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 This study investigates minimizing the number of weighted tardy jobs on a single machine 
when jobs are delivered to either customers or next station in various size batches. In real 
world, this issue may happen within a supply chain in which delivering goods to customers 
entails costs. Under such circumstances, keeping completed jobs to deliver in batches may 
result in reducing delivery costs; nevertheless, it may add to the tardy jobs, which in turn leads 
to higher costs. In literature review, minimizing the number of weighted tardy jobs is known as 
NP-Hard problem, so the present issue aiming at minimizing the costs of delivering, in addition 
to the aforementioned objective function, remains an NP-Hard problem. In this study, the issue 
is assessed where the customers are numerous, and a mathematical model is presented. We also 
present a meta-heuristic method based on simulated annealing (SA) and the performance of the 
SA is examined versus exact solutions. 
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1. Introduction 

Tardy jobs normally lead to customer dissatisfaction and enterprises always look for solutions to 
minimize them. During the past few decades, there have been significant attempts on minimizing the 
number of weighted tardy jobs on a single machine. However, there are a few studies available about 
the jobs, which are supposed to be delivered as batch to customers when completed. In this case, jobs 
could be delivered immediately to customers after completion, or remain in the system waiting for 
completion of other job/s which are ultimately delivered as single batch to the relevant customer. In 
this batching model, each batch with different sizes from one job to all remains jobs. Obviously, jobs 
remaining in the system increase tardy jobs and increase tardy costs. On the other hand, this may lead 
to decrease frequency of delivery to customers resulting significantly lower delivery costs. 
Optimizing these two values makes the problem more complex but the results are more realistic. This 
problem may occur in a supply chain when the target is to deliver completed jobs to different 
customers. In addition, this can take place within a manufactory where it is necessary to apply several 
processes on one job in order to produce the final product. The jobs with completed processes on a 
single machine must be delivered in the next process as single or as a batch.  
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In order to minimize tardy jobs, the jobs are processed on a single machine that can process at most 
one job at a time, and each job has certain processing time, due date and weight. A job is called on 
time when its completion time is before its due date otherwise it is called as a tardy job. The aim of 
the present research is to study minimizing total weighted tardy jobs as well as delivery costs for jobs 
sent as batches to the customers if all are ready at time zero.  
Moore (1968) explained that this problem can be solved in O(nlogn) in its simplest form, i.e. when all 
jobs are ready to process at time zero and their weights are the same with no delivery cost ( 1 | | ΣwUj 
). Lenstra et al. (1977) investigated the problem of minimizing the number of tardy jobs. According 
to their research, the minimization problem when there is a consideration of release date for jobs, 
|௜ݎ|1 ∑ ௜ݓ ௜ܷ, is an NP-Hard problem. They, also, showed that even when all the weights are equal or 
the form is 1|ݎ௜| ∑ ௜ܷ, again the problem is NP-Hard. Karp (1972) proved that the problem is still NP-
Hard when all delivery times equals d or 1|݀௜ ൌ ݀| ∑ ௜ݓ ௜ܷ. Lawler (1994) illustrated that when there is 
a simultaneous Pi≤Pj and wj≤wi, the relationship between the jobs the problem can be solved using 
Moore’s solution. Lawler, also, considered the problem with preemption assumption, 1|݌݉ݎ݌, |௜ݎ ∑ ௜ܷ, 
and solved it by a dynamic programming algorithm with complexity O(n4) (Lawler, 1990). Carlier 
(1984) proved that the problem of 1|݌௜ ൌ ,݌ |௜ݎ ∑ ௜ܷ (i.e. all processing times are equal to p) might be 
solved in O(n3logn). 
Since the under-investigation problem is NP-Hard, we propose specific methods to solve it, such as 
branch and bound and Meta-heuristic Algorithms. Villarreal and Bulfin (1983) provided a branch and 
bound method for solving 1| | ∑ ௜ݓ ௜ܷ problems with up to 50 jobs. Tang (1990) extended their 
solution to handle problems including up to 85 jobs. Furthermore, Potts and Van Wassenhove (1988) 
proposed a branch and bound solution to solve similar scheduling problems with 1000 jobs and, 
finally, Hallah and Bulfin (2003) increased the number of jobs to 2500 in their solution. 
Potts and Kovalyov (2000) provided a comprehensive review on the scheduling problems when the 
jobs are processed or delivered in batches. They specifically focused on dynamic programming 
approaches to this type of problem. Furthermore, Mason and Anderson (1991) investigated the 
weighted flow time minimization problems in batch delivery systems and proposed a branch and 
bound solution to solve the resulted problem. Hall and Potts (2003) provided dynamic programming 
solutions for a range of scheduling problems with batched delivery systems. Finally, Mahdavi et al. 
(2007, 2008) suggested branch and bound algorithms for weighted sum of flow times in a batched 
delivery system in two cases. The first case considers all jobs are available at the time zero and in the 
presence of ready time and they compared their solutions with Hall and Potts’s (2003) propositions. 
Hall and Potts (2003) presented a similar case to Mahdavi's problem. However, regarding the 
difficulty of the problem, they made some assumptions to make it solvable as follows:  
-Their major assumption is that jobs within a certain batch should be on time, which means there is 

