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 This paper presents production-inventory models for deteriorating items with increasing-steady-
decreasing demand pattern under the effect of inflation and time value of money. This type of 
demand behavior can be observed in some fashion products or seasonal products in general. 
Shortages are allowed with partial backlogging of demand and a two-parameter Weibull-
distribution function is used for the deterioration of items in order to make the models more 
generalized and realistic. The models generate optimal values of initial production run time, 
onset of shortages, production recommencement time, and total production quantity that 
minimizes the total relevant costs of production and inventory for any given set of system 
parameters. Various possible production strategies available for items with variable demand 
pattern are examined to determine the optimal production strategy. The discounted cash flow 
approach and trust region optimization methods are used to obtain the optimal results. The 
Numerical examples and sensitivity analysis show that the optimal production strategy may 
vary with changes in system parameters. 
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1. Introduction 

The classical economic production quantity (EPQ) model assumes constant demand and infinite 
lifetime of items in inventory. Subsequent research efforts have led to the removal of these two 
restrictions in consideration of time varying demand functions and finite lifetimes for inventoried 
items.  This is in line with common experience in day-to-day production and inventory management. 
The time-varying demand functions considered in most EPQ models are unidirectional, i.e. they are 
either continuously non-decreasing or continuously non-increasing function of time. This paper, 
however, focuses on products whose demand variation is a mixture of non-decreasing, constant and 
non-increasing functions of time.  This type of demand behavior can be observed in some seasonal 
items such as fruits, fish, winter cosmetics, fashion apparels, etc. The demand for this class of items 
increases with time at the beginning of its season. It attains a peak and becomes steady at the middle 
of the season and it finally decreases when the time reaches to the end of the season. Unlike products 
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with unidirectional demand pattern, various strategies can be adopted in the production of this type of 
goods. 
The Economic Order Quantity (EOQ) model developed by Harris in 1915 was popularized by Wilson 
in 1934 (Hariga, 1995), while Taft introduced the Economic Production Quantity (EPQ) model in 
1918. Ghare and Shrader (1963) was the first to extend the classical EOQ formula to include 
exponential decay, wherein a constant fraction of on hand inventory is assumed lost due to 
deterioration. Misra (1975) developed the first production lot size model in which both constant and 
variable rate of deterioration were considered (Raafat, 1991). In subsequent models, the deterioration 
rates of the items vary from exponential distribution to gamma, normal or Weibull distributions. 
According to Nahmias (1982), the exponential decay can be derived by assuming that a constant 
fraction of on-hand stock is lost (i.e. deteriorates) each period regardless of the age distribution of 
inventory. Hence, those models with exponential deterioration rate are classified as having constant 
deterioration rate while those with Weibull, normal or other distribution are considered as having 
variable rate of deterioration (Urban 2005). There are also different Production-inventory models 
with constant deterioration rate (Maity & Maiti, 2005;  Hedjar et al., 2004; Yang & Wee, 2003; Yu, 
2007; Alfares et al., 2005; Jaggi et al., 2011). A generalized model in which deterioration and 
production varies continuously with time was developed by Balkhi (2001) while Lo et al. (2007) 
developed an integrated production inventory model with varying rate of deterioration, imperfect 
production processes and inflation. Other models with varying deterioration rate include Pal et al., 
(2008) and Sridevi et al. (2010).  
Allowing shortages in the demand of an inventoried item is one of the extensions to make the 
classical EPQ model suit day-to-day inventory situations. Researchers usually assume complete or 
partial backlogging of demand during shortages. Many researchers assume partial backlogging of 
demand, which is more realistic in real life inventory situations. One way of considering partial 
backlogging is to assume that a constant fraction of demand during shortages is backlogged. This is 
the method adopted by Goyal and Giri (2003), Jolai et al. (2006), Lo et al. (2007), Taleizadeh et al. 
(2010), and others. Yang (2005) proposed that in many real-life situations, especially for fashionable 
commodities and seasonal products, the willingness of a customer to wait for backlogging during a 
shortage period is declining with the length of the waiting time. The longer the waiting time is, the 
smaller the backlogging rate would be. Papachristos and Skouri (2000), Ouyang et al. (2006), Abad 
(2003), Lin and Lin (2006), Yang (2005), Chang et al. (2006), Chern et al. (2008), etc. assumed that 
the fraction of shortages backordered is a decreasing and differentiable function of the waiting time 
up to the next replenishment.  
Consideration of the effects of time value of money and inflation is another important extension that 
makes recent inventory models applicable to real-life inventory problems. Researchers have 
approached this in two major ways, one of which is to minimize the present worth (PW) of total 
inventory costs over the time horizon after incorporating appropriate discounting factors in all 
relevant cost values. This was the approach adopted by Chung and Tsai (2001), Shah (2006), Chang 
et al. (2002), Moon et al. (2005), Hou (2006), Jolai et al. (2006), Chern et al. (2008) etc. Another 
approach is to maximize the total net present-value (NPV) of profit for the time horizon after 
considering the present-value of profits from sales and present-value of all relevant cost components 
and this method was used by Wee and Law (2001), Dey et al. (2008).  
All the above models considered demand as either constant or single continuously non-decreasing / 
non-increasing function of time and may not be suitable for products whose demand variation is a 
mixture of non-decreasing, constant and non-increasing functions of time.  Hill (1995) developed the 
first model that addresses this type of demand behavior. He proposed a time dependent demand 
pattern that is a combination of two different types of demand in two successive periods over the 
entire time horizon and termed it as ramp-type demand pattern. This pattern is quite different from the 
usual unidirectional time dependent demand patterns mentioned earlier. Mandal and Pal (1998) 
investigated an order-level inventory model for deteriorating items where the demand rate is a ramp-
type function of time. Wu (2001) observed that this type of demand pattern is generally seen in the 
case of new brand of consumer goods coming to the market. The demand rate for such items 
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increases with time up to certain time and then ultimately stabilizes and becomes constant. The works 
of Panda et al. (2009b), Cheng and Wang (2009), Mahata and Goswami (2009) and Abdul and 
Murata (2011) are examples of recent EOQ models with ramp-type demand.  
So far, only few researchers considered the production-inventory problem for deteriorating items with 
ramp-type demand pattern. Manna and Chaudhuri (2006) developed a production-inventory model 
for deteriorating items with ramp-type demand pattern. The demand pattern was a two-phase ramp-
type function modeled by a linear function of time in the first phase and a constant in the second 
phase. Panda et al. (2009a) developed a single item economic production quantity (EPQ) model with 
ramp-type demand function. The model determines the optimal production stopping time to 
maximize total unit profit of the system. Recently, Manna and Chiang (2010) extended the EPQ 
model of Manna and Chaudhuri (2006) to cover items with Weibull-distribution deterioration. These 
EPQ models with ramp-type demand considered only the growth and the steady phases of demand for 
a deteriorating item. Hence, they are not suitable for items with increasing-steady-decreasing demand 
pattern described earlier.  
This paper presents production-inventory models that consider the growth, the steady and the decline 
phases of demand for deteriorating items having increasing-steady-decreasing demand pattern. The 
models use a general ramp-type demand function that allows three-phase variation in demand pattern. 
This pattern represents the various phases of demand commonly observed in many products in the 
market. A two-parameter Weibull-distribution function is used for the deterioration of items in order 
to make the model more generalized and realistic. Shortages are allowed with partial backlogging of 
demand and the effects of inflation and time value of money are incorporated into developing the 
model. We examine various possible production strategies available for items having demand pattern 
variation and use the discounted cash flow approach and trust region optimization methods to obtain 
the optimal production strategy. The paper is organized as follows: Section 1 contains an introduction 
and literature review. The assumptions and notations used in developing the models are presented in 
Section 2 while the proposed models are presented in Section 3. Section 4 deals with the optimal 
solution procedure while numerical examples and conclusions are presented in Sections 5 and 6, 
respectively. 

