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 In this paper, a new multi-item inventory system is considered with random demand 
and random lead time including working capital and space constraints with three 
decision variables: order quantity, safety factor and backorder rate. The demand rate 
during lead time is stochastic with unknown distribution function and known mean 
and variance. Random constraints are transformed to crisp constraints with using the 
chance-constrained method. The Minimax distribution free procedure has been used 
to lead proposed model to the optimal solution. The shortage is allowed and the 
backlogging rate is dependent on the expected shortage quantity at the end of cycle. 
Two numerical examples are presented to illustrate the proposed solution method. 
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1. Introduction 

The shortage cost calculation is an important problem in estimating the inventory systems costs 
including purchasing, set up, holding, stock out costs and, etc. Shortage cost is divided to the 
backorder and lost sale. Furthermore, Lead time management is a significant issue in production and 
operation management. As stated in Tersine (1994), lead time usually comprises several components, 
such as set up time, waiting time, move time and queue time. In many practical situations, lead time 
can be reduced using an added crashing cost. In other words, lead time is controllable. Liao and Shyu 
(1991), Ben Daya and Rauf (1994), Ouyang et al. (1996), Park (2007) considered lead time as a 
variable and controlled it by paying extra crashing cost. They assumed that the lead time could be 
decomposed into n mutually independent components where each component has fixed crashing cost. 
Besides Callego and Moon (1993) assumed unfavorable lead time demand distribution and solved 
both the continuous and periodic review models with a mixture of backorder and lost sale using 
Minimax distribution free method. 

There are some multi-product inventory models with shortage including restrictions on inventory 
investment, space or reorder work load. Brown and Gerson (1967) proposed some models for multi-
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item stochastic inventory system with the limitation on total inventory investment. Schrady and Choe 
(1971) proposed a model with the total time weighted shortages with limitations on inventory 
investment and reorder work load. Gardner (1983) developed models for minimizing expected 
approximate backordered sales with the restrictions on aggregate investment and replenishment work 
load. Schroeder (1974) presented a model constrained by total expected annual ordering with an 
objective of minimizing the expected number of unit’s backordered per year.    

In many real-world situations, during a shortage period, the longer the waiting time is, the smaller the 
backlogging rate is. For instance, for fashionable commodities and high-tech products with a product 
life cycle, the willingness for a customer to wait for backlogging is diminishing with the length of the 
waiting time. In this way, the researcher used β as the function of τ, the time remaining until the next 
replenishment. Montgomery et al. (1973) proposed linear function for βሺτሻ. Abad (1996) introduced 
exponential βሺτሻ originally, but Papachristors and Skouri (2000) referred it as exponential. Abad 
(1996) proposed rational βሺτሻ for the first time and then San Jose et al. (2005) and Silica et al. (2007) 
used this form and the first to use this form to it. Silica et al. (2009) proposed mixed exponential βሺτሻ 
in their study. Some other authors considered β as a function of expected shortage quantity at the end 
of cycle. Their studies are based upon this assumption, which the larger amount of the expected 
shortage at the end of cycle, the smaller amount of customer can wait and hence the smaller 
backorder rate would be. Ouyang and Chaung (2001) were first to introduce this assumption in their 
model and some other authors generalized this assumption in their models for backorder rate (Lee, 
2005; Lee et al., 2007; Lee et al. , 2006).      

Many models for continuous inventory system with stochastic demand and allowable stock out such 
as Hadley and Whithin (1963), Parker (1964), Tinareli (1983) and Yano (1976) and some models in 
the stochastic demand and stochastic lead time environment such as Ord and Bagchi (2006), Burgin 
(2007) have been studied to find optimal solution on order quantity and backorder rate, which 
depends on expected shortage quantity and reorder point, which is replaced by safety factor.  

Ouyang and Chaung (2001) observed that many products of well-known brand and modish goods like 
certain brand gum shoes and clothes may lead to a state in which clients prefer their demands to be 
backordered, whereas shortage happened. Doubtlessly, if the amount of shortage exceeds the waiting 
patience of client, some clients avoid the backorder case. This phenomenon reveals that as shortage 
occurs, in the stochastic demand and deterministic lead time area, the longer the length of lead time is 
the larger amount of shortage is, the smaller proportion of customers can wait and hence the smaller 
backorder rate would be. However, in our new suggested model, in the stochastic lead time and 
stochastic demand environment, we consider safety factor, order quantity and backorder rate as the 
decision variables and assume that the backorder rate is dependent on the expected shortage quantity 
at the end of cycle. Thus, the larger amount of the safety factor is, the larger amount of safety stock 
is, the larger holding cost is, the smaller amount of expected shortage quantity through the stochastic 
lead time is, the larger back order rate is and therefore, the smaller stock out cost would be. 
Therefore, our suggested model balances holding cost and stock out cost to minimize the total 
expected cost (TECU).  