no tardy job on batches.  
- There is no idle time or preemption between two successive jobs on a single machine.  
- Jobs for each customer are sent according to earliest due date (EDD) rule. This rule is only 

applicable when time available for all jobs delivered to a certain customer is the same or zero. 
In this paper, we consider cases in which the weights of all jobs are associated with the same 
customer are equal. This paper is organized as follows. In section two, the problem statement is 
explained and a mathematical model is developed. In section three accuracy of the model is 
investigated and computational experiments are presented. In section four, a SA algorithm is 
proposed and its performance is investigated. Finally, concluding remarks and future research 
directions are given in the last section.   
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2.  Problem definitions  
Consider a scheduling problem where there are N jobs available at the time zero. The Jobs belong to 
F customers each of which has )1( Fjn j ≤≤  orders (i.e. jobs). Processing time ijP , completion time 

ijC , due date  ijd  and weight ijW  are considered for each job where i is job number and j refers to a 

customer. A Job is called on time when its completion time is before its due date (i.e. ijij dC < ) 

otherwise it is called as a tardy job. In the present problem, preemption is not allowed and there is no 
set up time. Each job can be submitted to the relevant customer immediately after completion or it 
can wait for the next job/s in order to be delivered as a batch. For a delayed job i from customer j, the 
tardiness variable ijU  is defined such that it is equal to 1 when the job is tardy and it is equal to 0, 

otherwise. In other words, if ijij dC ≤  then ,0=ijU  else .1=ijU  Note that the completion time of 

each job is equal to the completion time of the last job added to the batch (in other words, it is equal 
to the completion time of the batch); because jobs are not delivered to the related customer unless the 
last one is completed. On the other hand, delivery cost for a batch is considered in the problem, which 
is different for each customer and can be shown by D. Thus, the goal is to minimize the total delivery 
costs for batches plus total delay costs for tardy jobs. Based on equation developed by Graham at el. 
(1979), it can be shown as    1 | | ΣwiUi + ΣDjYj where w is the weight of each job and its value is 
given by delay cost for the job, D is delivery cost for each batch, and Y is a binary variable which will 
be explained later.  

2.1 Proposed mathematical model 
Before developing the mathematical model, it is necessary to explain more about the problem and 
ideas used. First, it is assumed that there are N empty batches (i.e. the total number of jobs). These 
primary batches are called the virtual batches and their order is important. Next, the jobs are allocated 
to them and the process is controlled by the constraints mentioned in this section and the objective 
function is calculated for each stage. In addition, as the jobs are assigned to batches randomly; it 
embraces all scenarios first, and there may be some jobs found within a batch, which do not belong to 
the same customer. To avoid this, we consider some limitations, which would be explained later. 
Certainly, a virtual batch with no job does not really exist and will be removed. Therefore, the order 
of real batches is determined.  
After allocating the jobs, it is necessary to investigate completion time of each job and determine 
whether they are tardy or not. As previously noted the completion time of each job is equal to the 
completion time of the batch, because each job must wait for the last job of that batch. 
It must be mentioned in this model that jobs for a certain customer have the same weight (i.e. delay 
cost), and various customers have different weights.  