2. Assumptions and notations 
The following assumptions and notations are used in formulating the models:  

1. The production-inventory cycle consists a single period, of length T. 
2. Deterioration rate is represented by a two-parameter Weibull-distribution function ( ) 1.bt abtθ −=  

3. Production rate, K (t) = α f (t), is a known function of demand rate ( 1).α >  
4. Shortages are allowed and partially backlogged and fraction of demand backlogged is ; (0 1).β β≤ ≤  
5. No repair or replacement of deteriorated items during the period under review is allowed. 
6. i is the inflation rate. 
7. r  is the discount rate representing time value of money. 
8. R (= r – i) represents the discount rate net of inflation. 
9. Set up cost per cycle (AS), production cost per unit (CP), shortage cost per unit (CSH), 

inventory holding cost per unit (CH), are known and constant during the cycle. 
10. Demand rate f (t) is a general time dependent ramp-type function, and is of the form:  

            
( )

( )
( )
( )

( ) ( ) ( ) ( )

, 0 ,

, ,

, .

0, 0, 0 , .

g t t

f t g t

h t t

g t h t g h

μ

μ μ γ

γ

μ γ μ γ

≤ ≤⎧
⎪

= ≤ ≤⎨
⎪ ≥⎩

≥ ≥ ≤ ≤ =

 

The function g (t) can be any continuous, non-decreasing function of time, while h (t) is any 
continuous, non-increasing function of time in the given interval. Parameters ‘µ’ and ‘γ’ represent the 
trend of the ramp-type demand function.  
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3. Model formulation 
The system consists of a single production-inventory cycle whose period begins with zero 
inventories. Production commences at time t = 0, and inventory level rises continuously up to time t = 
t1 after meeting the requirement of demand and deterioration.  Production stops at time t = t1 and 
consumption brings the inventory level to zero at the time t = t2. Shortages occur from time t = t2 to 
time t = t3 after which production commences again up to time t = T, in order to clear the backlog. 
Three different scenarios may arise during the cycle according to the demand pattern exhibited by the 
item during the period. These scenarios are examined below: 

 

Scenario I: 
In this scenario, production commences at time t = 0 and stops while the demand is increasing at time 
t = t1. Consumption follows till the inventory drops to zero and shortage commences. The onset of 
shortages can occur while demand is increasing, constant or decreasing. This leads to three different 
cases, which are considered in Cases I - III below.   
 

Scenario II: 
In this scenario production stops while the demand is constant and consumption continues till the 
inventory drops to zero. The onset of shortages can occur while demand is constant or decreasing. 
This gives rise to two different cases analyzed in Case IV and Case V below.   
 

Scenario III: 
Production continues from time 0=t till such a time when the demand for the item declines (i.e. 1t γ> ). 
The onset of shortages can only be while demand is decreasing and it is examined in Case VI below.  
Each of the Cases described above constitute a Production Strategy. The objective is to determine the 
optimal values of initial production run time 1t

∗ , onset of shortages 2t
∗ , production recommencement 

time 3t
∗ , and total production quantityQ∗  that minimizes total relevant costs of production and 

inventory for each strategy and ultimately the optimal production strategy.  

