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 Now-a-days, the offer of credit period to the retailer for settling the account for the units 
purchased by the supplier is considered to be the most beneficial policy. In this article, an 
attempt is made to formulate an economic order quantity model under fuzzy environment where 
delay in payment for the retailer is permissible. The demand rate, ordering cost and selling price 
per item are taken as triangular fuzzy numbers. The α-cut representation method is used to 
calculate the optimum cycle time and total optimum cost. The optimum cycle time and total 
optimum cost in fuzzy sense is de-fuzzified using the centre of gravity method. 
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1. Introduction 

In global market, supplier uses trade credit as a promotion tool to increase his sale and attract new 
retailers. Therefore, in practice, the supplier will allow a certain fixed period (credit period) for 
settling the amount that the supplier owe to retailer for the items supplied. Before the end of the trade 
credit period, the retailer can sell the goods, accumulate revenue, and earn interest. A higher interest 
is charged if the payment is not settled by the end of the trade credit period. Goyal (1985) first studied 
an EOQ model under the conditions of permissible delay in payments. Shah (1993a, 1993b), 
Aggarwal and Jaggi (1995), Hwang and Shinn (1997) extended Goyal’s (1985) model to consider the 
deterministic inventory model with a constant deterioration rate. Shinn et al. (1996) extended Goyal’s 
(1985) model and considered quantity discount for freight cost. Jamal et al. (1997) extended 
Aggarwal and Jaggi (1995) model to allow for shortages. 

Chung (1998) presented the discounted cash flow (DCF) approach for the analysis of the optimal 
inventory policy in the presence of trade credit. Shah and Shah (1998) developed a probabilistic 
inventory model when delay in payment is permissible. Jamal et al. (2000) and Sarker et al. (2000) 
computed interest earned on the selling price and concluded that the retailer should settle his account 
relatively sooner as the unit-selling price increases relative to the unit purchase cost. Chang and Dye 
(2001) extended the model of Jamal et al. (1997) for time dependent deterioration. 
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Teng (2002) proved that it is beneficial for a well-established retailer to put order of smaller size and 
take the benefits of the permissible delay more frequently. Shinn and Hwang (2003) determined the 
retailer’s optimal price and order size simultaneously under the condition of order-size-dependent 
delay in payment. Huang and Chung (2003) extended Goyal’s (1985) model to discuss the 
replenishment and payment policies to minimize the annual total average cost under cash discount 
and payment delay from the retailer’s point of view. Teng et al. (2005) developed the optimal pricing 
and lot sizing under permissible delay in payments by considering the difference between selling 
price and purchase quantity and demand to be price sensitive. Yang-Fu Huang’s (2007) developed 
easy to use procedure to find the optimal ordering policy for the retailer. 

Usually researchers consider different parameters of an inventory model either as constant or 
dependent on time or probabilistic nature for the development of the economic order quantity model. 
However, in the real life situations, these parameters may have little deviations from the exact value, 
which may not follow any probability distribution. In these situations, if these parameters are treated 
as fuzzy parameters, then it will be more realistic. These types of problems are de-fuzzified first using 
a suitable fuzzy technique and then the solution procedure can be obtained in the usual manner. 
Several authors, namely Chang et al. (1998), Lee and Yao (1998), Lin and Yao (2000), Yao et al. 
(2000), De, Kundu and Goswami (2003), De and Goswami (2006) and Gani and Maheswari (2010) 
developed inventory models in fuzzy sense by considering different parameters as fuzzy parameters. 

In this article, we propose an economic order quantity model under the condition of permissible delay 
in payments in the fuzzy sense. The demand rate, ordering cost and selling price per item may be 
flexible with some vagueness for their values. In real life situations, all these parameters in an 
inventory model are uncertain, imprecise and the determination of optimum cycle time becomes a 
non-stochastic vague decision-making process. In this situation, a suitable way to model these 
imprecise data is to use fuzzy sets, and to formulate the model in a fuzzy environment. We use the 
centre of gravity method for defuzzifying fuzzy total average cost. Numerical examples are used to 
illustrate the results given in this paper. 

2. Assumptions and Notations 

The proposed mathematical model is based on the following assumptions: 

(a) The inventory system under consideration deals with a single item. 