In this paper, first we consider multi product inventory system with three variables (order quantity, 
backorder rate and safety factor) with space and working capital constraints. We assume that the 
probability distribution of demand during lead time is unknown, but mean and variance of demand 
are known. Then, we utilize Minimax distribution free method to minimize the total expected cost per 
unit time. We transform random working capital and random space constraints to crisp constraints 
with using the chance-constrained method and then, solve the problem with Lagrange's multiplier 
method. At the end of paper, we present two numerical examples to illustrate our solution procedure. 
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2. Notation and assumption 

The following notations have been used in this paper: 

Indices: 

݊  Number of items  
݅   Index of items 

Parameters: 

   ௜ଵ Penalty cost per unit for i-th itemߨ
 ௜ଶ Marginal profit per unit for i-th itemߨ
ܿ௜  Purchasing cost per unit for i-th item 

௜݂   Space used per unit for i-th item 
 ௜  Ordering cost per order for i-th itemܣ
௜ߠ ) ௜   Backorder parameterߠ ൒ 0) for i-th item 
 Maximum inventory investment for all items   ܤ
 Maximum available space for all items   ܨ
 
Decision variables: 

ܳ௜ Order quantity for i-th item 
ܴ௜  Reorder point (which is replace by safety factor) for i-th item 
݇௜   Safety factor for i-th item 
 ௜  The fraction of demand which is backordered during stockout period for i-th itemߚ
 
Random variables: 
 
 ௜ Demand rate per unit time for i-th itemܦ
 ௜  Length of lead time for i-th itemܮ
 ௜  Demand during lead time for i-thݔ
 ା Maximum value of x and 0ݔ
 ሺ·ሻ Mathematical expectationܧ 
 

The developed model is based on these assumptions: 
 Shortage is allowed and partially backlogged. 
 Demand rate ܦ௜ is a random variable with mean ܧሺܦ௜ሻ and standard deviation ߪ஽೔

. 
 Lead time is randomly distributed with mean ܧሺܮ௜ሻ and standard deviation  ߪ௟೔

. 
 Demand during lead time ݔ௜ is convolution of the demand rate and lead time. If demand rate, 

 ௜ is (Tersineݔ ௜, be independent to each other the mean and variance ofܮ ,௜, and lead timeܦ
(1994)): 

  
௜ሻݔሺܧ ൌ ௜ሻܦሺܧ ൈ  ௜ሻ, (1)ܮሺܧ

௜ሻݔሺݎܸܽ  ൌ ௫೔ߪ
ଶ ൌ ௜ሻܦሺݎܸܽ ൈ ௜ሻܮሺܧ ൅ ൫ܧሺܦ௜ሻ൯

ଶ
ൈ  ௜ሻ. (2)ܮሺݎܸܽ

 The reorder point ܴ௜ is the expected demand during lead time plus safety stock (ss) and 
ݏݏ ൌ ݇௜ ൈ (standard deviation of lead time) i.e. ܴ௜ ൌ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔

 where  ݇௜ is safety factor 
satisfying ܲሺݔ௜ ൐ ܴ௜ሻ ൌ ܲሺݖ௜ ൐ ݇௜ሻ ൌ , ௜ߙ  ௜ represents the standard normal random variableݖ
and ߙ௜ represents the allowable stockout probability during lead time ܧሺݔ௜ሻ.  
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 Inventory is continuously reviewed. The replenishments are made whenever the inventory 
level falls to the reorder point ܴ௜. 

 The purchasing cost for i-th item is paid at the time of order received.  
 
 

3.   Model formulation 
 
The system manager places an order of amount ܳ௜ for i-th item, when the inventory level reaches to 
reorder level. The expected demand during shortage at the end of cycle is: 

௜ݔሺܧ െ ܴ௜ሻା ൌ න ሺݔ௜ െ ܴ௜ሻ݂ሺݔ௜ሻ݀ݔ௜

ஶ

ோ௜
 (3) 

The expected net inventory level at the end of cycle is calculated by (see Fig. 1): 

න ሺܴ௜ െ ௜ሻݔ௜ሻ݂ሺݔ
ஶ

ିஶ
ൈ ௜ݔ݀ ൌ ܴ௜ න ݂ሺݔ௜ሻ݀ݔ௜ െ න ௜ݔ

ஶ

ିஶ
݂ሺݔ௜ሻ ൌ ܴ௜ െ ௜ሻݔሺܧ    

ஶ

ିஶ
  (4) 

 

Fig. 1. The inventory situation when both demand and lead-time are random 

So, the expected number of backorder at the end of cycle is ߚ௜ܧሺݔ௜ െ ܴ௜ሻାand the expected number 
of lost sale at the end of cycle is ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା. The expected net inventory level just before 
the order arrives is ܴ௜ െ ௜ሻ +ሺ1ݔሺܧ െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା and the expected net inventory level at the 
beginning of the cycle is ܳ௜ ൅ ܴ௜ െ ௜ሻ +ሺ1ݔሺܧ െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା and holding cost per cycle is 
calculated as follow (first we do not consider backorder rate): 

 

Fig. 2. Demand function during time 

ሻݐሺܫ ൌ ൫ܳ௜ ൅ ܴ௜ െ ௜ሻ൯ݔሺܧ െ ,        ݐ௜ሻܦሺܧ ௜ܶ ൌ
ܳ௜

௜ሻܦሺܧ
 

(5)

݈݁ܿݕܿ ݎ݁݌ ݐݏ݋ܿ ݈݃݊݅݀݋݄ ൌ ݄௜ ൈ න ൣ൫ܳ௜ ൅ ܴ௜ െ ௜ሻ൯ݔሺܧ െ ݐ൧݀ݐ௜ሻܦሺܧ
்೔

଴
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=ቈ൫ܳ௜ ൅ ܴ௜ െ ௜ሻ൯ݔሺܧ ൈ ௜ܶ െ ௜ሻܦሺܧ ൈ ௜ܶ
ଶ

2ൗ ቉ 
 

ൌ ቈ
ܳ௜

ଶ

௜ሻܦሺܧ2
൅

ܳ௜

௜ሻܦሺܧ
ሺܴ௜ െ ௜ሻሻ቉ݔሺܧ ൈ ݄௜ ൌ

ܳ௜

௜ሻܦሺܧ
൤
ܳ௜

2
൅ ܴ௜ െ ௜ሻ൨ݔሺܧ ൈ ݄௜  

(6)

 