 Fig. 1. Variation of inventory level with time for Case I 

3.1 Case I: Production stops while demand is increasing and Stock is depleted when demand is 
decreasing (i.e. t1 < µ, t2 > γ) 

The variation of the inventory level, I (t), with time t for the cycle is as shown in Fig. 1. Production 
rate for this model is always greater than the demand rate. The behavior of the production-inventory 
system at different phases is described below with the appropriate differential equations: 
Production begins at t = 0 and stops at t = t1, within the interval consumption due to demand and 
deterioration also takes place. The rate of change of inventory level, ( )AI t , with time is as follows: 

( ) ( ) ( ) ( ) ( ) ( )1,0 ;( 0 0).A
A A

dI t
K t g t t I t t t I

dt
θ= − − ≤ ≤ =

  
(1)

 
I (t) 
 
 
 
 
 
 
 
0       1t     μ                           γ        2t   3t          T      t    
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In the interval [t1, µ], production ceases and consumption continues to reduce the level of 
accumulated inventory. If the inventory level during this interval is represented by ( )BI t , its variation 
with time is as follows: 
 

( ) ( ) ( ) ( ) ( ) ( )1; ;{ }.B
B B C

dI t
g t t I t t t I I

dt
θ μ μ μ= − − ≤ ≤ =

 
(2)

Demand becomes steady during the interval [µ, γ], while demand and deterioration continue to reduce 
inventory level. The rate of change of the inventory level, ( )CI t , with time is as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ), ;{ }.C
C C D

dI t
g t I t t I I

dt
μ θ μ γ γ γ= − − ≤ ≤ =  

 
(3)

When 2t tγ ≤ ≤ , the demand declines and the level of inventory tends to zero at time t = t2 due to 
consumption through demand and deterioration. Variation of inventory level, ( )DI t , with time is as 
follows: 
 

( ) ( ) ( ) ( ) ( )2 2, ;{ 0}.D
D D

dI t
h t t I t t t I t

dt
θ γ= − − ≤ ≤ =

   

 (4)

Shortages occur from time t = t2 to time t = t3 after which production is commenced to clear the 
backlog. The cycle ends at time t = T. Variation of the inventory level with time is as follows: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 2

3

, , 0,

, , 0.

E
E

F
F

dI t
h t t t t I t

dt
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dt

β= − ≤ ≤ =

= − ≤ ≤ =

 
(5)

The solutions of Eq. (1) to Eq. (5) above are as follows: 
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(6)

The present worth of inventory holding cost   is as follows: 
 

( ) ( ) ( ) ( )( )1 2

10
.

t tRt Rt Rt Rt
H A B C Dt

PWHC C I t e dt I t e dt I t e dt I t e dt
μ γ

μ γ

− − − −= + + +∫ ∫ ∫ ∫     (7)

The present worth of shortage cost   is as follows: 
 

( ) ( )( )3

2 3

.
t TRt Rt

SH E Ft t
PWSHC C I t e dt I t e dt− −= − +∫ ∫    (8)

The present worth of loss cost   is as follows: 
 

( ) ( )( )3

2

1 .
t Rt

L t
PWLC C h t e dtβ −= − ∫  

 (9)

The present worth of production cost is as follows: 
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( ) ( )( )1

30
.

t TRt Rt
P t

PWPRC C K t e dt K t e dt− −= +∫ ∫   
(10)

The present worth of set-up cost is as follows: 
3 .Rt

S SPWSUC A A e−= +   (11)
Total relevant cost is as follows: 

( )1 1 2 3, ,TC t t t PWHC PWSHC PWLC PWPRC PWSUC= + + + + .    (12)

The inventory levels at time 1t t=  must be equal and likewise the inventory level at time 3t t= . Hence 
the following constraints apply to the system. 

( ) ( )1 1

3 3

1 2 3

. ,
. ( ) ( ),
. 0 .

A B

E F

I I t I t
II I t I t
III t t t Tμ γ

=

=

< < < < < <
 

   
(13)

The objective is to determine the optimal values of the production run time 1t
∗ , the onset of shortages

2t
∗ , and the production re-commencement time 3t

∗ for the cycle. This is achieved by minimizing the 
total relevant cost ( )1 1 2 3, ,TC t t t subject to the constraints. 
 

3.2 Case II: Production stops while demand is increasing and Stock is depleted when demand is 
steady (i.e. t1 < µ, µ ≤ t2 ≤ γ) 

The behavior of the production-inventory system in the interval [0, µ] is the same as that of Case I 
and the equations are as follows:  
 

( ) ( ) ( ) ( ) ( )1,0 ;( 0 0),A
A A

dI t
K g t t I t t t I

dt
θ= − − ≤ ≤ =  

(14)

( ) ( ) ( ) ( ) ( ) ( )1, ;{ }.B
B B C

dI t g t t I t t t I I
dt

θ μ γ γ= − − ≤ ≤ =
 

(15)
When 2t tμ ≤ ≤ , demand becomes steady at t μ= , while consumption continues till the level of 
inventory drop to zero at time 2t t= . The rate of change of the inventory level, ( )CI t , with time is as 
follows: 
 

( ) ( ) ( ) ( )2 2( ) , ;{ 0}.C
C C

dI t
g t I t t t I t

dt
μ θ μ= − ≤ ≤ = (16)

In the interval 2 3[ , ]t t , shortages occur with partial backlogging of demand while demand changes 
from steady to declining pattern at time t γ= within this interval. Variation of inventory level with 
time during this interval is as follows: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

3

, ;{ 0},

, , .

D
D

E
D E

dI t
g t t I t

dt
dI t

h t t t I I
dt

β μ γ

β γ γ γ

= − < ≤ =

= − ≤ ≤ =

 

                                                                                
 

(17)

At 3t t T≤ ≤ , production is commenced to clear the backlog and the cycle ends at time t T= . The rate 
of change of the inventory level, ( )FI t , with time is as follows: 
 

( ) ( ) ( ) ( )3, , 0.F
F

dI t
K t h t t t T I T

dt
= − < ≤ =  

 

(18)

The solutions of Eq. (14) to Eq. (18) above are as follows: 
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( ) ( ) ( )( )
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(19)

The present worth of inventory holding cost  is as follows: 

( ) ( ) ( )( )1 2

10

t tRt Rt Rt
H A B Ct

PWHC C I t e dt I t e dt I t e dt
μ

μ

− − −= + +∫ ∫ ∫ . (20)

The present worth of shortage cost   is as follows: 

( ) ( ) ( )( )3

2 3

t TRt Rt Rt
SH D E Ft t

PWSHC C I t e dt I t e dt I t e dt
γ

γ

− − −= − + +∫ ∫ ∫ . (21)