(b) Replenishment rate is infinite. 

(c) Shortages are not allowed. 

(d) The lead-time is zero or negligible. 

(e) Unit selling price is greater than unit purchasing price. 

(f) The supplier offers the retailer a credit period of (say) M-days. During this time, the retailer 
deposits generated revenue in an interest bearing account. At the end of this period, the retailer pays 
off all units sold, keeping the rest for day-to-day expenses and starts paying for the interest charges 
on the unsold stock. In addition, the following notations are used throughout this paper: 

R  annual constant demand 
R
~

 fuzzy annual demand 
A  ordering cost per order 
A
~

 fuzzy ordering cost 
P         selling price per unit 
P
~

        fuzzy unit selling price 
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C         unit purchase cost 
h  unit inventory holding cost per year excluding the interest charges 
Q         order quantity 
M        the offered trade credit by the supplier to the retailer to settle the account  

cI         interest charged per $ in stock per year by the supplier 

eI         interest earned per $ per year by the retailer 

T  cycle time 
 tq  the inventory level at any instant of time t , Tt 0  

 1K T  the total relevant cost per unit time when TM   

 2K T the total relevant cost per unit time when TM   

 1K T  fuzzy total relevant cost per unit time when TM   

 2K T fuzzy total relevant cost per unit time when TM   

  1U K T  defuzzified value of fuzzy total cost  1K T  

  2U K T defuzzified value of fuzzy total cost  2K T  

1T  the total cycle time when TM   

2T         the total cycle time when TM   

1T  fuzzy total cycle time when TM   

2T  fuzzy total cycle time when TM   

 1U T   defuzzified value of fuzzy total cycle time 1T  

 2U T  defuzzified value of fuzzy total cycle time 2T  

3. Crisp Mathematical Model 

Let  tq  be the inventory level at any time  Ttt 0 . Initially, the stock level isQ . Now, the cost of 
placing an order, 

.
A

OC
T

  (1)

The inventory holding cost per cycle, 

.
2

hRT
IHC   (2)

Regarding interest charged and interest earned we have the following two cases depending on the 
lengths of T and M .These two cases are graphed in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The inventory - time graph 

Q 

   M     T≥M               T  T < M             T        M 

Q  
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Case-1: TM   

During the credit period, the retailer sells items and deposits the generated revenue into an amount 
bearing account at the interest rate eI  per dollar per year. Therefore, the interest earned per unit time 

is, 

1

0

M
ePI

IE Rtdt
T

 
2

2
ePI RM

T
 . 

(3)

The unsold items in stock are charged at interest rate cI by the supplier at the beginning of timeT . 

Therefore, the interest charged per unit time is, 

 1

T
c

M

CI
IC R T t dt

T
 

2( )

2
cCI R T M

T


 . 

(4)

Hence, the total cost per time unit is, 

 1 1 1K T OC IHC IC IE    . (5)

Case-2: TM   

In this case, the retailer sells RT  units by the end of the cycle time and has CRT  in his account to 
pay the supplier in full by the end of the credit period M . Hence, the interest earned per unit time is, 

 2

0

T
ePI

IE Rtdt Q M T
T

 
   

 
  

2

2
ePI RT

RT M T
T

 
   

  2e

T
PI R M

   
 

. 
 

(6)

Hence, the total cost per unit time is, 

 2 2K T OC IHC IE   . (7)

Hence, the total relevant cost  TK  per time unit is, 

 
 
 

1

2

,

,

K T M T
K T

K T M T

 


 
 

(8)

where, 

 
2 2 2 2

1

( )
,

2 2 2 2 2 2 2
c e c c e

c

CI R T M PI RM CI RT CI RM PI RMA hRT A hRT
K T CI RM

T T T T T T


           

 

(9)

and 

 2 2 2e

A hRT T
K T PI R M

T
     
 

. 
(10)

One can easily check that,    1 2K M K M . So  TK  is continuous function of T . Corresponding to 

the cost  1K T , optimal cycle time 1T  is obtained by taking the first-order and second-order derivative 

of Eq. (9) with respect toT . We obtain, 
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  2 2
1

2 2 22 2 2 2
c c e

dK T CI R CI RM PI RMA hR

dT T T T
      . 

