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 Random variates play key role in any simulation system and there are different algorithms to 
generate random variates. One of the best algorithms for generating random variates is uniform 
fractional part algorithm. The algorithm has high performance in terms of efficiency, speed and 
simplicity. Although the algorithm has useful results, it is an approximate algorithm. In this 
article, the approximate form of the algorithm has been studied, and some suggestions have also 
been presented. Through acceptance-rejection approach and hat and squeeze function, the 
approximate algorithm is transformed to near exact algorithm. The proposed model of this 
paper has been examined and compared with the traditional one and the preliminary results 
indicate that it performs better than the other existing algorithms.  
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1. Introduction 
 

Random variates play an important role on the implementations of simulation techniques. During the 
past few years, there has been an increasing interest in development of new techniques based on 
random variates. In this article, we introduce a new method to generate random variates from 
continuous distributions. The proposed algorithm called uniform fractional part (UFP) seems to be 
simpler and more efficient compared with other methods of random variates generation despite the 
fact that the method is an approximate one. The primary goal of this article is to present a new near 
exact algorithm based on the previously published work of Ahrens and Dieter (1982). 
There are different methods for generating random variates such as inverse transformation, 
convolution, combination and acceptance-rejection method (Banks, 1998). Among the developed 
algorithms for generating random variates, some of them are more useful and efficient than others but 
inverse transformation is one of the most precise and the simplest ones. The proposed model of this 
paper looks for one random number and it is worth to mention that this kind of method is also used 
for generating of order statistics (Meuwissen & Bedford, 1997). There are some limitations on the 
implementation of inverse transformation method such as the lack of availability of general form and 
closed from  Fିଵ for some continues distributions. However, it is possible to use numerical methods 
such as bisection, secant and Newton-Raphson for generating the function having a complex Fିଵ. 



  646

The combination method is used when distribution function (F) is presentable as convex combination 
of other distributions of Fଵ, Fଶ, etc shown in Eq. (1). This method is applicable to discrete and 
continuous distributions.  

(1)Fሺxሻ ൌ ෍ P୨F୨ሺxሻ
∞

୨ୀଵ

. 

Convolution method is used for distributions in which the value of X can be shown as a sum of 
random variates which is easier than a direct generation of X. In other words, we assume that yଵ, 
yଶ ،...، y୫ exist such that the sum of these values have the same distribution as of X. 
When other methods are not applicable, acceptance-rejection method is used. In this method, a hat 
function is considered for the main function in such a way that the generation of variates is easier 
than this hat function. The proposed model of this paper is based on acceptance-rejection method and 
the details of the implementation is presented in this paper.  

2. Classifications of generation algorithms of random variates 

In order to have a better understanding of characteristics of different methods for generating random 
variates a summary of all these methods are presented in Table 1.  
 

Table 1  
Classification of random variates generation algorithms 

Description Classification in Term of… No. 
Approximate algorithm such as uniform fractional part, search index, 
bisection, secant and Newton-Raphson Interaction, etc.-exact algorithm such as 
inverse transformation method (Devroye, 1982). 

Accuracy 1 

Some algorithms require a certain number of random numbers, but in some 
algorithms the number of random numbers is random itself.  

Number of consumed 
random numbers 

2 

One by one such as composition-several by one like acceptance-rejection-one 
by several-several by several.  

Number of input to output 
random numbers 

3 

Auxiliary algorithms like composition-productive algorithms, inverse 
transformation, etc 

Ability to generate random 
values 

4 

Inverse transformation, convolution, composition, acceptance-rejection. 
Method of generating 
random value 

5 

In non-stationary simulation in which the distribution parameters used during 
the simulation are changed, the algorithm having short term primary setup time 
must be used. But In stationary simulation, if the algorithms have long primary 
setup time as the parameters are not changed during the simulation process are 
used, it is required to implement the algorithm once and therefore, no problem 
is made from point of view of time. 

Setup time 6 

Applicable only for discrete distributions-applicable with continues 
distributions-some special algorithms cover all distributions. 

