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 The terminal condition of inventory level to be zero at the end of the cycle time adopted by 
Soni and Shah (2008, 2009) is not viable when demand is stock-dependent. To rectify this 
assumption, we extend their model for (1) an ending – inventory to be non-zero; (2) limited 
floor space; (3) a profit maximization model; (4) selling price to be a decision variable, and (5) 
units in inventory deteriorate at a constant rate. The algorithm is developed to search for the 
optimal decision policy. The working of the proposed model is supported with a numerical 
example. Sensitivity analysis is carried out to investigate critical parameters. 
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1. Introduction 

Levin et al. (1973) quoted that “Large piles of consumer goods displayed in a super market will lead 
the customers to buy more. Silver and Peterson (1982) also observed that sales at the retail level tend 
to be proportional to the amount of inventory displayed. Many researchers are engaged in analyzing 
the relationship between stock-dependent demand and inventory policies. In this direction Baker and 
Urban (1988) developed an economic order quantity model for a power-form inventory-level 
dependent demand. Mandal and Phaujdar (1989) formulated a production inventory model when 
units in inventory are subject to constant rate of deterioration. They considered production to be 
uniform and stock-dependent demand to be linear. Some more related articles are by Datta and Pal 
(1990), Giri et al. (1996), Ray and Chaudhuri (1997), Chang et al. (2003, 2006, 2008, and 2010). 
Some of the above cited articles assumed that the inventory level at the end of the cycle time is zero 
and objective is to minimize the total cost of an inventory system. Urban (1992) argued that in case of 
a stock-dependent demand, the terminal condition of zero inventory level may not result in an optimal 
profit because “it may be advantageous to order larger quantities, resulting in stock left over at the 
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end of the cycle, due to the potential profits resulting from the increased demand”. For more articles 
on inventory-level-dependent demand refer to review article by Urban (2005).  

In this paper, an ending inventory is taken to be zero or positive. It is assumed that the retailer has 
limited shelf space and units in inventory are subject to constant rate of deterioration. The profit is 
maximized with respect to unit sale price and cycle time. The model is validated by a numerical 
example. The sensitivity analysis is carried out to find out the critical parameters.    

2. Assumptions and notations  
A single–item deterministic inventory model for deteriorating items with price–sensitive stock–
dependent demand rate is developed with the following assumptions:  

1. Shortages are not allowed to avoid lost sales. 
2. Replenishment rate is infinite. 
3. The lead-time is zero or negligible. 
4. The maximal inventory level is U which can be displayed. 
5. The initial and ending inventory level may be zero or positive. For repeated replenishment 

cycle, we assume that the initial and ending inventory levels are the same. 
6. The constant fraction of the on – hand inventory deteriorates per unit of time and there is no 

repair or replacement of the deteriorated inventory. 
7. The demand rate, ))(,( tIpR  is a function of instantaneous stock – level ( )I t  and selling 

price, p. The functional form of demand function is given by 
[  

( ) Tt0    ,ptItIpR ≤≤+= −ηβα )())(,(  (1)

where , 0α β >  and 1η >  is mark–up elasticity. 

8. If the retailer pays by M, then the supplier does not charge any interest to the retailer. If the 
retailer pays after M  and before N ( )N M> , then the supplier charges the retailer  an interest 
rate of  1cI / unit/year for unsold items. If the retailer pays after N, then the supplier charges 

the retailer an interest rate of  2cI /unit/year ( )2 1c cI I>  on the remaining stock. 
 In addition, the following notations are used in the development of the proposed model. 
Notation: 
h the inventory holding cost / unit / year 
p the selling price / unit (a decision variable) 
c the unit purchase cost, with c p<  
A the ordering cost per order 
M the first allowable credit period in settling the account without any interest charges 
N the second allowable credit period in settling the account with interest charge 1cI  on unpaid 

dues and N M>  

1cI  the interest charged per $ in stock per year by the supplier when retailer pays during [ ],M N       

2cI  the interest charged per $ in stock per year by the supplier when retailer pays during              
            [ ],N T ,   2 1c cI I>   

eI  the interest earned / $ / year during [0, M] 

T the replenishment cycle time in years (a decision variable) 
q the inventory level at time T (a decision variable) 
Q the inventory level at time t = 0 
U the maximum inventory level 
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 In next section, we develop the optimal pricing–ordering inventory model for price–sensitive 
demand under progressive payment scenario. 
 