(11)

and 

 2 2 2
1

2 3 3 3

2
0c e

d K T CI RM PI RMA

dT T T T
    . 

(12)

For the optimal cycle time 1T , let 
 1 0

dK T

dT
 , which gives 

 
 

2

1

2 c e

c

A RM CI PI
T

R h CI

 



. 

(13)

Now, corresponding to the cost  2K T , optimal cycle time 2T  is found out by taking the first-order 

and second-order derivative of equation (10) with respect toT . We obtain, 

 2
2 2 2

e
dK T PI RA hR

dT T
    , 

(14)

and 

 2
2

2 3

2
0.

d K T A

dT T
   

(15)

Therefore, for the optimal cycle time 2T , 2 ( )
0

dK T

dT
 , which gives 

 2

2

e

A
T

R h PI



. 

(16)

4. Fuzzy Methodology 

Here RA, and P  are not known precisely and let RA, and P  be defined by triangular fuzzy numbers 
such that 

                 1 2 3[ , , ]A a a a ,  1 2 3, ,R r r r  and  1 2 3, ,P p p p , 

where  1 2 3a a a  ,  1 2 3r r r   and  1 2 3p p p   based on subjective judgments. We apply 

arithmetic operators based on fuzzy quantities and then defuzzify the same to convert them into crisp 
output. 

The membership functions for RA
~

,
~

 and P
~

 are defined as follow : 

 

1

1
1 2

2 1

3
2 3

3 2

3

0           , if  

 , if   

 , if   

0           , if 

A

A a

A a
a A a

a a
A

a A
a A a

a a

A a




   


    
 







 

 

 

(I) 
 

1

1
1 2

2 1

3
2 3

3 2

3

0            , if  

 , if  

 , if  

0            , if  

R

R r

R r
r R r

r r
R

r R
r R r

r r

R r




   


    
 







 

 

(II)
 

1

1
1 2

2 1

3
2 3

3 2

3

0             , if  

   , if 

   , if 

0              , if 

P

P p

P p
p P p

p p
P

p P
p P p

p p

P p




   


    
 







 

 

(III)

Now using the concept of '' cut  method, we see from (I), (II), (III), 

                2 1 1 3 3 2,A a a a a a a             for  1,0  , 
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                2 1 1 3 3 2,R r r r r r r                 for  1,0  , 

                2 1 1 3 3 2,P p p p p p p                for  1,0  . 

Then these fuzzy quantities are de-fuzzified to a crisp value by the ‘centre of gravity’ method. 

5. Fuzzy Inventory model 

In the fuzzy environment, we assume that the demand rate, ordering cost and selling price are fuzzy 

numbers and denoted by AR
~

,
~

 and P
~

 respectively. Here, we assume that  1 2 3, ,R r r r , 1 2 3[ , , ]A a a a  

and  1 2 3, ,P p p p  are non-negative triangular fuzzy numbers. 

5.1 Derivation of  1K T  and  2K T  

The fuzzy annual total relevant cost can be expressed as, 

 
 
 

1

2

,

,

K T M T
K T

K T M T

  






 

 
(17)

where  

 1 11 12 13 ,K T X A X R X PR       (18)

 2 21 22 23 ,K T X A X R X PR       (19)

where 11 21

1
X X

T
  ,

2

12 2
2 2

cCIhT M
X T M

T

 
    

 
,

2

13 2
eI M

X
T

  , 22 2

hT
X  and

23 2e

T
X I M

    
. Then using the concept of '' cut  method for  1K T  we get, 

 1 11 12 13K T X A X R X PR

        

      

           
           

11 2 1 1 12 2 1 1 13 2 1 1 2 1 1

11 3 3 2 12 3 3 2 13 3 3 2 3 3 2

,

.

X a a a X r r r X p p p r r r

X a a a X r r r X p p p r r r

   

   

          
 

           
 

(20) 

We put 0  and 1  in Eq. (20) and obtain an approximate triangular fuzzy number for  1K T  

as below:  

   1 11 1 12 1 13 1 1 11 2 12 2 13 2 2 11 3 12 3 13 3 3 11 12 13
, , , , ,K T X a X r X p r X a X r X p r X a X r X p r k k k          

 , (21) 

 where 11 1 12 1 13 1 111
X a X r X p rk    , 11 2 12 2 13 2 212

X a X r X p rk    and 11 3 12 3 13 3 313
X a X r X p rk    . 

