 42.400 294 0.229 64.286 377 0.664 61.763 441 0.784 
0.55 42.400 294 0.227 64.286 377 0.669 61.763 441 0.782 
0.60 42.400 294 0.225 64.286 377 0.675 61.763 441 0.780 
0.65 42.400 294 0.223 64.286 377 0.680 61.763 441 0.778 
0.70 42.400 294 0.221 64.286 377 0.686 61.763 441 0.775 
0.75 42.400 294 0.219 64.286 377 0.691 61.763 441 0.773 
0.80 42.400 294 0.217 64.286 377 0.697 61.763 441 0.771
0.85 42.400 294 0.215 64.286 377 0.702 61.763 441 0.769 
0.90 42.400 294 0.212 64.286 377 0.708 61.763 441 0.767 
0.95 42.400 294 0.210 64.286 377 0.713 61.763 441 0.764

 

 
Fig. 4. The impact of the changes in ݒଵ on satisfaction degree of phase two 
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