3. Mathematical model 
The cycle starts with an order of Q q−  units in the inventory system. Since the previous cycle ended with 
q– units, the initial inventory level (i.e. at t = 0) is  units. The inventory level gradually depletes to q–
units (with 0q ≥ ) at time t =  due to deterioration and price–sensitive stock–dependent demand. The 
rate of change of inventory level at any instant of time is governed by the following differential equation: 

( )( ) ( ) ( )dI t I t I t p
dt

ηθ α β −+ = − + ,   Tt ≤≤0  (2)

with the boundary condition ( ) 0I T q= ≥ . Solving Eq. (2), the on-hand inventory at any instant of 
time t is given by 

( )( ) w T tp pI t q e
w w

η ηα α− −−⎛ ⎞
= + −⎜ ⎟
⎝ ⎠

    ,     0 t T≤ ≤     where   w p ηθ β −= +    

 

(3)

Since (0)I Q=  , we have 

wTp pQ q e U
w w

η ηα α− −⎛ ⎞
= + − ≤⎜ ⎟
⎝ ⎠

 

 

(4)

 The total profit per time unit is generated revenue + interest earned – purchasing cost – ordering cost 
– inventory holding cost – interest charged (depending upon lengths of the cycle time and allowable 

credit periods). The generated revenue is ( )
0

,
T

GR p R p t dt= ∫ , the purchase cost is ( )PC c Q q= − , 

the inventory holding cost is ∫=
T

dttIhHC
0

)(  and the ordering cost per cycle is OC A= . Interest 

earned and interest charged depends upon the length of the cycle time and allowable trade credits M 
and N. Following three cases arise: (1) T M≤ ,    (2)  M T N< <  ,   (3)  T N≥ . 

3.1.    
Here, the replenishment cycle time ends before the first allowable credit period so that interest 
charged per cycle is IC1 = 0, and interest earned per cycle is 

( ) ( ) ( )1 0 0
, ,

T T
IE p I t R p t dt M T R p t dte

⎡ ⎤= + −∫ ∫⎢ ⎥⎣ ⎦
. In this case, the buyer’s annual total profit per 

time unit is 

][1),,( 111 ICOCHCPCIEGR
T

qTpZ −−−−+= . (5)
 

3.2.   

In this case, during [ ]0, M , the retailer earns interest and is given by ( )2 0
,

M
IE p I t R p t dte= ∫  and 

during [ ],M T , he pays interest at the rate 1cI  / $ / annum on the unsold stock , i.e.
 

∫=
T

M
C dttIIcIC )(12  .      

Q
T

T M≤

M T N< <
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The buyer’s annual total profit per time unit is 

][1),,( 222 ICOCHCPCIEGR
T

qTpZ −−−−+= .   (6)

 3.3.   

In this case, interest earned per cycle is 23 IEIE = . The interest paid by the retailer during [ ],M T  is 

given by ∫∫ +=
T

N
C

N

M
C dttIIcdttIIcIC )()( 213 . Hence, the buyer’s annual total profit per time unit is 

as follows, 

][1),,( 333 ICOCHCPCIEGR
T

qTpZ −−−−+=  (7)

Thus, the buyer’s annual total profit per time unit is as follows: 

( )
( )
( )
( )

1

2

3

, , , 0
, , , , ,

, , ,

Z p T q T M
Z p T q Z p T q M T N

Z p T q T N

⎧ < ≤
⎪= < <⎨
⎪ ≥⎩

 (8)

At T M= , ( ) ( )1 2, , , ,Z p M q Z p M q=  and at T N= , ( ) ( )2 3, , , ,Z p N q Z p N q= . Hence, 

( ), ,Z p T q  ),( qTΠ  is well – defined continuous function of T. 

4.   Optimal  solution        

To obtain the optimal solution of the proposed problem, we maximize the functions ( )1 , ,Z p T q , 

( )2 , ,Z p T q  and ( )3 , ,Z p T q  separately with respect to p , T , and q , and then compare the results 

to obtain the optimal value ( , , )p T q  which maximizes ( ), ,Z p T q . Taking the first order derivatives 

of ( ) ( ), , 1, 2,3iZ p T q i =  with respect to p , T , and q, and setting it equal to zero gives   

( ), ,
0iZ p T q

p

∂
=

∂
, 

(9)

( ), ,
0iZ p T q

T

∂
=

∂
, 

(10)

and 

( ), ,iZ p T q

q

∂
=

∂
 0.   (11)

From Eq. (11), we know qqTpZi ∂∂ /),,(  is linear in q. Hence, 

T N≥
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( )2

2
, ,

0iZ p T q

q

∂
=

∂
.   