The present worth of loss cost   is as follows: 

( ) ( ) ( )( )3

2

1 .
tRt Rt

L t
PWLC C g e dt h t e dt

γ

γ
β μ − −= − +∫ ∫    

(22)

The present worth of production cost is as follows: 

( ) ( )( )1

30
.

t TRt Rt
P t

PWPRC C K t e dt K t e dt− −= +∫ ∫                                                               
(23)

The present worth of set-up cost is as follows: 
3 .Rt

S SPWSUC A A e−= +                                                                                                                   (24)
Total relevant cost is as follows: 

( )2 1 2 3, ,TC t t t PWHC PWSHC PWLC PWPRC PWSUC= + + + + .                   (25)

The following constraints apply to the system for the same reason as given in Case I. 
.0  .    ),()(        ),()(   . 3213311 TtttIIItItIII.tItII FEBA <<<<<<== γμ  

The objective is to determine the optimal values of 1 2 3, ,t t t∗ ∗ ∗ , by minimizing the total variable cost 

( )2 1 2 3, ,TC t t t subject to constraints.   
3.3 Case III: Production stops while demand is increasing and Stock depleted when demand is 
increasing (i.e. t1 < µ , t2 < µ) 

Production begins at t = 0 and stops at t = t1, the rate of change of inventory level with time, ( )AI t  is 
as follows: 

( ) ( ) ( ) ( ) ( )1,0 ; ( 0 0).A
A A

dI t
K g t t I t t t I

dt
θ= − − ≤ ≤ =

 
(26)

Consumption due to demand and deterioration reduce the level of accumulated inventory to zero 
shortly after the time 2t t= . If the inventory level during this interval is represented by ( )BI t , its 
variation with time is as follows: 

( ) ( ) ( ) ( ) ( )1 2, ;{ 0}.B
B B

dI t
g t t I t t t I t

dt
θ μ= − − ≤ ≤ =

(27)

In the interval 2 3[ , ]t t , shortages occur with partial backlogging of demand while demand pattern 
undergoes changes from ( )g t to ( )g μ at time t μ= and later declines at t γ= within the interval. 
Variation of inventory level with time during this interval is as follows: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

2 2

3

, { 0},

, ;{ },

, ; .

C
C

D
C D

E
D E

dI t
g t t t I t

dt
dI t

g t I I
dt

dI t
h t t t I I

dt

β μ

β μ μ γ μ μ

β γ γ γ

= − < ≤ =

= − < ≤ =

= − ≤ ≤ =

 

                                                                             
 
 

(28)

At 3t t T≤ ≤ , production is commenced to clear the backlog and the cycle ends at time t T= . The rate 
of change of the inventory level, ( )FI t , with time in this case, is as follows: 

( ) ( ) ( ) ( )3, , 0.F
F

dI t
K t h t t t T I T

dt
= − < ≤ =  

(29)

The solutions of Eq. (26) to Eq. (29) above are as follows: 
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(30)

The present worth of inventory holding cost, shortage cost, loss cost, production cost, and set-up cost 
are as follows: 

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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(31)

Total relevant cost is as follows: 
( )3 1 2 3, ,TC t t t PWHC PWSHC PWLC PWPRC PWSUC= + + + + .  

(32)  
The following constraints apply to the system: 

.0  .    ),()(        ),()(   . 3213311 TtttIIItItIII.tItII FEBA <<<<<<== γμ  
 

The objective is to determine the optimal values of 1 2 3, ,t t t∗ ∗ ∗ , by minimizing the total variable cost 

( )3 1 2 3, ,TC t t t subject to the constraints. 
  

3.4 Case IV: Production stops while demand is steady and Stock is depleted when demand is steady 
(i.e. µ ≤ t1 ≤ γ, µ ≤ t2 ≤ γ) 

In this case, the cycle begins with production and the accumulated inventory gets depleted gradually 
due to demand and deterioration. Production stops at time  t1 ( 1tμ γ≤ ≤ ) and shortages commences 
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soon afterwards at time t2 ( 2tμ γ≤ ≤ ).The demand pattern changes from ( )g t to ( )g μ before the 

stoppage of production and later from ( )g μ  to ( )h t  after the commencement of shortages.The 
equations of the system are as follows:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

2 2

2 2

3

3

,0 ;{ 0 0},

; ;{ },

, ;{ 0},

, ;{ 0},

, , ,

, , 0.

A
A A

B
B A B

C
C C

D
D

E
D E

F
F

dI t
K t g t I t t t I

dt
dI t

K t g I t t t I I
dt

dI t
g I t t t I t

dt
dI t

g t t I t
dt

dI t
h t t t I I

dt
dI t

K t h t t t T I T
dt

θ

μ θ μ μ μ

μ θ μ

β μ γ

β γ γ γ

= − − ≤ ≤ =

= − − ≤ ≤ =

= − − ≤ ≤ =

= − < ≤ =

= − ≤ ≤ =

= − < ≤ =

 

                                                       
 
 

(33) 

The solutions of Eq. (33) above are as follows: 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

2

2

2

0

0

,

,

,

,

,

.

b b

b b b

b b
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A

tat ax ax
B

tat ax
C t

t

D t

t

E t

t

F T

I t e e K x g x dx

I t e e K x g x dx e K x g dx

I t e e g dx

I t g dx

I t h x dx g dx

I t K x h x dx

μ

μ

γ

γ

μ

μ

β μ

β β μ

−

−

−

= −

= − + −

=

=

= +

= −

∫

∫ ∫

∫

∫

∫ ∫

∫

 

                                         
 
 
 
 

(34)

The present worth of inventory holding cost, shortage cost, loss cost, production cost, and set-up cost 
are as follows: 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1

3

2 3

3

2

1

3

3

0

0

,

,

1 ,

,
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t tRt Rt Rt
H A B Ct

t TRt Rt Rt
SH D E Ft t

tRt Rt
L t

t TRt Rt Rt
P t

Rt
S S

PWHC C I t e dt I t e dt I t e dt

PWSHC C I t e dt I t e dt I t e dt

PWLC C g e dt h t e dt

PWPRC C K t e dt K t e dt K t e dt

PWSUC A A e

μ

μ

γ

γ

γ

γ

μ

μ

β μ

− − −

− − −

− −

− − −

−

= + +

= − + +

= − +

= + +

= +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

 

                                       
 

 (35)

Total relevant cost is as follows: 
( )4 1 2 3, ,TC t t t PWHC PWSHC PWLC PWPRC PWSUC= + + + + .  