In the above equations, for calculating holding cost per cycle, we don’t consider the fraction demand 
during stockout period which will be backordered (β). It means that all of the demands are 
backordered. If we consider (β), we have lost sales and holding cost per cycle will be changed as 
follow (see Appendix A):  

ܳ௜

௜ሻܦሺܧ
൤
ܳ௜

2
൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା൨ ൈ ݄௜  

(7)

Thus, the mathematical model of the expected cost per cycle can be expressed by: 

෍ ௜ܣ ൅
௜

ܳ௜

௜ሻܦሺܧ
൤
ܳ௜

2
൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା൨ ൈ ݄௜ ൅ ௜ߚ௜ଵߨ ௜ݔሺܧ െ ܴ௜ሻା ൅  

௜ଶሺ1ߨ െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା         (8)

Therefore, the total expected cost per unit time (TECU) is simply calculated by multiplying Eq. (8) in 
the expected number of cycle and model is transformed as follow: 

,ሺܳ௜ܷܥܧܶ ܴ௜, ௜ሻߚ ൌ ordering cost + holding cost + stockout cost 

,ሺܳ௜ܷܥܧܶ ܴ௜, ௜ሻߚ ൌ ෍
௜ሻܦሺܧ

ܳ௜௜

௜ܣ ൅ ൤
ܳ௜

2
൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା൨ ൈ ݄௜ 

 

൅
௜ሻܦሺܧ

ܳ௜
ሾߨ௜ଵߚ௜ ܧሺݔ௜ െ ܴ௜ሻା ൅ ௜ଶሺ1ߨ െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻାሿ 

(9)  

We consider backorder rate as a variable, which is dependent on the expected shortage quantity at the 
end of cycle. It means that when shortage occurs, the larger amount of shortage is, the smaller ratio of 
client can wait and therefore, the smaller backorder rate would be. Thus, backorder will be function 
of the expected shortage quantity, which can be expressed as follow: 

௜ߚ ൌ
1

1 ൅ ௜ݔሺܧ௜ߠ െ ܴ௜ሻା. 
(10)  

Backorder parameter ( ߠ௜ሻ is a positive constant, which exhibits the importance of shortage in 
calculating backorder rate (ߚ௜ሻ. Our objective is to minimize total expected cost per unit time with 
two restrictions, working capital and space and our model is formulated as follow: 

min  ܷܶܥܧሺܳ௜, ܴ௜,   ௜ሻߚ

subject to 

෍ ܿ௜ሾܳ௜ ൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻାሿ ൑ ܤ

௡

௜ୀଵ

, (11)  

෍ ௜݂ሾܳ௜ ൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻାሿ ൑ .ܨ

௡

௜ୀଵ
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According to Tersine (1994), the distribution of demand is normal at the factory level; the Poisson at 
the retail level; and the exponential at wholesale and retail level. In addition, the distribution of lead 
time may be gamma, exponential geometric and normal. Bagchi et al. (1986) discussed elaborately on 
these topics. We relaxed the assumption on the distribution of demand rate lead time and demand 
during lead time with the following assumptions: 

1. The distribution function ܨሺ݀௜ሻ of ܦ௜ belong to the class of distribution function ߬ௗ௜ with finite 
mean ߤ஽௜ and standard deviation  ߪ஽௜ . 

2. The distribution function ܩሺ݈௜ሻ of ܮ௜ belong to the class of distribution function ߬௟௜ with finite 
mean ߤ௅௜ and standard deviation  ߪ௅௜ . 

3. The distribution function ܪሺݔ௜ሻ of ݔ௜ belong to the class of distribution function ߬௫௜ with finite 
mean ߤ௫௜ and standard deviation  ߪ௫௜ .  

Lemma 1: Callego and Moon (1993) 

ܦሺܧ െ ܳሻା ൑
ሺߪଶ ൅ ሺܳ െ ሻଶሻଵ/ଶߤ െ ሺܳ െ ሻߤ

2
, (12)  

where ܳ is overcapacity and ܦ is random variable with mean ߤ and standard deviation ߪ. Using the 
above lemma for any ܪሺݔ௜ሻ א ߬௫௜ , it can be deduced that (see Appendix B): 

௜ݔሺܧ െ ܴ௜ሻା ൑
1
2

ቂඥܸܽݎሺݔ௜ሻ ൅ ሺܴ௜ െ ௜ሻሻଶݔሺܧ െ ൫ܴ௜ െ ௜ሻ൯ቃݔሺܧ ൌ
1
2

ቆට1 ൅ ݇௜
ଶ െ ݇௜ቇ ௫೔ߪ

 
(13) 

Then, with considering the definition of  ߚ and the above inequality, Eq. (13), we have: 

௜ߚ ൌ
1

1 ൅ ௜ݔሺܧ௜ߠ െ ܴ௜ሻା    
(14) 

௜ߚ ൒
1

1 ൅
௜ߠ
2 ቆට1 ൅ ݇௜

ଶ െ ݇௜ቇ ௫೔ߪ

 

 

 
(15) 

If the purchasing cost of i-th item is paid at the time of receiving order then the problem can be 
formulated by objective function with the random working capital and random space constraints, 
which are given below (see Appendix B): 

min ሼܷܥܧܶݖ݅݉݅ݔܽܯሺܳ௜, ݇௜ሻሽ         ܪሺݔ௜ሻ א ߬௫௜                                      

subject to 

෍ ܿ௜ሾܳ௜ ൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻሿ ൑ ,ܤ

௡

௜ୀଵ

 (17)  

෍ ௜݂ሾܳ௜ ൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻሿ ൑ ,ܨ

௡

௜ୀଵ

 

 where maximizing TECU yields, 

We assume that ට1 ൅ ݇௜
ଶ െ ݇௜ ൌ   .ሺ݇௜ሻߩ

 