Type of distribution 
function 

7 

Applicable for all distributions (black box, universal or automatic methods) 
such as TDR-applicable for specific distribution such as polar, for normal 
distribution (Banks et al., 2005) 

Flexibility 8 

Random variates generation from various types of distributions-random variates 
generation of order statistics (Cheng & Feast, 1979)-generation independent 
random variates and truncated values (Kurowicka & Cooke, 2001).  

Application 9 

When the type of distribution is known, we can use the universal methods or a 
special method and when the type of distribution is not clear, we can use Noise 
Pluses, Re sampling Naïve, etc. (Leiva &  Roy, 2011). 

Clearness of type of 
distribution 

10 

 
A desired algorithm of random variates generation for one distribution must include various criteria 
such as speed, precision, simplicity, understanding, scope of usable parameters, number of consumed 
random numbers, required memory, speed of implementation and performance, compiler code length, 
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independency from a machine, etc. (Hung et al., 2010). The method under the study of this article, 
uniform fractional part algorithm, almost covers all the mentioned criteria. Before we introduce 
uniform fractional part method, it is necessary to note that this method is one of the universal or black 
box methods. Although the algorithm has numerous advantages, it is an approximate algorithm. The 
object of this article is to improve precision of the existing algorithm. Initially, we introduce uniform 
fractional part or UFP, which is simpler and efficient compared with other methods of generating 
random variates. This method is based on a statistical hypothesis. First, the method and its 
applications are introduced, and then its near exact algorithm is presented.  
 
3. Description of the uniform fractional part algorithm 
 

This algorithm is one of the latest methods presented by Izady and Mahlooji (2005), and it is an 
approximate algorithm to be used for continues distributions. The algorithm is based on a theorem 
explained as an example on Morgan's book (1984, page 72).  Since we need the details of the 
algorithm we explain the theorem in this section.    

Theorem: fractional part of total two independent random variables with uniform distribution on 
ሾ0,1ሿ, itself has uniform distribution on ሾ0,1ሿ. 

 

 

 

 

 

 

 

Fig. 1. Probabilities associated with ہxۂ  
 

The basic logic of the algorithm is as follows: Initially, an integer value in the scope of x is randomly 
selected (one column in Fig. 1) and then a value Rଶ െ Rଵ, where Rଵ and Rଶ are two independent 
uniform [0,1] random variables are added to make a random variate (Mahlooji et al., 2008).  

Fig. 2. The performance of UFP method 
versus the other methods in terms of time  

Fig. 3. The performance of UFP method versus 
the other methods in terms of p-value 

 

Fig. 2 and Fig. 3 show the advantage of UFP algorithm in terms of the speed and the precession 
compared with other techniques for generating random variates using Gamma distribution. To 
measure how well the data follow a particular distribution Kolmogorov-Smirnov statistic is used. 
Obviously, the better the distribution fits the data, the smaller this statistic will be. The lower this 
statistic is, the bigger test p-values will be which means a better precision of the algorithm. Although 
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some algorithms are more accurate than UFP, their accuracy changes with the modification of the 
parameters and they are not considered robust but UFP is robust with respect the distribution 
parameters.  

There are 9 algorithms considered for generating random variates. The random variates generated by 
algorithm 1, 2 and 3 follow continues distribution function with cut off point, arbitrary cut off points 
and equal area approach, respectively. Algorithm 4 is also based on continues distribution and uses 
different approaches to determine the tails of the distribution. Algorithm 5 applies continues 
distribution function with reduction approach for the number of random numbers used when d=1 and 
algorithm 6 repeats the same procedure using an arbitrary value, d. Algorithm 7 generates the random 
variates using continues distribution function with recycling uniform random number with d=1 and 
algorithm 8 uses an arbitrary d. Finally, algorithm 9 generates the random variates using continues 
distribution function based on generating int(x). The proposed model of this paper uses the idea of 
algorithm 9. Therefore, from the algorithms presented in UFP algorithm evolution, only the steps 
associated with the algorithm 9 is presented as follows:  
 

1) Input p, uniform probability cut off points aଵ, aଶ, … , a୩ and d୧  ൌ  a୧ାଵ െ a୧ for i ൌ 1, . . . , k െ 1, 
2) generate the random number u′ (uniform [0,1] random variables), 
3) calculate the value ቔ୳′