(36)
The following constraints apply to the system. 
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The optimal production schedules in this case can be obtained by minimizing ( )4 1 2 3, ,TC t t t subject to 
the constraints stated above. 
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3.5 Case V: Production stops while demand is steady and Stock is depleted when demand is 
decreasing, (i.e. µ ≤ t1 ≤ γ, t2 > γ) 

The behavior of the system in this case is similar to Case IV above, except that, in this case the 
inventory is brought to zero while the demand is decreasing (i.e. 1 2,t tμ γ γ≤ ≤ > ). The demand 
pattern changes from ( )g t to ( )g μ  before the stoppage of production and from ( )g μ  to ( )h t  before 
the commencement of shortages. The equations of the system and the solutions are given in Eq. (37) 
and Eq. (38) respectively. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
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dt
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= − − ≤ ≤ =

= − − ≤ ≤ =

= − − ≤ ≤ =

= − − < ≤ =

= − ≤ ≤ =

= − < ≤ =

 

                                                    
 
 

(37)

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )
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( ) ( )
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=
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∫

∫ ∫

∫ ∫

∫

∫

∫

 

                                           
 
 
 
 
 

(38)

The present worth of inventory holding cost, shortage cost, loss cost, production cost, and set-up cost 
are as follows: 

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( ) ( )( )

1 2
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−
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∫ ∫ ∫ ∫

∫ ∫

∫

∫ ∫ ∫

 

 
 
 
 

(39)

Total relevant cost is as follows: 
( )5 1 2 3, ,TC t t t PWHC PWSHC PWLC PWPRC PWSUC= + + + + . (40)
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The optimal production schedules can be obtained by minimizing ( )5 1 2 3, ,TC t t t subject to the 
constraints below. 

.0  .    ),()(        ),()(   . 3213311 TtttIIItItIII.tItII FECB <<<<<<== μμ  
3.6 Case VI: Production stops while demand is decreasing and Stock is depleted when demand is 
decreasing, (i.e. t1 > γ, t2 > γ) 

The cycle begins with production and it continues till a time ( )1 1t t γ>  when it is stopped. Inventory 

is brought to zero at time ( )2 2t t γ> while the demand rate is ( )h t . Shortage follows and the cycle 

ends at time T. The demand pattern changes twice before production is stopped, first from ( )g t to

( )g μ and later from ( )g μ  to ( )h t . The equations of the system are as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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(41)

The solutions to Eq. (41) are as follows: 
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(42) 

The present worth of inventory holding cost   is as follows: 
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )
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      (43)

Total relevant cost is as follows: 
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( )6 1 2 3, ,TC t t t PWHC PWSHC PWLC PWPRC PWSUC= + + + + .  (44)

As in previous cases the optimal production schedules can be obtained by minimizing ( )6 1 2 3, ,TC t t t
subject to the constraints below. 
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4. Optimal solution procedure 
From the analysis made above, it is obvious that six (6) different strategies need be considered in 
order to determine the optimal production strategy to be used in a production-inventory system with  
deteriorating item having three-phase time varying demand pattern. The optimal strategy will be any 
of the cases considered above that gives the least value of total relevant cost. 
To achieve this we formulate each case considered above as a constrained nonlinear optimization 
problem (CNLOP) and solve it using trust region methods. Trust-region methods have strong 
convergence properties and help to reach local minimum for any given function. According to 
Nocedal and Wright (1999), “the trust-region methods define a region around the current iterate 
within which the model is trusted to be an adequate representation of the objective function, and then 
choose the step to be the approximate minimizer of the model in this trust region”. The CNLOP for 
all cases are as follows:  
Case I:    P1 = min ( )1 1 2 3, ,TC t t t subject to { ( ) ( )1 1 3 3 1 2 3, ( ) ( ),0A B E FI t I t I t I t t t t Tμ γ= = < < < < < < }.  
Case II:   P2 = min ( )2 1 2 3, ,TC t t t subject to { ( ) ( )1 1 3 3 1 2 3, ( ) ( ),0A B E FI t I t I t I t t t t Tμ γ= = < < < < < < }.  
Case III: P3 = min ( )3 1 2 3, ,TC t t t subject to { ( ) ( )1 1 3 3 1 2 3, ( ) ( ),0A B E FI t I t I t I t t t t Tμ γ= = < < < < < < }.  
Case IV: P4 = min ( )4 1 2 3, ,TC t t t subject to { ( ) ( )1 1 3 3 1 2 3, ( ) ( ),0B C E FI t I t I t I t t t t Tμ γ= = < < < < < < }.  
Case V:  P5 = min ( )5 1 2 3, ,TC t t t subject to { ( ) ( )1 1 3 3 1 2 3, ( ) ( ),0B C E FI t I t I t I t t t t Tμ γ= = < < < < < < }.  
Case VI: P6 = min ( )6 1 2 3, ,TC t t t subject to { ( ) ( )1 1 3 3 1 2 3, ( ) ( ),0C D E FI t I t I t I t t t t Tμ γ= = < < < < < < }.  
The equation for each ( )1 2 3, ,iTC t t t is obtained from the characteristics of the system as described in Section 
3.1. Each of the problems above can be solved using trust region methods incorporated in the optimization 
toolbox of software packages like LANCELOT or MATLAB to give the optimal values of * * *

1 2 3, ,t t t and *
iTC for 

each strategy. A strategy will be feasible if constraint qualification holds, otherwise it will be regarded as an 
infeasible strategy. The optimal cost of all feasible strategies are then compared to determine the least cost 
using * * * * * *

1 2 3 4 5 6min[ , , , , , ]TC TC TC TC TC TC TC∗ = , where * * *
1 2 6, ,.... ,TC TC TC are the optimal values obtained 

from the solution to problems P1, P2 …. P6, respectively.   