(16)  
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max ,ሺܳ௜ܷܥܧܶ ݇௜ሻ ൌ ෍ ݄௜ ൬
ܳ௜

2
൅ ݇௜ߪ௫೔

൰ ൅ ݄௜ ൮
ሺ݇௜ሻ2ߩ ቀ

௫೔ߪ

2 ቁ
2

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲

௡

௜ୀ1

൅ 

 

௜ሻܦሺܧ
ܳ௜

൞ܣ௜ ൅ ൦ቌߨ௜ଵ ൈ
ሺ݇௜ሻߩ ቀ

௫೔ߪ

2 ቁ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

ቍ ൅ ൮ߨ௜ଶ ൈ
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲൪ൢ 

 
(18)  

This problem can be solved with using several methods. We use chance-constrained programming 
technique in this paper, which is explained in proposition 1: 

Perposition1: (chance-constrained) as the name indicates, the chance- constrained programming 
technique can be used to solve problems involving chance constrained, i.e. constraints having finite 
probability of being violated, this technique originally developed by Charnes and Cooper (1959).if 
߮ and ߛ are the probabilities of non-violation of the constraints then the constraints can be written 
as: 

ܲ ൥෍ ௜݂ሾܳ௜ ൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻାሿ ൑ ܨ

௡

௜ୀଵ

൩ ൒ ߮ , 0 ൑ ߮ ൑ 1
 

(19) 

ܲ ൥෍ ܿ௜ሾܳ௜ ൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻାሿ ൑ ܤ

௡

௜ୀଵ

൩ ൒ ߛ , 0 ൑ ߛ ൑ 1
 

(20) 

 

First, we use chance-constrained technique for space constraint: 

߮ ൑ ܲ ൞෍ ௜݂ܧሺݔ௜

௡

௜ୀଵ

ሻ െ ෍ ௜݂ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲ ൅ ܨ ൒ ෍ ௜݂ሺܳ௜ ൅ ܴ௜ሻ

௡

௜ୀଵ

௡

௜ୀଵ

ൢ (21)  

Thus, with Markov inequality formulation above Eq. (21) is changed as follow: 

ܲሺݔ ൒ ܽሻ ൑
ሻݔሺܧ

ܽ
               ሺݕݐ݈݅ܽݑݍ݁݊݅ ݒ݋݇ݎܽܯሻ 

 

߮ ൑ ܧ ൦෍ ௜݂ܧሺݔ௜ሻ െ ෍ ௜݂ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲ ൅ ܨ

௡

௜ୀଵ

௡

௜ୀଵ

൪ ෍ ௜݂ሺܳ௜ ൅ ܴ௜ሻ

௡

௜ୀଵ

൙
 
 

(22)  

Or 

߮ ෍ ௜݂ሺܳ௜ ൅ ܴ௜ሻ

௡

௜ୀଵ

൑ ෍ ௜݂ܧሺݔ௜ሻ െ ෍ ௜݂ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲ ൅ ܨ

௡

௜ୀଵ

௡

௜ୀଵ
(23)  

 

By the similar way working capital constraint is changed as follow: 
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ߛ ෍ ܿ௜ሺܳ௜ ൅ ܴ௜ሻ

௡

௜ୀଵ

൑ ෍ ܿ௜ܧሺݔ௜ሻ െ ෍ ܿ௜ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲ ൅ ܤ ሺ25ሻ

௡

௜ୀଵ

௡

௜ୀଵ

 

Therefore, our model is reduced to: 

(24)  

min ሼmax ,ሺܳ௜ܷܥܧܶ ݇௜ሻሽ 

max ,ሺܳ௜ܷܥܧܶ ݇௜ሻ ൌ ෍ ݄௜ ൬
ܳ௜

2
൅ ݇௜ߪ௫೔

൰ ൅ ݄௜ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲

௡

௜ୀଵ

൅ 

௜ሻܦሺܧ

ܳ௜
൞ܣ௜ ൅ ൦ቌߨ௜ଵ ൈ

ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

ቍ ൅ ൮ߨ௜ଶ ൈ
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲൪ൢ      

subject to 

ߛ ෍ ܿ௜൫ܳ௜ ൅ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
൯

௡

௜ୀଵ

൅ ෍ ܿ௜ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲

௡

௜ୀଵ

െ ෍ ܿ௜ܧሺݔ௜ሻ െ ܤ ൑ 0

௡

௜ୀଵ

 

߮ ෍ ௜݂ሺܳ௜ ൅ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
ሻ

௡

௜ୀଵ

൅ ෍ ௜݂ ൮
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲

௡

௜ୀଵ

െ ෍ ௜݂ܧሺݔ௜ሻ െ ܨ ൑ 0

௡

௜ୀଵ

 (25)

We can solve this model with Lagrange multiplier method. Therefore, the Lagrange function will be: 

,ሺܳ௜ܷܥܧܶ ݇௜, ,ଵߣ ଶሻߣ ൌ ,ሺܳ௜ܷܥܧܶ ݇௜ሻ ൅  

ଵߣ ൦ߛ ෍ ܿ௜൫ܳ௜ ൅ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
൯ ൅ ෍ ܿ௜ ൮

ሺ݇௜ሻଶߩ ቀ
௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲

௡

௜ୀଵ

െ ෍ ܿ௜ܧሺݔ௜ሻ െ ܤ

௡

௜ୀଵ

௡

௜ୀଵ

൪ ൅ 

 

ଶߣ ൦߮ ෍ ௜݂ሺܳ௜ ൅ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
ሻ ൅ ෍ ௜݂ ൮

ሺ݇௜ሻଶߩ ቀ
௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲ െ ෍ ௜݂ܧሺݔ௜ሻ െ ܨ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