(12)

Consequently, the sufficiency condition in terms of the Hessian matrix of is 

2 2 2

2

2 2 2

2

2 2 2

2

i i i

i i i

i i i

Z Z Z
T p T qT

Z Z Z
p T p qp

Z Z Z
q T q p q

⎛ ⎞∂ ∂ ∂
⎜ ⎟

∂ ∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂∂
⎜ ⎟
⎜ ⎟∂ ∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

= 

2 2 2

2

2 2 2

2

2 2
0

i i i

i i i

i i

Z Z Z
T p T qT

Z Z Z
p T p qp

Z Z
q T q p

⎛ ⎞∂ ∂ ∂
⎜ ⎟

∂ ∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂∂
⎜ ⎟
⎜ ⎟∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 = 

2 2

2

2 2

2

0

i i

i i

Z Z
T pT

Z Z
p T p

⎛ ⎞∂ ∂
⎜ ⎟

∂ ∂∂⎜ ⎟ <⎜ ⎟
∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂⎝ ⎠

 

 

 
 

 

(13)

From Eq. (11) and Eq. (12), if 
( ), ,

0iZ p T q

q

∂
>

∂
, then ( ), ,iZ p T q  is strictly increasing function of 

q. To make q as large as possible, we set  because UQq ≤< . Hence, if 
( ), ,

0iZ p T q

q

∂
>

∂
, 

then ( ), ,iZ p T q  is maximized at . Otherwise, if  
( ), ,

0iZ p T q

q

∂
≤

∂
, then ( ), ,iZ p T q  is 

maximized at q = 0. 

Case A.    If  
( ), ,

0iZ p T q

q

∂
>

∂
 , then  Q U=  

Substituting  Q U=  in Eq. (4), we get  

(1 )wT wTpq U e e
w

ηα −
− −= − − .   

(14)

 

Substituting Eq. (14) in Eq. (8) , the buyer annual total profit function per time unit reduces to a 
function of two variable, viz. p and T. 

Case B.   If  
( ), ,

0iZ p T q

q

∂
≤

∂
 , then  0q = . 

Substituting 0q =  in ( ) ( ), , 1, 2,3iZ p T q i =  we get the buyer annual total profit function per time 

unit to be a function of two variable, viz. p and T. 

 Finally, we compare ( )1 1.1 1.1 1.1, ,Z p T q , ( )1 1.2 1.2 1.2, ,Z p T q , ( )2 2.1 2.1 2.1, ,Z p T q , 

( )2 2.2 2.2 2.2, ,Z p T q , ( )3 3.1 3.1 3.1, ,Z p T q , ( )3 3.2 3.2 3.2, ,Z p T q , and then select the optimal 

solution to the problem as ( ), ,p T q∗ ∗ ∗ , ( ) ( ), , ,, , max , , ,i k i k i kZ p T q Z p T qi
∗ ∗ ∗ =  1, 2,3,i =  

1, 2k = . 

Q U=

Q U=
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5.     A computational algorithm 
Step 1.   Compute the global maximum of ( )1 , ,Z p T q  say ( )1 1, ,p T q∗ ∗ ∗  as follows: 

Step 1.1    Set Q = U and obtain ( )1.1 1.1,p T  by solving 
( ) ( )1 1, , , ,

0
Z p T q Z p T q

p T
∂ ∂

= =
∂ ∂

.  If 

1.1T M≤  then substitute 1.1p p=  and 1.1T T=  into Eq. (14) and use Eq. (5) to 

evaluate 1.1q  and ( )1 1.1 1.1 1.1, ,Z p T q  respectively. Otherwise, set 1.1T M=  and 

compute 1.1q  and ( )1 1.1 1.1 1.1, ,Z p T q  by using Eq. (14) and Eq. (5), respectively. 