Variables 
j is the customer number and Fj ,,1L=  
i is the job number of each customer when nj indicates the number of jobs belonging to 

customer j and ini ,,1L=   

ijW  delay cost of the ith job of the jth customer 

jD  delivery cost of batches belonging to the jth customer 

ijkx  equals 1 if the ith job of the jth customer is in kth batch and equals 0 otherwise 
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jky  equals 1 if there is a job belonging to the kth batch which relates to the jth customer and is equal 
to 0 otherwise 

ijU  equals 1 if the ith job belonging to the jth customer is a delayed job and is equal to 0 otherwise 
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The objective function given in Eq. (1) consists of two terms; the first term indicates the total delay 
costs based on the number of tardy jobs and the second term indicates total delivery costs. Eq. (2) 
shows that each job is placed only within one of the specified batches. If the 2nd job of the 1st 
customer is placed in the 3rd batch (i.e. 213 1x = ), then all 21kx for 3k ≠ would be equal to zero. Eq. 
(3) is the recursive relationship, which determines completion time of each batch. It is equal to total 
processing time of jobs within that batch plus the completion time of previous batch. As each batch 
has a specific number, the order of all is remarkable. Eq. (4) indicates that since every job should wait 
for completing its batch, the completion time of each job is equal to the completion time of the batch. 
Eq. (5) specifies that the job is tardy if its completion time is after the delivery time (i.e. 0ij ijC d− > ). 

This defines binary variable ijU as 1 when job is tardy, otherwise as 0. Eq. (7) specifies that the 

number of batches is equivalent to the number of total jobs and it is possible to remove one or more 
supposed batches due to placing several jobs within a certain batch. The binary variable of jky  is 
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defined such that it is 1 when a job from customer j is placed in the batch, and it is 0 when no job is 
placed. This constraint, furthermore, indicates that each batch is only and only belongs to a single 
customer, if exists. Finally, Eq. (7) indicates the binary values of xijk, Uij and yjk. 

3.  Experiments 
In this section, we examine the performance of the proposed model of this paper using one numerical 
example solved by Lingo software.  

3.1. Example  
As Table 1 shows, the example includes two customers and seven jobs where D indicates the delivery 
cost and W is the delay cost for each tardy job.   

Table 1  
Specifications of Evaluation Case 
Customer No. 1 2 
Job No. 1 2 3 4 1 2 3 
Processing Time 6 10 12 17 10 16 18 
Due Date 8 24 44 85 90 60 31 
 

Two specific states are considered to test the model:  

A) First, it is assumed that for both customers, delivery costs are much more than delay costs (i.e. D >> W). 
In this state, the delivery costs for each batch of customers 1 and 2 are equal to 110 and 120 and the 
delay costs are supposed as 15 and 20, respectively. Obviously, we expect that all jobs associated 
with one customer would be placed within a single batch. In this state, the optimal solution, given the 
small size of the problem, is easily obtained and compared with the result of Lingo. Table 2 presents 
the result of this calculation.  

B) Now consider a case where the delay costs are much higher than the delivery costs ( i.e. D<< W ). 
In this case, the delay costs for customers 1 and 2 are equal to 120 and 130, and the delivery costs are 
supposed to be 20 and 18, respectively. Obviously, unlike the previous state, it is expected to be more 
batches. Table 3 presents the results of the solutions achieved by Lingo and its comparison by 
optimal solution.  As we can observe, the results of the model are consistent with the optimal 
solutions through the two mentioned states. Hence, this confirms the accuracy of the mathematical 
model behavior.  
Table 2  
Results of Lingo  

Input Di Input wi Global Optimum (obtained logically) Result of Lingo  Running Time 

D1 = 110, D2 =120 w1 = 15, w2 = 20 310 310  195 sec 
D1 = 20, D2 = 18 w1 = 120, w2 = 130 234 234  306 sec 

 

3.2 Benefit of the batched delivery system  
To show the benefit of the model from the economical point of view, two states are considered: 1) the 
state in which all jobs are delivered to the customers as soon as they are completed (i.e non-batching 
mode). In this state, Moore (1968) developed an algorithm to obtain the optimal solution when the 
weights (i.e delay costs) of all jobs are supposed to be the same, and 2) the state in which the batched 
delivery system is applied, using the proposed model of this paper.  
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Table 3   
Results 

Optimum cost for 
non-batching case 
(Moor algorithm) 

 
CPU time (lingo) 

Optimum cost for 
batching case (suggested 
model) 

Inputs Number 
of jobs 

Number of 
customers 

730 200 sec 520 70,90,80 21 === wDD  7 2 

755 580 sec 540 55,60,80,70 321 ==== wDDD  10 3 

1485 720 sec 1055 70,60,80,65 321 ==== wDDD  20 3 

 
To compare these two states, we assume that all jobs have equal delay costs. First, we categorize the 
problems in terms of their sizes into two groups of small, and large. Examples with small sizes have 
maximum 10 jobs and 2 customers, while for the case of large-scale problems, there are more than 10 
jobs and 2 customers. Processing times and delivery times for jobs are randomly generated between 1 
to 300. In addition, delivery and delay costs for each customer are randomly generated between 1 to 
100. As it is clear from Table 3, the Lingo software can solve the examples with small and medium 
sized with help of the mathematical model presented in less than 30 minutes. The results of three 
different examples are presented in this table, which compares batching and non-batching cases.  
 