൪ (26) 

To minimize the above unconstrained function, the Kuhn-Tucker condition for the 
minimization of a function subject to two inequality constraints are invoked as follow: 

 

,ሺܳ௜ܷܥܧܶ ߲ ݇௜, ,ଵߣ ଶሻߣ
߲ܳ௜

ൌ 0    ሺ݅ ൌ 1 … ݊ሻ

 

 

(27) 

,ሺܳ௜ܷܥܧܶ ߲ ݇௜, ,ଵߣ ଶሻߣ
߲݇௜

ൌ 0     ሺ݅ ൌ 1 … ݊ሻ
 

(28) 
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ଵߣ ൦ߛ ෍ ܿ௜൫ܳ௜ ൅ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
൯ ൅ ෍ ܿ௜ ൮

ሺ݇௜ሻଶߩ ቀ
௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲

௡

௜ୀଵ

െ ෍ ܿ௜ܧሺݔ௜ሻ െ ܤ

௡

௜ୀଵ

௡

௜ୀଵ

൪ ൌ 0 

 

(29) 

ଶߣ ൦߮ ෍ ௜݂ሺܳ௜ ൅ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
ሻ ൅ ෍ ௜݂ ൮

ሺ݇௜ሻଶߩ ቀ
௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲ െ ෍ ௜݂ܧሺݔ௜ሻ െ ܨ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ

൪ ൌ 0 

 

(30)  

By simultaneously solving the above equations for ܳ௜, ݇௜, ,ଵߣ ଶ ሺ݅ߣ ൌ 1, … , ݊ሻ the minimum point 
,ሺܳ௜ܷܥܧܶ ݇௜ሻ is obtained. Partial derivatives are obtained as follow: 

,ሺܳ௜ܷܥܧܶ ߲ ݇௜, ,ଵߣ ଶሻߣ
߲ܳ௜

ൌ
݄௜

2
െ

௜ሻܦሺܧ

ܳ௜
ଶ ቐܣ௜ ൅ ቎ቌߨ௜ଵ ൈ

ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

ቍ ൅ 

൮ߨ௜ଶ ൈ
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲൪ ൅ ௜ܿߛଵߣ ൅ ଶ߮ߣ ௜݂ൢ ൌ 0 (27)  

 

From partial derivative Eq. (27), ܳ௜ is obtained as follow: 

ܳ௜ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
௜ሻܦሺܧ ൞ܣ௜ ൅ ൦ቌߨ௜ଵ ൈ

ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

ቍ ൅ ൮ߨ௜ଶ ൈ
ሺ݇௜ሻଶߩ ቀ

௫೔ߪ

2 ቁ
ଶ

௜ߠ

1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ߠ

൲൪ൢ

݄௜
2 ൅ ௜ܿߛଵߣ ൅ ଶ߮ߣ ௜݂

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ଵ
ଶ

 

 
 
 
(31)  

 

,ሺܳ௜ܷܥܧܶ ߲ ݇௜, ,ଵߣ ଶሻߣ
߲݇௜

ൌ ݄௜ߪ௫೔
൅ ݄௜ ቀ

௫೔ߪ

2
ቁ

ଶ

௜߬ሺ݇௜ሻߠ ൅
௜ሻܦሺܧ

ܳ௜
ቂቀ

௫೔ߪ

2
ቁ ௜ଵߨሺ݇௜ሻߜ ൅  

ቀ
௫೔ߪ

2
ቁ

ଶ

௜ଶ቉ߨ௜߬ሺ݇௜ሻߠ ൅ ଵߣ ቀ
௫೔ߪ

2
ቁ

ଶ

௜߬ሺ݇௜ሻܿ௜ߠ ൅ ଶߣ ቀ
௫೔ߪ

2
ቁ

ଶ

௜߬ሺ݇௜ሻߠ ௜݂ ൅ ௫೔ߪ௜ܿߛଵߣ
൅ 

ଶ߮ߣ ௜݂ߪ௫೔
ൌ 0  

where 

 
 
 
 

(28)  

߬ሺ݇௜ሻ ൌ

2

ۉ

ۇ ݇௜

ට1 ൅ ݇௜
ଶ

െ 1

ی

ۊ ሺ݇௜ሻߩ ቀ1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ቁߠ െ ௜ߠ

ۉ

ۇ ݇௜

ට1 ൅ ݇௜
ଶ

െ 1

ی

ۊ ቀ
௫೔ߪ

2 ቁ ൫ߩሺ݇௜ሻ൯
ଶ

ቀ1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ቁߠ
ଶ  
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ሺ݇௜ሻߜ ൌ
ۉ

ۇ ݇௜

ට1 ൅ ݇௜
ଶ

െ 1

ی

ۊ ቀ1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ቁߠ െ ௜ߠ

ۉ

ۇ ݇௜

ට1 ൅ ݇௜
ଶ

െ 1

ی

ۊ ቀ
௫೔ߪ

2 ቁ ሺ݇௜ሻߩ

ቀ1 ൅ ሺ݇௜ሻߩ ቀ
௫೔ߪ

2 ቁ ௜ቁߠ
ଶ  

 

௜ߚ 
 :is obtained as follow כ

௜ߚ
כ ൌ

1

1 ൅
௜ߠ
2 ቆට1 ൅ ݇௜

ଶ െ ݇௜ቇ ௫೔ߪ

            ሺ݅ ൌ 1 … ݊ሻ
(32) 

The solution procedure is as follow:  

Step1 obtain from partial derivative of Eq. (27), ܳ௜ in Eq. (31). Put ܳ௜ሺ݅ ൌ 1 … ݊ሻ in Eq. (28), Eq. 
(29) and Eq. (30) . 