୮
൅ 1ቕand determine the index i, then identify a value for int (x) based on the 

value of i, 
4) generate the random number u on ሾ0, d୧ሿ where d୧ denotes the length of the interval into which X falls 

(uniform [0, d୧] random variables), 
5) deliver X, as  x ൌ ud୧ ൅ a୧ 

4. UFP algorithms  

Algorithm 1 is the primary algorithm of UFP in which the cut off points should have integer values. 
We also need to choose appropriate distribution parameters to maintain the independency condition. 
In the event where x does not follow uniform distribution there may be a correlation between R1 and 
R2. Therefore, algorithm 2 removes the constraint associated with the determination of parameters 
and cut off points include non-integer values. To determine cut off points of the algorithm, we can 
use two approaches of an equal area and variance increase. There are some studies which indicate that 
equal area approach has more advantages than the other ones (Mahlooji et al., 2008). One of the 
problems with UFP algorithm is its inefficiency for the distributions with unlimited boundary. 
Therefore, the solution presented by this algorithm needs to truncate the distribution tails and the 
algorithm 4 performs the foresaid work with the pre-determined precision.  

As the number of random numbers consumed in the algorithm increases, the error in algorithm 
increases too. In order to generate a random variate, UFP main algorithm (algorithm 1) needs three 
random numbers to generate [x]. While algorithm 5 uses integer column for cut off points, eliminates 
the foresaid problem and it only uses two random numbers. In Algorithm 6, the same approach is 
implemented while cut off pointes are defined on desired basis. In algorithm 7, recycle approach of 
random number is used while cut off point has integer values. In this algorithm, the number of 
consumed random numbers is decreased to the lowest value and to generate a random variate, only 
one random number is used. Therefore, algorithm 7 is classified as a one to one algorithm. In 
algorithm 8, the same algorithm for generation of variates is implemented while cut off points are 
defined as desired value. One of the time consuming sections of the algorithm is the generation of the 
values from [x]. Algorithm 9 removes such a problem using equal area approach and generates [x] 
value with index given to each cut off point. Also, in this algorithm, the value obtained from [x], shall 
be summed only with one random number generated within an interval of 0 to d and does not need to 
generate two random numbers, R.  
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5. Various applications of UFP algorithm 

1. Generation of continues random variates such as Gamma, Beta, Normal, etc.: UFP algorithm 
can be used for various continues distribution such as Normal, Gamma, Beta, etc. and shows 
desired results in terms of speed and precision. According to Mahlooji and Izady (2004), the 
speed and precision of this method is robust against the changes of parameters.  

2. Generation of correlated random variates: in some of the simulated models, there is a need to 
generate one random vector as X ൌ ሺxଵ, … , xୢሻT from one special joint distribution (or multi-
variates) in which the single components of its vector may not be independent (Sak et al., 
2010). UFP method is also usable in generation of such independent values in which for 
generation of two values with desired integrated marginal distributions having desired 
correlations, this issue causes no need of making joint function (Mahlooji & Izady, 2004).  

3. Generation of random variates associated with ordering statistics: UFP method is also usable 
for order statistics. Since this method does not need index search as a part of the algorithm, it 
is faster than the other methods for order statistics (Mahlooji et al., 2004).  

4. Generation of random numbers: UFP algorithm has the capability of fast generation of 
random numbers in which UFP and alias have been combined and the final algorithm is 
named UFPG (Mahlooji et al., 2004). Despite linear congruential generators and 
multiplicative recursive generators which have limited length, the length of this generator is 
almost unlimited (its course length is more than four billions) and has various advantages such 
as transfer capability, repeatability, short term primary setup time and passing the various 
statistical tests (such as run, discrepancy and correlation).  