If the number of jobs or customers goes up, according to the complexity of the problem, then the 
running time will increase and practically the problem becomes difficult to solve. We can conclude 
that if the size of the problems in terms of the number of jobs or customers increases, the running 
time in Lingo software will exponentially increase, more resulting from non-linear relationship of the 
mathematical model. This leads to increase the number of nonlinear variables and increase the 
running time. Therefore, using heuristic and meta-heuristic methods such as simulated annealing 
(SA) algorithm are inevitable.  

4. The proposed SA method 
SA is a probabilistic method proposed by Kirkpatrick et al. (1983) and Cerny (1985) to find near-
optimal solutions for some NP-Hard problems. It works by emulating the physical process whereby a 
solid is slowly cooled so that when eventually its structure is so called “frozen”, a minimum energy 
configuration happens. In the SA algorithm, solutions are encoded by a matrix depicted in Fig. 1 
where the rows represent the batches and the columns represent the customers. For instance, if the 
element in row 2 and column 1 is one, the first order of customer 1 is assigned to batch 2. Note that 
the sum of elements in each column of this matrix is equal to 1. The main features of an SA algorithm 
are as follows: 

• Generation of Initial solution, 
• Generation of neighborhoods, 
• Evaluation of new solutions, 
• Acceptance of solutions according to a probability function, 
• Equilibrium condition, 
• Cooling schedule (Updating temperature), 
• Stopping criteria, 

The initial solution is generated by assigning each batch to an order. For generating a neighborhood, a 
column is selected, which shows an order of a customer. Then, the element with value one in this 
column is transferred to a new batch containing either no job or the other jobs of that customer. This 
structure of neighborhood considers the restriction of different jobs in batches (A batch cannot have 
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jobs belonging to different customers). The objective function of the model is applied for evaluation 
of fitness of solutions. The rest of features and parameters of the SA algorithm are listed in Table 4. 

 
Fig.1. Solution representation 

 Table 4 
 The SA parameters/features 
Parameters/ features Value/function 
Initial temperature 100 
Final temperature 0 
Epoc number 3 
Cooling rate (α ) .02 
Cooling schedule α−= −1nn TT
Acceptance probability function TEe /Δ−
 

To evaluate the performance of the algorithm, the results of several instances with different sizes 
solved by two approaches, Lingo software and SA algorithm, are presented in Table 5. As it can be 
seen, the comparison of results shows that the SA algorithm solution provides an appropriate tool for 
scheduling problems with batch delivery systems. 

Table 5 
Comparison of lingo and SA outputs 
Number 
of 
Problem 

Problem size 
(Customer*order) 

SA Objective Value Solver (Lingo) 
Gap 

Avg Best Std Avg CPU Time 
(s) Objective Time 

(s) 
1 2*2 32 31 1 1.2 31 1 0.0% 
2 2*4 122 119 7 4.0 119 173 0.0% 
3 3*6 605 546 41 6.7 546 21600 0.0% 
4 6*7 564 492 45 14.3  - -  - 

 

For each problem, the SA is run five times and the average and the best objective function, the 
average computational time, and the standard deviation of results are presented. To compare the 
results of the SA algorithm with optimal solutions obtained by solver, a quality criterion is defined 
according to the following equation: 

100
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5. Conclusion 
We have presented a model to minimize the number of weighted tardy jobs on a single machine when 
jobs are delivered to the customers or next station as batched. In literature review, minimizing the 
number of weighted tardy jobs is known as NP-Hard problem, so the current issue that seeks to 
simultaneously minimize delivery costs besides of the objective function is still an NP-Hard problem. 
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The presented mathematical model faces nonlinear constraints; consequently, the optimal solution is 
not available using direct implementation of software packages such as Lingo. Therefore, we 
implemented a simulated annealing as a meta-heuristic to solve the resulted problem and the 
implementation of SA was compared with the solution of optimal solutions. Furthermore, regarding 
the low computation time required by the proposed SA algorithm, it seems suitable for real-time 
applications with similar properties. 
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