Step 1.2    Set 1.2 0q = . Compute ( )1.2 1.2,p T  by solving 
( ) ( )1 1, ,

0
Z p T Z p T

p T

∂ ∂
= =

∂ ∂
. If                            

1.2T M≤ , then obtain ( )1 1.2 1.2,Z p T  from Eq. (5). Otherwise, set 1.2T M=  and 

compute ( )1 1.2 1.2,Z p T .  

Step 1.3    Find ( )1 1 1, ,p T q∗ ∗ ∗ , ( ) ( )1 1 1 1. 1. 1., , max , ,i i iZ p T q Z p T qi
∗ ∗ ∗ = ,  1, 2i = . 

Step 2     Find the global maximum of ( )2 , ,Z p T q  say ( )2 2 2, ,p T q∗ ∗ ∗  as follows: 

Step 2.1   SetQ U= and compute ( )2.1 2.1,p T  by solving 
( ) ( )2 2, , , ,

0
Z p T q Z p T q

p T
∂ ∂

= =
∂ ∂

.  If 

2.1M T N< < , then substitute 2.1T T=  into Eq. (14) and Eq. (6) to compute 2.1q  and 

( )2 2.1 2.1 2.1, ,Z p T q  respectively, If 2.1T M< , then set 2.1T M=  and get 2.1q  and 

( )2 2.1 2.1 2.1, ,Z p T q  using Eq. (14) and Eq. (6) respectively. If 2.1T N> , then set 

2.1T N= , and obtain  2.1q  and ( )2 2.1 2.1 2.1, ,Z p T q  using Eq. (14) and Eq. (6) 

respectively. 

Step 2.2  Set 2.2 0q = . Solve 
( ) ( )2 2, ,

0
Z p T Z p T

T p
∂ ∂

= =
∂ ∂

 to obtain 2.2 2.2( , )p T . If 

2.2M T N< < , then substitute 2.2T T=  into Eq. (6) to find ( )2 2.2 2.2 2.2, ,Z p T q . If 

2.2T M< , then set 2.2T M= , and obtain ( )2 2.2 2.2 2.2, ,Z p T q  from Eq. (6). If 

2.2T N> , set 2.2T N=  and obtain ( )2 2.2 2.2 2.2, ,Z p T q  by (6). 

Step 2.3     Find ( )2 2 2, ,p T q∗ ∗ ∗ , ( ) ( )2 2 2 2 2 2. 2. 2., , max , ,i i iZ p T q Z p T q∗ ∗ ∗ ∗ ∗ ∗= ,  1, 2i = . 

Step 3     Find the global maximum of ( )3 , ,Z p T q  say ( )3 3 3, ,p T q∗ ∗ ∗  as follows: 
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Step 3.1   Set Q U= solve for ( )3.1 3.1,p T  by solving 
( ) ( )3 3, , , ,

0
Z p T q Z p T q

p T
∂ ∂

= =
∂ ∂

.  If 

3.1T N> , then substitute 3.1T T=  into Eq. (14) and Eq. (7) to obtain 3.1q  and 

( )3 3.1 3.1 3.1, ,Z p T q . Otherwise, set 3.1T N=  and find 3.1q  and ( )3 3.1 3.1 3.1, ,Z p T q  

from Eq. (14) and Eq. (7), respectively. 

Step 3.2   Set 3.2 0q = . Solve 
( ) ( )3 3, ,

0
Z p T Z p T

p T
∂ ∂

= =
∂ ∂

 for 3.2 3.2( , )p T .  If 3.2T N≥ , then 

obtain ( )3 3.2 3.2 3.2, ,Z p T q  from Eq. (7). Otherwise, set 3.1T N=  and obtain 

( )3 3.2 3.2 3.2, ,Z p T q  from Eq. (7). 

Step 3.3    Find ( )3 3 3, ,p T q∗ ∗ ∗  and ( ) ( )3 3 3 3 3. 3. 3., , max , ,i i iZ p T q Z p T q∗ ∗ ∗ ∗ ∗ ∗= ,  1, 2i = . 

Step 4     Find ( ), ,p T q∗ ∗ ∗ , ( ) ( ) ( ) ( ){ }1 1 1 2 2 2 3 3 3, , max , , , , , , , ,Z p T q Z p T q Z p T q Z p T q∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗=   

6. Numerical example 

Consider, following parametric values in proper units:  

610α = , 35β = , 0.05θ = , 1.7η = , 200A = , 20c = , 0.2h = , 12%Ie = , 1 13%Ic = , 2 21%Ic = , 

17 / 365M = , 30 / 365N =  and 5000U = . Using the above algorithm, we obtain the computational 
results as shown in Tables 1 – 3.   