Thus, the membership function for  1K T  is given as: 

 
1

1 11

1 11
11 1 12

12 11
1

13 1
12 1 13

13 12

1 13

0             , if  

 , if  

 , if  

0             , if  

K

K k

K k
k K k

k k
K

k K
k K k

k k

K k




   


    
 





  

 
 
 

(IV)
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  1K T  is de-fuzzified to a crisp value by the ‘center of gravity’ method. The de-fuzzified  1K T  is 

found as, 

     
      

    
1

1

1 1 1

1 1

1 1

defuzz KR

KR

K T K T dK T
K T K T

K T dK T





 







  
 

 
. 

 
(22)

Similarly, using the concept of '' cut  method for  2K T  yields the following, 

 2 21 22 23 K T X A X R X PR

        

     

           
           

21 2 1 1 22 2 1 1 23 2 1 1 2 1 1

21 3 3 2 22 3 3 2 23 3 3 2 3 3 2

,X a a a X r r r X p p p r r r

X a a a X r r r X p p p r r r

   

   

          
 

           
 

(23)

We put 0  and 1  in Eq. (23) and obtain an approximate triangular fuzzy number for  2K T  

as below:  

   2 21 1 22 1 23 1 1 21 2 22 2 23 2 2 21 3 22 3 23 3 3, ,K T X a X r X p r X a X r X p r X a X r X p r        21 22 23, , ,k k k
 

(24)
 

where  21 1 22 1 23 1 121
X a X r X p rk    , 21 2 22 2 23 2 222

X a X r X p rk     and 21 3 22 3 23 3 323
X a X r X p rk    . 

Thus, the membership function for  2K T  is given as: 

                 
2

2 21

2 21
21 2 22

22 21
2

23 2
22 2 23

23 22

2 23

0             , if  

 , if  

 , if  

0             , if  

K

K k

K k
k K k

k k
K

k K
k K k

k k

K k




   


    
 





            

 2K T  is de-fuzzified to a crisp value by the ‘center of gravity’ method. The de-fuzzified  2K T  is 

found as, 

     
      

    
2

2

2 2 2

2 2

2 2

defuzz KR

KR

K T K T dK T
K T K T

K T dK T





 







  
 

 
. 

(25)

5.2 Derivation of 1T  and 2T      

The fuzzy total cycle time can be expressed as, 

1

2

,

,

T M T
T

T M T

  






 

 
(26)

where 

 
 

2

1

2 c e

c

A RM CI PI
T

R h CI

 




  



, 

(27)
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 2

2
.

e

A
T

R h PI







 
 

(28)

From inequality, 
 

 
 

 
3 3 2 2 1 1

2 1 1 3 3 2

a a a a a a

r r r r r r

 
 

                     
 for  1,0 , we have 

            
 

 
 

 
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Then using the concept of '' cut  method for 1T  and we get, 
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(29) 
 

We put 0  and 1  in Eq. (29) and obtain an approximate triangular fuzzy number for 1T  as 

below: 
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where
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Thus, the membership function for 1T   is given as: 
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1T  is de-fuzzified to a crisp value by the ‘center of gravity’ method. The de-fuzzified 1T  is found as, 
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(31)  

Similarly, using the concept of '' cut  method for 2T  and we get, 
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(32)  

We put 0  and 1  in Eq. (32) and obtain an approximate triangular fuzzy number for 2T  as 

below: 
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function for 2T  is given as: 
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2T  is de-fuzzified to a crisp value by the ‘centre of gravity’ method. The de-fuzzified 2T is found as, 
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(34)  

6. Numerical example 

To illustrate the results of the proposed method, we solve the following numerical example. We use 
MAPLE (version 11) software for all these calculations. 

Let  52,50,48
~
A ,  520,500,480

~ R  be triangular fuzzy numbers. 

yearunith //5$ , yearI e
/$/12.0$ , yearI c

/$/15.0$ , unitC /50$ . 