4.1 Alternative solution procedure 
An alternative procedure is to reduce the problem in each case to an equality constrained problem 
with the following Lagrange function, L:   

( )1 2 3 1 2 1 2 3 1 1 2 2, , , , ( , , ) .iL t t t TC t t t k kλ λ λ λ= + +  (45)

1 2,λ λ are the Lagrange multipliers while 1 2,k k are obtained from the equality constraint equations . 
The necessary condition for the minimization of ( )1 2 3 1 2, , , ,L t t t λ λ  is as follows:  

1 2 3 1 2

0, 0, 0, 0, 0.L L L L L
t t t λ λ
∂ ∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂ ∂

 (46)

The resulting system of equations is then solved to obtain the optimal values of 1 2 3, ,t t t∗ ∗ ∗ (after 
necessary algebraic simplifications) using a robust nonlinear equation solver with the bound 
constraints serving as lower and upper bounds for the variables in the solver’s toolbox. The 
corresponding value of *

iTC is obtained from the relevant equation for each case and the optimal costs 
of all feasible strategies are then compared to determine the least cost using * * * * * *

1 2 3 4 5 6min[ , , , , , ].TC TC TC TC TC TC TC∗ =  
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5.  Numerical examples and sensitivity analysis 
To demonstrate the application of this model for inventory situation of items with varying demand 
pattern and shortages over various phases in their life cycles in the market, some numerical examples 
are considered in this section. The parameters for the examples are as shown in Table 1 below. The 
procedures enumerated in the previous section are used to obtain solutions to the illustrative examples 
and the results obtained are shown in Tables 2- 6. 
Sensitivity analysis was performed to examine the effect of real-world data change on the model’s 
optimal results by using the first numerical example. The values of some of the parameters were 
varied by +50%, +25%, -25%, -50%, taking one at a time while others were kept constant. The effect 
of these changes in values on the optimal results is presented in Table 7. 
The tables of results show that Case I and Case VI give no feasible solution in all examples. This 
shows that Strategy I and Strategy VI are not feasible for all considered problems. In the case of 
Strategy I, production is stopped after a very short time and the accumulated inventory is expected to 
last for a longer time thereafter. This will often be impossible except under circumstances in which 
production rates are far higher than the demand rates. Under such cases, the accumulated inventory 
may be large enough to cater for demand up till towards the end of the season before being exhausted.  
The criteria for the feasibility of a particular production strategy can be obtained by considering the 
balance between the inflow and outflow of items in the production-inventory system before the onset 
of shortages. Since shortage begins when the inventory is exhausted, it follows that all the items 
produced from the beginning of the cycle to the time just before the onset of shortages (i.e. in the 
interval [0, t2]) must be consumed by the total demand and deterioration occurs within that interval. 
Hence, a feasible production strategy must satisfy the criteria given in Eq. (47),  

1 2 2

0 0 0
( ) ( ) ( ) ( )

t t t
K t dt f t dt t I t dtθ

∗ ∗ ∗

= +∫ ∫ ∫  
(47)

The optimal value of production run time and onset of shortages lies between a maximum and a 
minimum value (i.e. 1 min 1 1 max 2 min 2 2 max( ) ( ) ; ( ) ( )t t t t t t∗ ∗≤ ≤ ≤ ≤ ) for each strategy. A quick way to 
determine an infeasible production strategy can be obtained by considering the inequality below: 
Maximum No. of items produced in interval [0, t2] ≥ Minimum No. of items consumed in interval [0, 
t2] 

1 max 2 min 2 min( ) ( ) ( )

0 0 0
( ) ( ) ( ) ( )

t t t
K t dt f t dt t I t dtθ≥ +∫ ∫ ∫  (48)

Eq. (48) can be solved to obtain a criterion that will act as a quick check to determine whether a 
strategy will be infeasible for a given set of system parameters. In the case of Strategy I, Eq. (48) 
gives: 

0

0

( ) ( ) ( )
1

( )

g dt t I t dt

g t dt

γ γ

μ
μ

μ θ
α

+
≥ +

∫ ∫
∫

 
 

(49)

For examples 1, 3 and 5, a necessary criterion for feasibility given by Eq. (49) is  2.7014α ≥  and for 
examples 4 and example 5 it is 4.9723α ≥ and 5.0250α ≥ , respectively. In the considered examples, 
however, these criteria are not met since 1.46α = . Hence, Strategy I is not feasible for all considered 
examples. Similar analysis can be extended to other strategies. It should be noted that Eq. (48) only 
gives a necessary criterion for feasibility of a strategy and not a guarantee that such strategy will be 
feasible. A production strategy will be feasible if its optimal schedules satisfy Eq. (47).    
The significance of the above criterion is that it establishes a relation between production and demand 
rates for the production-inventory system. It is traditionally assumed that production rate is greater 
than demand rate in EPQ models but by how much production rate should be greater is not often 
expressed. For deteriorating items, it is not enough to just assume that production rate will be greater 
than demand rate since items produced are consumed by both production and deterioration. The 
criterion and the examples considered showed that the production rate must be sufficiently greater 
than demand rate in order to meet the requirements of consumption through demand and 
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deterioration.The examples also show that the optimal production strategy may be different, if some 
of the system parameters changes.  This is obvious from the results of Example 3 and Example 5 
where only a change in the discount rate net of inflation (R) changes the optimal production strategy 
from Strategy V (in Example 3) to Strategy IV (in Example 5). This underscores the importance of 
considering several possible strategies for every set of parameters to determine the optimal 
production strategy. Most production inventory models involving varying demand pattern usually 
consider only a single production strategy and derive the optimal results based on that strategy alone. 
The considered strategy may, however, not produce optimal results for some set of parameters. 
   