Step2 obtain ߣଵ, ଶ ܽ݊݀ ݇௜ሺ݅ߣ ൌ 1 … ݊) by the simultaneously solving Eqs (28), (29), (30).   

Step3 put ߣଵ, ଶ ܽ݊݀ ݇௜ሺ݅ߣ ൌ 1 … ݊ሻ in (31) and find ܳ௜ሺ݅ ൌ 1 … ݊ሻ. 

Step4 put ݇௜ሺ݅ ൌ 1 … ݊ሻ in Eq. (32) and find ߚ௜ሺ1 … ݊ሻ. 

Step5 put ݇௜ሺ݅ ൌ 1 … ݊ሻ and  ܳ௜ሺ݅ ൌ 1 … ݊ሻ and  ߚ௜ሺ݅ ൌ 1 … ݊ሻ in Eq. (26) and find TECU. 

 
4. Numerical examples 
 

Example1: To illustrate the developed model, consider the numerical data, which has been stated in 
Table 1 (two items have been considered). Table 2 shows the distribution functions of monthly 
demand and lead time in days. These two distribution functions are independent. The maximum 
inventory investment is ܤ ൌ 15000 $ and the total space is ܨ ൌ ߛ  ଶ. We considerܯ 13000 ൌ
0.9 ܽ݊݀ ߮ ൌ 0.9. 

Table 1  
The model’s parameter 
Product hi  

per unit per month 
ci  
per unit 

fi  
per unit 

ૈi1 
per unit 

ૈi2  
per unit 

Ai 
per cycle 

1 10 55 65 10 12 45 
2 3.5 77 50 8.5 10 54 
 

Table 2  
The distribution functions of monthly demand and lead time in day 
Monthly 
demand D1  

Probability 
   f(d1) 

Lead time 
L1 

Probability 
  f(l1) 

Monthly 
demand D2 

Probability 
   f(d2) 

Lead time 
L2 

Probability 
  f(l2) 

385 0.06 4 0.1 530 0.09 1 0.1 
393 0.15 5 0.23 540 0.15 2 0.15 
398 0.31 6 0.35 549 0.26 3 0.50 
405 0.35 7 0.30 554 0.30 4 0.25 
412 0.13 8 0.02 557 0.20   
 

Mean of distribution demand during lead time is: 

ଵሻܦሺܧ ൈ ଵሻܮሺܧ ൌ ଵሻݔሺܧ ൌ 400 ൈ
6

30
ൌ 80 ݏݐ݅݊ݑ ݎ݁݌  ݄ݐ݊݋݉
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ଶሻܦሺܧ ൈ ଶሻܮሺܧ ൌ ଶሻݔሺܧ ൌ ݎ݁݌ ݏݐ݅݊ݑ 55  ݄ݐ݊݋݉
 
Variance of demand during lead time is: 
 

ଵሻݔሺݎܸܽ ൌ ଵሻܦሺݎܸܽ  ൈ ଵሻܮሺܧ ൅ ൫ܧሺܦଵሻ൯
ଶ

ൈ ଵሻܮሺݎܸܽ ൌ 169 ݏݐ݅݊ݑ ݎ݁݌  ݄ݐ݊݋݉

ଶሻݔሺݎܸܽ ൌ ଶሻܦሺݎܸܽ  ൈ ଶሻܮሺܧ ൅ ൫ܧሺܦଶሻ൯
ଶ

ൈ ଶሻܮሺݎܸܽ ൌ 324 ݏݐ݅݊ݑ ݎ݁݌  ݄ݐ݊݋݉
 
In the Table below, we consider different values for backorder parameter, which is shown the 
importance of shortage for i-th item. When importance of shortage for i-th item is increased, the 
safety factor for i-th item will be increased, consequently. It means that the safety stock and holding 
cost is increased and optimal ordering quantity is decreased by Eq. (31).  Table 3 shows that the 
larger amount of backorder rate is, the smaller amount of total expected cost (TECU) would be. 

 
 
 
 