6. The basics of Acceptance-rejection technique 
 

Von Neumann (Banks, 1998) presented the main idea of this method. In acceptance-rejection method, 
in order to generate random points in some of the hard and complicated areas A, it is enough to find a 
simpler area such as B in such a way that the area A is covered. Then starting from region B, random 
points are generated and if the points are also located in the area A, they will be introduced as 
accepted points. Therefore, the accepted points will be distributed uniformly in the interval A and the 
method is called acceptance-rejection method. Squeeze method is a skilled one to promote the 
efficiency of acceptance-rejection methods. In this method, it is supposed that C is an area to be 
surrounded by A and also D is another area to surround A in such a way that D ؿ A ؿ C. Squeeze 
function is used for evaluation of P points generated in B, which may or may not be located in A. To 
avoid time wasting, prior to evaluation of  p א A , if p א D or p ב C, if  P is located in D it is also 
located in A and if there is not P in C, P is not in A either. Efficiency of acceptance and rejection 
methods depends on two things: easiness and generation of variates from B and another one is the 
average number of variates generated from B for generation of a number of A (this quantity is defined 
as |A|

|B| where |A| shows area A). Now a technique is introduced to generate variate to make |A|
|B| 

coefficient closer to 1. In this method, it is supposed that function B is analyzed to Bଵ, Bଶ,… in such a 
way that from each subclass, it is possible to generate variate easier than B. B୨ is the jth  class of B. 
Sampling is as follows. First of all, a section (such as B୨) is randomly selected. Then a point is 
selected uniformly from B୨. If the point is located in A, the point is accepted. To avoid time 
consuming operations, squeeze function is used. The foresaid technique is named as stratified 
acceptance-rejection method. Since random variate x in UFP method is calculated using the equation 
x ൌ intሺxሻ ൅ ud୧, then the first part of this equation shows how the interval of x is generated and the 
next part of the equation generates uniform variate in the determined interval. Due to similarity of 
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this method to the mentioned method, we can use hat and squeeze functions with uniform density 
(Franklin & Sen, 1975). The following assumptions hold with acceptance and rejection method. 

1. another function exists such as h(x) to surround f(x) (it means hሺxሻ ൒ fሺxሻ for all Xs in Fig. 4) 

2. It is possible to generate the random variate from distribution h(x), such points are shown by ሺx, yሻ. 

3. If the graph f(x) is drawn, in this case, the point (x,y) is located in above or below of f(x) curve 
(y ൐ ݂ሺxሻ or y ൑ fሺxሻ). 

The most important factor to determine the desired value is to minimize the space between the two 
charts h and f based on minimizing the number of rejected points. The next important factor in 
determining h is to speed up the generation of variates from this distribution. The average number of 
required points (x,y)  to generate an accepted x is to find the trial rate. It is obvious that the number of 
trial rate in an ideal state is equal to one (Ormann & Erflinger, 1994). The logic of acceptance-
rejection method is shown in Fig. 5. 

 

 

 

 

 

 

Fig. 4. Application of acceptance-rejection method                  Fig 5. Graphic presentation of acceptance-rejection method 

7. The use of acceptance-rejection method on UFP algorithm 

Since the main method (algorithm 9 that is named A′ method) is an approximate one, by defining a 
hat function h(x) and through the use of acceptance-rejection logic, it can be transformed to a near 
exact method. Hat function defined for x, located in the interval ሺa୧ିଵ, a୧ሻ is uniformly defined on 
ሾ0, fሺa୧ିଵሻሿ. The logic for using hat function is that if for the random pair ሺx, yሻ (in which x is 
generated from any method and y is generated from a hat function), the inequality  y ൑ fሺxሻ is 
satisfied then the generated points are dispersed uniformly under f(x) density function and 
consequently, the points have f(x) distribution (because y values are under the density function fሺxሻ 
and has it has a uniform distribution). Nevertheless, in algorithm A, evaluation of acceptance 
condition is a time consuming step for most of distributions. Therefore, the speed of algorithm may 
increase when squeeze function is used. Therefore, a lower limit of S(x) should be found in such a 
way that inequality sሺxሻ ൑ fሺxሻ holds. In this case, if ሺx, vhሺxሻሻ   (v is uniform [0,1] random variables 
and h(x) is hat function) pair values is under S(x) (Squeeze function), we can accept random variate x 
without evaluation of density function.  In fact, in algorithm A, local or piecewise hat function and in 
B, local or piecewise squeeze function are used. Determination of hat and squeeze function depends 
on the form of the function. If the function is descending (such as Fig. 6), hat function for each 
ሾ0, fሺa୧ሻሿ interval is determined and squeeze function is considered uniformly on ሾ0, fሺa୧ାଵሻሿ interval. 
If the foresaid function is an ascending one (fig 7), the hat function is uniform on ሾ0, fሺa୧ሻሿ interval 
and squeeze function is considered uniformly on ሾ0, fሺa୧ାଵሻሿ interval. We apply the definitions of 
squeeze and hat functions in descending situation due to frequency in different distribution functions, 
although the other definitions of hat and squeeze functions are also applicable to UFP algorithm.  