Table 1  
System parameters for all numerical examples 
System  Parameters EXAMPLES 

1 2 3 4 5 
g (x) 100 5 ,t+  0.01300 te  100 5t+  0.01300 te  100 5 ,t+  
g (µ) 120 0.01(1.2)300e  120 0.01(1.2)300e  120 

h (x) 220 -10t 0.01(1.2 ( 3))300 te − −  220 -10t 0.01(1.2 ( 3))300 te − −  220 -10t 

µ 4 weeks 1.2 months 4 weeks 1.2 months 4 weeks 
γ 10 weeks 3 months 10 weeks 3 months 10 weeks 
T 12 weeks 5 months 12 weeks 5 months 12 weeks 
AS $112.5 $112.5 $60 $125 $60 
CP $6 $6 $4 $10 $4 
CH $0.3 $0.3 $0.2 $0.7 $0.2 
CL $10 $10 $6 $15 $6 
CSH $7 $7 $3.5 $12 $3.5 
a 0.001 0.001 0.001 0.005 0.001 
b 2 2 2 2 2 
R 0.08 0.08 0.08 0.08 0.15 
β  0.8 0.8 0.8 0.8 
α 175/120 175/120 175/120 175/120 175/120 

 
 

Table 2  
Result of numerical example 1 
 Trust Region Method Lagrange Method 
 1t

∗  2t
∗  3t

∗
 iTC∗  1t

∗  2t
∗  3t

∗
 iTC∗  

Case I infeasible Infeasible Solution 
Case II  4.0000      5.6511     10.0000 8442.2 Infeasible Solution 
Case III 2. 8260 4.0000     10.0000 10939 3.4133 4.0000     10.0000 11408 
Case IV 7.0728    10.0000    10.6875 6609.7   7.3258    10.0000    10.5929 6689.1 
Case V 7.3884    10.4467    10.9871 6597.0 7.8387    10.7700   11.1174 6759.4 
Case VI  Infeasible Solution 

Optimal production strategy: Strategy V, $6597.0; 1389.8unitsTC Q∗ ∗= =  
 
 

Table 3  
Result of numerical example 2 
 Trust Region Method Lagrange Method 

 1t
∗  2t

∗  3t
∗

 iTC∗  1t
∗  2t

∗  3t
∗

 iTC∗  

Case I infeasible Infeasible Solution 
Case II 1.2     1.4082  2.9744 53301 Infeasible Solution 
Case III 1.0318 1.2000 3.0000  56258 1.1943 1.2000 3.0000  59901 
Case IV 2.2936    3.0000    3.2212 50048 2.3165    3.0000    3.2138 50668. 9 
Case V 2.5967 4.0573 4.2421 49112 2.6291 4.7948 5.0000 49118 
Case VI  Infeasible Solution 

Optimal production strategy: Strategy V, $49112.0; 9085.3unitsTC Q∗ ∗= =  
 

Strategy II gave lower total inventory cost compared with Strategy III in all numerical examples. This 
can be attributed to the fact that Strategy III is always associated with longer stock-out period 
compared with Strategy II. This brings about a comparably higher stock-out and lost cost. 
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The sensitivity analysis shows that the optimal production quantity generated by the model is 
moderately sensitive to changes in production rate (α), deterioration rate (b) and demand trend (γ). It 
however has low sensitivity to other system parameters. The production schedules, on the other hand, 
is highly sensitive to both production rate (α), and demand trend (γ) but moderately sensitive to 
discount rate net of inflation (R), shortage cost (CSH) and production cost (CP). Its sensitivity to other 
parameters is relatively low.   
 

 

Table 4  
Result of numerical example 3 
 Trust Region Method Lagrange Method 

 1t
∗  2t

∗  3t
∗

iTC∗  1t
∗  2t

∗  3t
∗

 iTC∗  

Case I infeasible Infeasible Solution 
Case II 4.0000 5.6511 10.0000 4984.1 Infeasible Solution 
Case III 2. 8260 4.0000 10.0000 6096.6 3.1413 4.0000 10.0000 6264.4 
Case IV 6.9957 9. 8926 10.6153 4348.9 7.1989 10.0000 10.6427 4409.5 
Case V 7.0728 10.0000 10.6875 4348.1 7.2685 10.1000 10.7108 4407.8 
Case VI  Infeasible Solution 

Optimal production strategy: Strategy V, $4348.1; 1383.4unitsTC Q∗ ∗= =  
 

Table 5  
Result of numerical example 4 
 Trust Region Method Lagrange Method 

 1t
∗  2t

∗  3t
∗

 iTC∗  1t
∗  2t

∗  3t
∗

 iTC∗  
Case I Infeasible Solution Infeasible Solution 
Case II 1.2     1.4074     2.9745 88357 Infeasible Solution 
Case III 1.0322 1.2 3.0000 93291 1.2 1.2000 3.0000 99610 
Case IV 2.3023    3.0000    3.2212 83991 2.3655   3.0000    3.5148 84361 
Case V 2.5702 3.7212 3.9259 82939 2.6353 4.4388 5.0000 82885 
Case VI Infeasible Solution Infeasible Solution 

Optimal production strategy: Strategy V, $82939.0; 9134.9unitsTC Q∗ ∗= =  
 
The optimal value of total cost generated by the model is highly sensitive to changes in production 
rate (α), discount rate net of inflation (R), and production cost (CP) but moderately sensitive to 
demand trend (γ) and inventory holding cost (CH). It also becomes moderately sensitive to increase in 
deterioration rate while it is less sensitive to decrease in the same rate. Some parameters have a limit 
to which they can be varied otherwise they become inconsistent with system assumptions. Table 7 
shows infeasible result for such cases.  
 