Table 3  
Optimal value in terms of various backorder parameters 
  

࢏࢑
כ

 
࢏ࡽ

 כ
 

࢏ࢼ
כ

 
 ࣅ

 
 כࢁ࡯ࡱࢀ

૚ࣂ ൌ ૙ 
૛ࣂ ൌ ૙ 

݇ଵ ൌ 0.64 
݇ଶ ൌ 1.29 

ܳଵ ൌ 74 
ܳଶ ൌ 143

ଵߚ ൌ 1 
ଶߚ ൌ 1

ଵߣ ൌ 0.0074 
ଶߣ ൌ0.00 

 
1516 

૚ࣂ ൌ ૙. ૛૞ 
૛ࣂ ൌ ૙. ૛૞ 

݇ଵ ൌ 0.84 
݇ଶ ൌ 1.46 

ܳଵ ൌ 72 
ܳଶ ൌ 137

ଵߚ ൌ 0.53 
ଶߚ ൌ 0.56

ଵߣ ൌ 0.0099 
ଶߣ ൌ 0.00 

 
1558 

૚ࣂ ൌ ૙. ૞ 
૛ࣂ ൌ ૙. ૞ 

݇ଵ ൌ 0.88 
݇ଶ ൌ 1.49 

ܳଵ ൌ 72 
ܳଶ ൌ 136

ଵߚ ൌ 0.37 
ଶߚ ൌ 0.42

ଵߣ ൌ 0.0109 
ଶߣ ൌ 0.00 

 
1574 

૚ࣂ ൌ ૚ 
૛ࣂ ൌ ૚ 

݇ଵ ൌ 0.91 
݇ଶ ൌ 1.51 

ܳଵ ൌ 72 
ܳଶ ൌ 134

ଵߚ ൌ 0.23 
ଶߚ ൌ 0.26

ଵߣ ൌ 0.0119 
ଶߣ ൌ 0.00 

 
1587 

૚ࣂ ൌ ૞ 
૛ࣂ ൌ ૞ 

݇ଵ ൌ 0.92 
݇ଶ ൌ 1.52 

ܳଵ ൌ 72 
ܳଶ ൌ 133

ଵߚ ൌ 0.05 
ଶߚ ൌ 0.07

ଵߣ ൌ 0.0128 
ଶߣ ൌ 0.00 

 
1605 

૚ࣂ ൌ ૚૙ 
૛ࣂ ൌ ૚૙ 

݇ଵ ൌ 0.92 
݇ଶ ൌ 1.52 

ܳଵ ൌ 72 
ܳଶ ൌ 133

ଵߚ ൌ 0.02 
ଶߚ ൌ 0.04

ଵߣ ൌ 0.0131 
ଶߣ ൌ 0.00 

 
1607 

૚ࣂ ൌ ૚૙૙ 
૛ࣂ ൌ ૚૙૙ 

݇ଵ ൌ 0.92 
݇ଶ ൌ 1.52 

ܳଵ ൌ 72 
ܳଶ ൌ 133 

ଵߚ ൌ 0.003 
ଶߚ ൌ 0.004 

ଵߣ ൌ 0.0131 
ଶߣ ൌ0.00 

 
 1610 

૚ࣂ ൌ ∞ 
૛ࣂ ൌ ∞ 

݇ଵ ൌ 0.92 
݇ଶ ൌ 1.52 

ܳଵ ൌ 72 
ܳଶ ൌ 133

ଵߚ ൌ 0 
ଶߚ ൌ 0

ଵߣ ൌ 0.0131 
ଶߣ ൌ0.00 

 
1611 

 
Example2: In this example, we consider four items and the problem’s inputs are briefly given by 
Table 4. Maximum inventory investment is  ܤ ൌ 15000 $ and total space is ܨ ൌ   .ଶܯ13000

Table 4  
Problem’s input for numerical example 2 
Products hi  

per unit per month
ci 
per unit

fi 
per unit

ૈi1
per unit 

ૈi2  
per unit 

Ai
per cycle

1 10 55 65 10 12 45 

2 3.5 77 50 8.5 10 54 
3 6 80 45 11.5 19 45 

4 8 70 55 10 17 54 
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Other parameters are: 

௫ଵߪ ൌ 13, ௫ଶߪ ൌ 18, ௫ଷߪ ൌ 19, ௫ସߪ ൌ 17, ߛ ൌ 0.9 , ߮ ൌ 0.9, ௜ߠ ൌ 1 (i=1, 2, 3, 4)   

ଵሻܦሺܧ ൌ 400 , ଶሻܦሺܧ ൌ 550  , ଷሻܦሺܧ ൌ 600 , ସሻܦሺܧ ൌ 380  

Final solution is 

ܳଵ
כ ൌ 38 , ݇ଵ

כ ൌ 0.76 , ܳଶ
כ ൌ 48, ݇ଶ

כ ൌ 0.96
ܳଷ

כ ൌ 49 , ݇ଷ
כ ൌ 1.24  , ܳସ

כ ൌ 40, ݇ସ
כ ൌ 0.67 

 
כܷܥܧܶ ൌ ଵߣ  & 5121 ൌ 0.3033 , ଶߣ ൌ 0
ଵߚ

כ ൌ ଶߚ & 0.21
כ ൌ ଷߚ 0.20

כ ൌ ସߚ & 0.23
כ ൌ 0.18 

 
 
 
 
Table 5  
changes in (ܳ௜ , ݇௜ , , ௜ߚ  in terms of changes in maximum working capital and total space (ܷܥܧܶ

 
࢏࢑       

࢏ࡽ כ
כ

 
࢏ࢼ

כ ࣅ       
 
TECU* 

Total space = 13000 
Total capital = 19000 

݇ଵ ൌ 0.77 
݇ଶ ൌ 1.15 
݇ଷ ൌ 1.46 
݇ସ ൌ 0.75 

ܳଵ ൌ 39 
ܳଶ ൌ 63 
ܳଷ ൌ 66 
ܳସ ൌ 47

ଵߚ ൌ 0.21 
ଶߚ ൌ 0.22 
ଷߚ ൌ 0.25 
ସߚ ൌ 0.19

ଵߣ ൌ 0.00 
ଶߣ ൌ 0.240 

 

 

 
4393 

Total space = 10000 
Total capital = 15000 

݇ଵ ൌ 0.63 
݇ଶ ൌ 0.93 
݇ଷ ൌ 1.26 
݇ସ ൌ 0.61 

ܳଵ ൌ 30 
ܳଶ ൌ 46 
ܳଷ ൌ 50 
ܳସ ൌ 36 

ଵߚ ൌ 0.19 
ଶߚ ൌ 0.20 
ଷߚ ൌ 0.23 
ସߚ ൌ 0.17 

ଵߣ ൌ 0.00 
ଶߣ ൌ 0.510 

 

 

 
5461 

Total space = 15000 
Total capital = 20000 

݇ଵ ൌ 0.85 
݇ଶ ൌ 1.21 
݇ଷ ൌ 1.48 
݇ସ ൌ 0.80 

ܳଵ ൌ 51 
ܳଶ ൌ 69 
ܳଷ ൌ 68 
ܳସ ൌ 54 

ଵߚ ൌ 0.22 
ଶߚ ൌ 0.23 
ଷߚ ൌ 0.25 
ସߚ ൌ 0.19 

ଵߣ ൌ 0.126 
ଶߣ ൌ 0.00 

 

 

 
4120 

 

We consider three different values for the maximum inventory investment and maximum space and 
obtain ܳ௜ , ݇௜ ,  .based on these different values. We tabulate final solution in Table 5 ܷܥܧܶ ݀݊ܽ ௜ߚ
According to Table 5, the bigger total space and total inventory investment is, the smaller TECU 
(total expected cost per unit time) would be. 