x x 
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Algorithm A (UFP algorithm with hat function) Algorithm B (UFP algorithm with hat and squeeze function) 

1) generate x with ܣ′ algorithm, 
2) generate a random number  ݑ~ݒሺ0,1ሻ, 
3) calculate the value of  ݕ ൌ  ,ሺܽ௜ିଵሻ݂ݒ
4) if  ݕ ൑ ݂ሺݔሻ, then, return x (evaluated 

step for PDF), otherwise; go to step 1. 
 

1) generate x with ܣ′ algorithm, 
2) generate a random number  ݑ~ݒሺ0,1ሻ, 
3) calculate the value of  ݕ ൌ  ,ሺܽ௜ିଵሻ݂ݒ
4) if ݕ ൑ ሻݔሺݏ ൌ ݂ሺܽ௜ሻ, then, return x (evaluated step 

for squeeze function), otherwise; go to step 5. 
5) If ݕ ൑ ݂ሺݔሻ, then, return x (evaluated step for PDF), 

otherwise; go to step 1. 

 

 
 

 

 

 

Fig. 6. Hat and squeeze function for descending functions      Fig. 7. Hat and squeeze function for ascending functions 

Now a situation is considered that the function has maximum and minimum points (fig. 8 and Fig. 9). 
If the foresaid interval includes (M) modes or minimizing points, in this case, the hat function is 
uniformly defined on ሾ0, fሺMሻሿ interval and squeeze is as uniform on ሾ0, fሺa୫୧୬ሻሿ interval. 

 
   

 

 

 

 

 

Fig. 8. Hat and squeeze function for the function has minimum point       Fig. 9. Hat and squeeze function for the function has maximum point 

If the interval is located before or after maximizing or minimizing point, the hat and Squeeze function 
is considered as determined, previously. If the foresaid distribution functions have a more 
complicated form, we define hi and si as follows, 

 (2)  ݄௜ ൌ :ሻݔሼ݂ሺ  ݌ݑݏ ܽ௜ ൑ ݔ ൏ ܽ௜ାଵሽ, 

௜ݏ  (3) ൌ ݂݅݊  ሼ݂ሺݔሻ: ܽ௜ ൑ ݔ ൏ ܽ௜ାଵሽ. 

Therefore, hat and squeeze functions are generated uniformly on ሾ0, h୧ሿ and ሾ0, s୧ሿ. Since we ignore 
many conditions to determine si and hi, the performance of the proposed method will be increased. 

8. Verification of the presented approach  

For verification of the presented corrective approach, the improved algorithms obtained from this 
approaches are compared with the original one. Exponential distribution has been used for 
comparison. Of course, the improved algorithm is applicable for all other continuous distributions. As 
mentioned, the proposed algorithm is the universal one and has no limitation of use for any special 
distribution.  
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For validation, two criteria of speed and precision are used. For speed criterion, one million random 
data have been generated and generation speed has been calculated based on random variate µs. For 
precise criterion also, we calculated P-value parameter based on Anderson-Darling test with 95% 
confidence level. It is worth to mention that the tests have been performed with Borland compiler of 
C++ 5.02 under 32-Bit platform and evaluation parameters have been calculated using Minitab 
software.  Anderson-Darling's A2 statistic defined as follows:  

(4)  Aଶ ൌ െn െ
1
n ෍ሺ2i െ 1ሻ െ ሾln Fሺx୧ሻ െ ln൫1 െ Fሺx୬ି୧ାଵሻ൯ሿ

୬

୧ୀଵ

 

The assumption under the study in this test is as follows:  
H0:       The data follow a specified distribution      
H1:       The data do not follow a specified distribution    
It is worth to mention that presented times in the tables are only for comparison between the original 
method and the improved one. More professional coding can reduce the amount of generating time, 
greatly. An example of generation time of random variates for Beta distribution with other methods 
presented in Table 2 with a more advanced coding program. Because our objective is the comparison, 
the coding has been simplified in this article (Izady, 2005).   