Table 1   
Case 1 ( )T M≤  
Set Q=U Q=U=5000 T=0.1328 P=59.20 q=4872.41 Z1=86136.64 
Set q=0 Q=100.99 T=0.1874 P=59.81 q=0 Z1=82225.07 
 

Table 2    
Case 2  ( )M T N< <  
Set Q=U Q=U=5000 T=0.6288 P=59.27 q=4769.16 Z2=87290.98 
Set q=0 Q=176.93 T=0.4691 P=60.19 q=0 Z2=83954.56 
 

Table 3    
Case 3  ( )T N≥  
Set Q=U Q=U=5000 T=0.5658 P=58.04 q=3413.50 Z3=77875.04 
Set q=0 Q=606.85 T=0.2792 P=60.30 q=0 Z3=85174.15 
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Thus, the optimal solution of the problem is ( ) ( )* *, , 59.27, 0.6288, 4769.16p T q∗ =   and 

( )* *, , 87290.98Z p T q∗ = . 

7. Sensitivity analysis 

In this section, we study the effect of the changes in single parameter at a time (i.e. keeping the other 
parameters constant as in Example 1) on the optimal solution ( )* *, ,p T q∗  and an objective function 

is exhibited in Table 4.  

Table 4     
Sensitivity analysis 
Parameter Percentage of changes(%) T* q* P* Percentage of profit changes(%) 

U 
-20 0.5405 3779.9 59.37 -0.7917542 
-10 0.5873 4274.44 59.31 -0.395871372 

 
10 0.6663 5263.61 59.23 0.395917196 
20 0.7004 5758.21 59.19 0.791811479 

M 
-20 0.5249 4769.64 59.39 -1.73816355 
-10 0.5785 4769.32 59.33 -0.877753921 

 10 0.6752 4768.74 59.22 0.871487524 
 20 0.7197 4768.47 59.17 1.760491176 

N 
-20 0.6288 4814.89 59.27 1.428337727 
-10 0.6288 4791.93 59.27 0.633570616 

 10 0.6288 4747.20 59.27 -0.494759023 
 20 0.6288 4722.08 59.27 -0.966319773 

Ic1 
-20 0.9264 4770.94 59.64 1.248479511 
-10 0.7151 4769.94 59.44 0.624463146 

 10 0.5807 4768.13 59.11 -0.624864104 
 20 0.5496 4767.26 58.94 -1.250197901 

Ie 
-20 0.6258 4769.05 59.28 -0.055114515 
-10 0.6273 4769.03 59.27 -0.027562985 

 10 0.6303 4769.00 59.27 0.027574441 
 20 0.6318 4768.98 59.27 0.055160338 
 

 

Fig. 1. Sensitivity analysis of the example 
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Table 4 reveals that, first, an increase in the maximum inventory level U increases the optimal cycle 
time T* the optimal order quantity q*, and the profit significantly while it also decreases the optimal 
selling price p*. Second, the optimal cycle time, and the profit increase significantly with an increase 
in the first allowable credit period M while the optimal selling price p* decreases. Third, an increase 
in the second allowable credit period N results in a decrease in the optimal order quantity q* and the 
profit. Forth, the optimal selling price and the optimal cycle time are insensitive to changes in N, and 
finally an increase in Ic1 lowers all the decision variables and the profit significantly. For details, 
please see Table 4. Fig. 1 shows the sensitivity analysis of the example when different parameters 
change. 

8. Conclusion 
When demand is stock-dependent, it is not appropriate to set the terminal condition of inventory level 
to be zero as considered by Soni and Shah (2008, 2009).  In this paper, we have extended their model 
by incorporating the following realistic facts: (1) an ending – inventory to be positive or zero, (2) 
limited floor space, (3) a profit maximization model, (4) selling price to be a decision variable, and 
(5) units in inventory deteriorate at a constant rate. In addition, we have also developed an algorithm 
for the optimal decision policy. Finally, sensitivity analysis has been carried out to investigate critical 
parameters and provide some managerial insights. 
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