5.  Conclusion  

The purpose of this study was to extend multi product inventory system by adding two limitations 
(working capital and space) and considering backorder rate as a decision variable which is dependent 
on the expected demand during shortage. It means that when shortage happen, the larger amount of 
shortage is, the smaller ratio of client can wait and therefore, the smaller backorder would be. We 
supposed that distribution of demand during lead time was unknown, but the mean and variance of 
demand during lead time was known. With this assumption, we utilized minimax distribution free 
method to minimize our model. With chance programming method, we transformed our random 
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constraints to the crisp constraints. Then, we applied Lagrange multiplier method to solve our model. 
At the end of paper, we prepared two numerical examples and compared them together. 

Appendix A: 

The reorder point is: 

ܴ௜ ൌ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
 ՜  ݇௜ߪ௫೔

ൌ ܴ௜ െ  ௜ሻ (A.1)ݔሺܧ

Safety stock is: 

ܵ ௜ܵ ൌ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା (A.2) 

 The expected inventory during each cycle is: 

ܫ ҧ ൌ
ܳ௜

2
൅ ܵ ௜ܵ  ՜ ܫ  ҧ ൌ  

ܳ௜

2
൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା 

(A.3) 

The expected cycle length for i-th item is: 

ܳ௜

௜ሻܦሺܧ
 

 (A.4)  

 Therefore, the expected holding cost per cycle is as follow: 

ܳ௜

௜ሻܦሺܧ
൤
ܳ௜

2
൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା൨ ൈ ݄௜ ൌ 

ܳ௜

௜ሻܦሺܧ
൤
ܳ௜

2
൅ ݇௜ߪ௫೔

൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା൨ ൈ ݄௜ 

 
 

(A.5)  

Appendix B 

Since 

ሺݔ௜ െ ܴ௜ሻା ൌ
௜ݔ| െ ܴ௜| ൅ ሺݔ௜ െ ܴ௜ሻ

2
 

(B.1) 

The result follows by taking expectations and by using the Cauchy-Schwarz Inequality: 

௜ݔ|ܧ െ ܴ௜| ൑ ሾܧሺݔ௜ െ ܴ௜ሻଶሿ
ଵ
ଶ ൌ ሾܧሼሺݔ௜ െ ௜ሻሻݔሺܧ െ ሺܴ௜ െ ௜ሻሻሽଶሿݔሺܧ

ଵ
ଶ 

ൌ ሾܧሼሺݔ௜ െ ௜ሻሻଶݔሺܧ െ 2ሺݔ௜ െ ௜ሻሻሺܴ௜ݔሺܧ െ ௜ሻሻݔሺܧ ൅ ሺܴ௜ െ ௜ሻሻଶሽሿݔሺܧ
ଵ
ଶ 

 

(B.2) 

Therefore: 
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௜ݔሺܧ െ ܴ௜ሻା ൌ
௜ݔ|ܧ െ ܴ௜| ൅ ௜ݔሺܧ െ ܴ௜ሻ

2
൑

ටߪ௫೔
ଶ ൅ ሺܴ௜ െ ௜ሻሻଶݔሺܧ െ ሺܴ௜ െ ௜ሻሻݔሺܧ

2
ൌ 

1
2

ቆට1 ൅ ݇௜
ଶ െ ݇௜ቇ ටܸܽݎሺܦ௜ሻ ൈ ௜ሻܮሺܧ ൅ ൫ܧሺܦ௜ሻ൯

ଶ
ൈ ௜ሻܮሺݎܸܽ ൌ

1
2

ቆට1 ൅ ݇௜
ଶ െ ݇௜ቇ ௫೔ߪ

 

 

 

(B.3) 

Because: 

ܴ௜ ൌ ௜ሻݔሺܧ ൅ ݇௜ߪ௫೔
 (B.4) 

 

Total expected cost per unit time is: 

,ሺܳ௜ܷܥܧܶ ܴ௜, ௜ሻߚ ൌ ෍
௜ሻܦሺܧ

ܳ௜௜

௜ܣ ൅ ൤
ܳ௜

2
൅ ܴ௜ െ ௜ሻݔሺܧ ൅ ሺ1 െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻା൨ ൈ ݄௜ 

 

൅
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ሾߨ௜ଵߚ௜ ܧሺݔ௜ െ ܴ௜ሻା ൅ ௜ଶሺ1ߨ െ ௜ݔሺܧ௜ሻߚ െ ܴ௜ሻାሿ 

(B.5) 

From definition of ߚ we have:  

௜ߚ ൌ
1

1 ൅ ௜ݔሺܧ௜ߠ െ ܴ௜ሻା    
(B.6) 

௜ߚ ൒
1

1 ൅
௜ߠ
2 ቆට1 ൅ ݇௜

ଶ െ ݇௜ቇ ௫೔ߪ

   
(B.7) 

With the definition of ߚ and equation (A.4) total expected cost per unit time is changed as follow: 
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(B.8) 

We assume that ට1 ൅ ݇௜
ଶ െ ݇௜ ൌ    ሺ݇௜ሻߩ

Therefore, our model is reduced to: 
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