Table 2  
comparison with UFP method with other methods from speed point of views   
Algorithm UFP TDR BPRB BPRS B4PE Sakasegawa Cheng Strip NI Johnk 

Speed(µs) 0.25 1.3 2.3 1.85 2.1 2.7 3.3 1.5 1.4 6.62 

 Table 3  
Comparison of algorithms for approximate state (N=128, P=1/128) 

 

Table 3 shows the result of comparison of various criteria for three algorithms based on exponential 
distribution with various parameters. In the following table, AD means Anderson-Darling test statistic 
value, and R is the numbering average of values rejected from 1000 generated random values. f 
means the number of density function evaluation for generation of 1000 random variates. Number of 
cut off points in Table 3 is equal to 128 sections, which are considered as power of two, and it is due 
to capability of programming language for powers of two. As we can observe from Table 3, the 
foresaid methods are robust and stable compared with the changes of distribution parameters. In 
terms of precision, Algorithm A provides higher P-values and lower Anderson-Darling statistic value 
than ܣ′. Therefore A is more precise than A'. In addition, algorithm B seems to be faster compared 
with two other algorithms. It is due to decreasing number of density function evaluation, which is 

F R AD P-value Speed Algorithm B 
0 0 1.494 0.182 25 A′ 

2 1000 15 0.373 >0.25 27 A 
28 15 0.373 >0.25 27 B 
0 0 1.494 0.182 27 A′ 

1 1000 15 0.373 >0.25 27 A 
28 15 0.373 >0.25 25 B 
0 0 1.494 0.182 27 A′ 

0.5 1000 15 0.373 >0.25 27 A 
28 15 0.373 >0.25 25 B 
0 0 1.494 0.182 27 A′ 

0.25 1000 15 0.373 >0.25 27 A 
28 15 0.373 >0.25 25 B 
0 0 1.494 0.182 27 A′ 

0.1 1000 15 0.373 >0.25 27 A 
28 15 0.373 >0.25 25 B 
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time consuming. In method A, for generation of 1000 random variates, we need 1000 times of density 
function evaluation. This value was decreased to 28 times for algorithm B, which causes speeding up 
the algorithm. The results show that by increasing the value of statistics, the number of density 
function evaluation and also the number of failed values of the algorithm shall decrease the precision 
of the algorithm. Therefore, as far as the value of these two parameters is low, it shows the good 
performance of the proposed algorithm. Afterwards the impact of the number of cut off points 
changes on other factors such as P-value of test, Anderson-Darling statistic value, the number of 
failed value and the number of density function evaluation shall be studied (Table 4-8).   
 
Table 4  
The impact of the number of cut off points on speed of the algorithm  

P=1/64 P=1/128 P=0.0025 P=0.005 P=0.01 p=0.02 p=0.05 
Algorithm Β N=64 N=128 N=400 N=200 N=100 N=50 N=20 

S S S S S S S 
27 27 32 31 31 31 31 A′ 

2 27 27 32 31 31 31 31 A 
25 25 28 28 28 28 28 B 
27 27 32 31 31 31 31 A′ 

1 27 27 32 31 31 31 31 A 
25 25 28 28 28 28 28 B 
27 27 32 31 31 31 31 A′ 

0.5 27 27 32 31 31 31 31 A 
25 25 28 28 28 28 28 B 
27 27 32 31 31 31 31 A′ 

0.25 27 27 32 31 31 31 31 A 
25 25 28 28 28 28 28 B 
27 27 32 31 31 31 31 A′ 

0.1 27 27 32 31 31 31 31 A 
25 25 28 28 28 28 28 B 

 

 
Table 5  
The impact of the number of cut off points on p-value of test 

P=1/64 P=1/128 P=0.0025 P=0.005 P=0.01 p=0.02 p=0.05 
Algorithm Β N=64 N=128 N=400 N=200 N=100 N=50 N=20 