 

Table 6  
Result of numerical example 5 
 Trust Region Method Lagrange Method 

 1t
∗  2t

∗  3t
∗

 iTC∗  1t
∗  2t

∗  3t
∗

 iTC∗  

Case I Infeasible Solution Infeasible Solution 
Case II  4.0000      5.6511     10.0000 3462.1 Infeasible Solution 
Case III 2. 8260 4.0000     10.0000 4039.4 3.3517 4.0000     10.0000 4265.1 
Case IV 6.1899     8.7646     9.8829 3274.6 7.2056     10.0000 10.6516 3380 
Case V 7.0728    10.0000    10.6875 3313.1 7.2056     10.0000 10.6516 3337.4 
Case VI Infeasible Solution Infeasible Solution 

Optimal production strategy: Strategy IV, $3274.6; 1366.3unitsTC Q∗ ∗= =  
 

It is important to note the change in optimal production strategy with changes in the production rate 
parameter as shown by the sensitivity analysis. Table 7 shows that the optimal production strategy 
changes from Strategy V to Strategy VI when the production rate is reduced. This indicates that as 
production rate reduces, the production schedules also need to be increased for optimal result. 
Production Strategy V produces feasible but not optimal result in this case.  
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Table 7  
Sensitivity analysis based on Example 1 
 % Change Strategy 

1t
∗  2t

∗  3t
∗  TC∗  Q∗  

 
 
β 

-25 Strategy V 0.6 0.62 1.31 0.26 -1.09 
-50 Strategy V 1.63 1.67 3.17 0.61 -2.45 
25 Strategy V -0.41 -0.41 -0.97 -0.19 0.86 
50  infeasible 

 
 
R 

-25 Strategy V 2.52 2.59 1.64 8.89 0.28 
-50 Strategy V 4.85 5.04 3.17 18.87 0.55 
25 Strategy V -2.73 -2.74 -1.75 -7.94 -0.3 
50 Strategy V -4.27 -4.28 -2.73 -15.02 -0.46 

 
 
CSH 

-25 Strategy V -4.27 -4.28 -2.73 -0.54 -0.46 
-50 Strategy V -4.27 -4.28 -2.73 -1.25 -0.46 
25 Strategy V 2.7 2.78 1.76 0.33 0.3 
50 Strategy V 4.51 5 2.95 0.55 0.51 

 
 
CL 

-25 Strategy V -0.9 -0.91 -0.58 -0.2 -0.09 
-50 Strategy V -1.83 -1.85 -1.17 -0.42 -0.2 
25 Strategy V -0.88 -0.9 0.57 0.19 0.1 
50 Strategy V 1.74 1.78 1.13 0.37 0.19 
-25 Strategy V 3.07 3.16 0.71 -22.49 0.35 

CP -50 Strategy V 6.05 6.33 3.98 -45.15 0.68 
25 Strategy V -3.15 -3.17 -2.02 22.32 -0.34 
50 Strategy V -4.27 -4.28 -2.73 44.51 -0.46 
-25 Strategy V 1.21 1.24 0.79 -1.39 0.14 

CH -50 Strategy V 2.43 2.5 1.58 -2.82 0.27 
25 Strategy V -1.2 -1.22 -0.78 1.37 -0.12 
50 Strategy V -2.4 -2.42 -1.54 2.71 -0.26 
-25 Strategy V -0.12 0.3 0.19 -0.25 -0.35 

a 
-50 Strategy V -0.22 0.63 0.4 -0.51 -0.71 
25 Strategy V 0.12 -0.28 -0.18 0.24 0.34 
50 Strategy V 0.25 -0.27 -0.34 0.47 0.67 
-25 Strategy V -0.1 1.03 0.65 -0.74 -1.01 

b -50 Strategy V -0.34 1.31 0.83 -0.98 -1.36 
25 Strategy V 0.31 -2.72 -1.73 1.93 2.51 
50 Strategy V 5.12 -4.28 -2.73 5.58 8.28 
-25 Strategy V -0.12 -0.03 -0.02 0.21 0.18 

µ -50 Strategy V -0.47 -0.14 -0.09 0.92 0.72 
25 Strategy V -0.12 -0.03 -0.02 0.18 0.18 
50 Strategy V -0.48 -0.14 -0.09 0.67 0.71 
-25 Strategy V 3.39 0.96 0.61 1.64 2.38 

γ -50 Strategy V 13.03 3.65 2.3 5.57 9.24 
10 Strategy V 5.49 5.3 3.33 0.52 0.95 
50  infeasible 
-25 Strategy VI 35.35 4.12 6.56 -14.04 -6.38 

α -50  infeasible 
25 Strategy V -19.92 -1.62 1.18 8.47 -0.03 
50 Strategy V -33.04 -2.7 2.15 14.4 -0.16 

 

6. Conclusions 
This paper has presented production-inventory models for deteriorating items having varying demand 
patterns with Weibull-distribution deterioration and partial backlogging under the effect of inflation 
and time value of money. The models involved different production strategies that can be adopted for 
producing deteriorating items with increasing-steady-decreasing demand pattern. A general ramp-
type demand function that allows for three-phase variation in demand pattern was used to represent 
the demand while the discounted cash flow approach and trust region optimization methods were 
used to obtain the optimal production strategy. The models obtained the optimal values of initial 
production run time, onset of shortages, production recommencement time, and total production 
quantity that minimizes total relevant costs of production and inventory for any given set of system 
parameters. The examples and sensitivity analysis also showed that the optimal production strategy 
may vary with changes in system parameters. The implication of this is that, contrary to usual 



I. Abdul and A. Murata / International Journal of Industrial Engineering Computations 2 (2011) 
 

465

practice, it is important to consider several possible production strategies when dealing with items 
having varying demand patterns in order to determine the optimal production strategy for a given set 
of system parameter. This study can be extended by considering variable production cost, imperfect 
production process or an integrated system involving co-operation between manufacturers and 
retailers. Another possible area for future research is the consideration of multi-product system with 
variable lead time. 
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