To find the optimal cycle time (between 1T and 2T ) and total optimal cost (between  1 1K T  and

 2 2K T ) for different values of M , we use the following algorithm. The steps are as follows:   

Step-1: Compute 1T and 2T  by solving eq. (31) and (34). 

Step-2: If 1T M , then compute  2T  and  2 2K T , otherwise go to step-3. 

Step-3: If 1T M , then compute  1 1K T . 

Step-4: Find corresponding cycle time and total optimal cost. 
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Table 1 
Optimal cycle time and total average cost for different values of M 

P
~

  04.0M  year 08.0M  year 12.0M  year 
 
 
 122,120,118  

1T  0.123044 0.111723 0.089726 

2T  0.101647 0.101647 0.101647 

 1 1K T  618.409 397.716 110.419 

 2 2K T  696.939 408.747 120.556 

 
 

 162,160,158  

1T  0.120517 0.100102 0.050073 

2T  0.091003 0.091003 0.091003 

 1 1K T  602.630 325.147 -136.841 

 2 2K T  716.027 331.836 -52.3567 

 
 

 220,200,180  

1T  0.117882 0.086404 0.047324 

2T  0.083464 0.083464 0.083464 

 1 1K T  586.220 241.373 -508.040 

 2 2K T  724.258 242.341 -239.579 
 

From Table 1 we conclude that, when M is increasing, the optimal cycle time and optimal cost for 
the retailer is decreasing. In addition, when P  is increasing, the optimal time and optimal cost is 
decreasing. Therefore, from above, we observed that the retailer will not order more quantity to take 
the benefits of the delay payments more frequently when there is a larger difference between the unit 
selling price and the unit purchasing price. 

7. Conclusion 

In this paper, we have developed an EOQ model in the fuzzy sense where delay in payments is 
permissible. The demand rate, ordering cost and selling price are assumed as triangular fuzzy 
numbers. The fuzzy total variable cost and fuzzy cycle time are derived. By the centre of gravity 
method, we de-fuzzified the fuzzy total cost and fuzzy cycle time. Numerical example reveals that a 
higher value of the permissible delay period decreases the total cycle time and total cost of the 
retailer. It is observed that to avail of delay period facility, the retailer should order frequently and 
smaller order.  
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Appendix 

Fuzzy set theory: We include a brief introduction on fuzzy set theory. More details are available in 
Klir et al. (2005) and Lee (2005).  

Definition-1 A fuzzy set is a set where the members are allowed to have partial membership and 

hence the degree of membership varies from 0 to 1. It is expressed as,   XxxxA
A

 )(, ~  

where X is the universe of discourse and )(~ x
A

 is the universe of discourse and 10)(~ orx
A

  

i.e., x is a non-member in A if ,0)(~ x
A

 and x is a member in A if 1)(~ x
A

 . 

Definition-2 If a fuzzy set A is defined on X, for any  1,0 , the  -cuts A  is represented by 
the following crisp set, 

              Strong cuts :    1,0;)(   xXxA
A

 

              Weak :cuts     1,0;)(   xXxA
A

. 

Fuzzy Arithmetic Operations:  We define fuzzy arithmetic operations on fuzzy numbers    in terms of 
the  -cuts. Let, A and B are two fuzzy sets and if ‘’ denotes any of the four basic arithmetic 

operations /),,,(  then a fuzzy set )( BAZ  and RZ  , can be defined as, BABA   )(  

such that ]1,0( . 

However, if ‘’ is a division operator, then  )( BA BA   , such that ]1,0(  and B0 .  

   Theorem-1 (First decomposition theorem) 

                       For every ,XA  

                                 )()(,,
]1,0(

xAxAwhereAA 


 

  

                       From first decomposition theorem, if )( BAZ  and ,RZ   

                                     
]1,0(

)()(





 BABA . 

Since )( BA is a closed interval for each ]1,0( with both A and B fuzzy, )( BA
is also a fuzzy number. 

Definition-3 For the de-fuzzification of a fuzzy set to a crisp value, ‘centre of gravity’ or ‘moment 

method’ is a popular and efficient approach. )(
~

xA is converted to a crisp value by the following 

operation, 
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