P-V P-V P-V P-V P-V P-V P-V 
0.157 0.182 0.195 0.195 0.186 0.152 0.023 A′ 

2 >0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 A 
>0.25  >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B 
0.157 0.182 0.195 0.195 0.186 0.152 0.023 A′ 

1 >0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 A 
>0.25  >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B 
0.157 0.182 0.195 0.195 0.186 0.152 0.023 A′ 

0.5 >0.25 >0.25 >0.25  >0.25 >0.25 >0.25 0.048 A 
>0.25  >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B 
0.157 0.182 0.195 0.195 0.186 0.152 0.023 A′ 

0.25 >0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 A 
>0.25  >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B 
0.157 0.182 0.195 0.195 0.186 0.152 0.023 A′ 

0.1 >0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 A 
>0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B 
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Increasing the number of division causes the shortening of p and consequently, increasing the 
algorithm precision. Therefore, if p goes toward zero, the precision of this algorithm approaches the 
precision of other exact methods such as inverse transformation method. As it is observed all criteria 
under study shall be remained robust by changing exponential distribution parameter.  
 
Table 6  
The impact of the number of cut off points on Anderson-Darling statistic value 

P=1/64 P=1/128 P=0.0025 P=0.005 P=0.01 p=0.02 p=0.05 
Algorithm Β N=64 N=128 N=400 N=200 N=100 N=50 N=20 

A-D A-D A-D A-D A-D A-D A-D 
1.585 1.494 1.447 1.447 1.481 1.603 3.155 A′ 

2 0.728 0.373 0.318 0.396 0.508 0.895 2.547 A 
0.728 0.373 0.318 0.396 0.508 0.895 2.547 B 
1.585 1.494 1.447 1.447 1.481 1.603 3.155 A′ 

1 0.728 0.373 0.318 0.396 0.508 0.895 2.547 A 
0.728 0.373 0.318 0.396 0.508 0.895 2.547 B 
1.585 1.494 1.447 1.447 1.481 1.603 3.155 A′ 

0.5 0.728 0.373 0.318 0.396 0.508 0.895 2.547 A 
0.728 0.373 0.318 0.396 0.508 0.895 2.547 B 
1.585 1.494 1.447 1.447 1.481 1.603 3.155 A′ 

0.25 0.728 0.373 0.318 0.396 0.508 0.895 2.547 A 
0.728 0.373 0.318 0.396 0.508 0.895 2.547 B 
1.585 1.494 1.447 1.447 1.481 1.603 3.155 A′ 

0.1 0.728 0.373 0.318 0.396 0.508 0.895 2.547 A 
0.728 0.373 0.318 0.396 0.508 0.895 2.547 B 

 

Table 7  
The impact of the number of cut off points on number of failed value 

P=1/64 P=1/128 P=0.0025 P=0.005 P=0.01 p=0.02 p=0.05 
Algorithm Β N=64 N=128 N=400 N=200 N=100 N=50 N=20 

R R R R R R R 
0 0 0 0 0 0 0 A′ 

2 29 15 8 10 18 35 66 A 
29 15 8 10 18 35 66 B 
0 0 0 0 0 0 0 A′ 

1 29 15 8 10 18 35 66 A 
29 15 8 10 18 35 66 B 
0 0 0 0 0 0 0 A′ 

0.5 29 15 8 10 18 35 66 A 
29 15 8 10 18 35 66 B 
0 0 0 0 0 0 0 A′ 

0.25 29 15 8 10 18 35 66 A 
29 15 8 10 18 35 66 B 
0 0 0 0 0 0 0 A′ 

0.1 29 15 8 10 18 35 66 A 
29 15 8 10 18 35 66 B 

 

9. The performance of the algorithm B based on theoretical and experimental results  

Note that the term ଵ
α
 plays an important role on algorithm B which uses acceptance rejection method 

and it is calculated as A౞
A౜

 (Hormann et al., 2004). Consider we truncate 0.001 of the area from the end 
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of the distribution and divide the region of the exponential distribution into 128 segments with 
β ൌ 0.25 and sሺxሻ ൌ fሺa୧ሻ and hሺxሻ ൌ fሺa୧ିଵሻ. Therefore we have, 
A୦ ൌ 1.0117689496751,      Aୱ ൌ 0.973862463238 and A୤ ൌ 0.999. Since we have, 

 (5)  α ൌ
A୦

A୤
 ,   �୦ୱ ൌ

A୦

Aୱ
 

Table 8  
The impact of the number of cut off points on the number of objective function evaluation times 

P=1/64 P=1/128 P=0.0025 P=0.005 P=0.01 p=0.02 p=0.05 
Algorithm Β N=64 N=128 N=400 N=200 N=100 N=50 N=20 

f F F F F f f 
0 0 0 0 0 0 0 A′ 

2 1000 1000 1000 1000 1000 1000 1000 A 
42 28 10 20 31 53 136 B 
0 0 0 0 0 0 0 A′ 

1 1000 1000 1000 1000 1000 1000 1000 A 
42 28 10 20 31 53 136 B 
0 0 0 0 0 0 0 A′ 

0.5 1000 1000 1000 1000 1000 1000 1000 A 
42 28 10 20 31 53 136 B 
0 0 0 0 0 0 0 A′ 

0.25 1000 1000 1000 1000 1000 1000 1000 A 
42 28 10 20 31 53 136 B 
0 0 0 0 0 0 0 A′ 

0.1 1000 1000 1000 1000 1000 1000 1000 A 
42 28 10 20 31 53 136 B 

 

The probability of specified number of iterations for generating one random variate is  pሺI ൌ iሻ ൌ
ଵ
α

ሺ1 െ ଵ
α
ሻ୧ିଵ . The expected number of iterations also is  EሺIሻ ൌ α ൑ �୦ୱ. The variance of the number 

of iterations is varሺIሻ ൌ αሺα െ 1ሻ and the expected number of evaluations of f (density function) for 
generating one random variate is  Eሺ#fሻ ൌ A౞ష౩

A౜
൑ �୦ୱ െ 1. The area between hat and squeeze also 

is A୦ିୱ ൌ A୦ െ Aୱ ൌ 0.03790648 and 

α ൌ 1.012781731,   �୦ୱ ൌ 1.03892386, pሺI ൌ 1ሻ ൌ 0.9873795 ,    pሺI ൌ 2ሻ ൌ 0.0124. 

As we can see, normally, we only need single repetition of the algorithm to generate a random value 
with a given probability, say 99%. The other observation is that we only need a few number iterations 
to reach the final solution. For instance, in this case, we needed only two iterations to reach the 
desired accuracy of 0.012%. For this example, the final solution had a small variance of 0.0129 which 
is a significant small value. Our experimental results also indicate that we need only a few density 
function evaluation. In order to verify our results, we calculate AH and ASboth theoretically and 
experimentally using the following, 
AHሺiሻ ൌ d୧ ൈ fሺa୧ିଵሻ, AH ൌ ∑ AHሺiሻ ASሺiሻ ൌ d୧ ൈ fሺa୧ሻ, AS ൌ ∑ ASሺiሻ, A୤ ൌ 1 െ 0.001 ൌ 0.999.୬

୧ୀଵ
୬
୧ୀଵ   

 In experimental state 1000 data have been generated and the foresaid conditions in table 9 are met. 

 Table 9  
Evaluation parameters in B algorithm with the number of generated, rejected, accepted variates 

evaluated PDF accepted variates rejected variates generated variates 
28 985 15 1000 
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Therefore, the obtained results are as follows: Eሺ#fሻ ൌ 0.028, α ൌ EሺIሻ ൌ 1.015228 .  It is interesting 
to see that the empirical results confirm the theoretical findings.  

10. Conclusions 
In this work, we introduced the importance of random variates in simulation and presented an 
explanation and classification about different random variates algorithms. The proposed model of this 
paper also presented a transformation approximate algorithm as a near exact UFP method. Our 
findings indicate that near exact UFP method outperforms approximate UFP method in generating 
random variates. Future research may be about making all relations theoretical, which has been 
performed in the article as experimental and simulation.  
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