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 This research defines a new application of mathematical modeling to design a cellular 
manufacturing system integrated with group scheduling and layout aspects in an uncertain 
decision space under a supply chain characteristics. The aim is to present a mixed integer 
programming (MIP) which optimizes cell formation, scheduling and layout decisions, 
concurrently where the suppliers are required to operate exceptional products. For this purpose, 
the time in which parts need to be operated on machines and also products' demand are 
uncertain and explained by set of scenarios. This model tries to optimize expected holding cost 
and the costs regarded to the suppliers network in a supply chain in order to outsource 
exceptional operations. Scheduling decisions in a cellular manufacturing framework is treated 
as group scheduling problem, which assumes that all parts in a part group are operated in the 
same cell and no inter-cellular transfer is required. An efficient hybrid method made of genetic 
algorithm (GA) and simulated annealing (SA) will be proposed to solve such a complex 
problem under an optimization rule as a sub-ordinate section. This integrative combination 
algorithm is compared with global solutions and also, a benchmark heuristic algorithm 
introduced in the literature. Finally, performance of the algorithm will be verified through some 
test problems.   

© 2011 Growing Science Ltd.  All rights reserved
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1. Introduction 

Group technology (GT) is a management theory that aims to group products with similar process or 
manufacturing characteristics or both. Cellular manufacturing (CM) can be proposed as a practical 
application of GT, which determines groups of machines based on similarity of the parts processed by 
them. The purpose of CM is to identify machine cells and part families concurrently and to assign 
part families to machine cells in order to minimize the intercellular and intracellular costs of parts. 
Scheduling jobs machines' layout in individual cells are operational features which must be 
determined at the design stage. There are many practical cases where the processing times and other 
inputs to classical CMS problems are highly uncertain and a small change on processing time could 
change the results, significantly (Shanker & Vrat, 1998; Ghosh et al., 2011; Ghezavati & Saidi-
Mehrabd, 2010). In addition, there are also many other realistic problems of operations management 
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where both machines and workers can improve their performance by repeating the production 
operations. Therefore, the actual processing time of a job is shorter if it is scheduled later in a 
sequence. This phenomenon is introduced as the “learning effect” in the literature (Badiru, 1992). 
Therefore, developing integrated models for CMS under uncertainty belongs to a relatively new class 
of CMS and tactical problems. 
In any manufacturing environment, suppliers or supply chain network structures play vital role in 
producing different products. A manufacturer can decide whether the operations are completed inside 
the manufacturing system or they have to be outsourced to the suppliers in a supply chain network. 
Thus, suppliers can decide on the characteristics of operation processes, which are not completed 
inside the system. 
For each stochastic programming (SP) problem applying uncertain parameters, one must decide 
which decision variables are considered during the first stage and which ones are taken into account 
during the second stage where the uncertainty has been resolved (Snyder, 2006; Ghezavati, 2009). In 
stochastic CMS problem, cell formation (CF) decisions variables must be made, while scheduling 
decisions are determined in future after the realization of uncertainty occurs. 
The CMS problem with uncertain parameters can classified as (1) Fuzzy approach, (2) Stochastic 
optimization and (3) heuristic procedures. There are many studies in CMS problems where uncertain 
parameters are considered in fuzzy form. Papaioannou and Wilson (2008) proposed CMS problems 
analysis where coefficients in the objective function and constraints are considered as fuzzy values. 
Shanker and Vrat (1999) used fuzzy approach in order to forecast future variations of formulation 
process. Szwarc et al. (1999) considered uncertainty in machines’ capacity located in cells for a CMS 
problem and solved the resulted problem formulation using fuzzy approach. 
Stochastic programming (SP) is applicable in many areas of production planning. However, in CMS 
problem, this approach is usually applicable just for handling changes in demand while there are 
many other factors, which are also stochastic. Some researches deal with aggregated CMS problem 
with tactical decisions such as production planning where demand is stochastic (Hurley & Whybark, 
1999). In addition, there are some other studies to consider layout decisions with stochastic CMS 
demand, concurrently (Tavakkoli-Moghaddam, 2007). Balakrishnan and Cheng (2007) focused on 
CMS problem in dynamic situations and stochastic demand in which demand is changed from one 
period to another one. Kuroda & Tomita (2005) considered CMS problem as a probabilistic 
programming in which the time between two sequence failures follows exponential distribution. In 
addition, Markov chain and queuing theory were also applied in some studies to handle uncertainty in 
machines’ availability (Gupta & Kavusturucu, 1998). 
Aggregated CMS problems can be solved using different techniques such as heuristic or meta-
heuristic approaches. Balakrishnan and Cheng (2005), for instance, proposed heuristic method to 
solve aggregated CMS problems. Andres (2007) proposed heuristic algorithms for CMS problems 
with uncertainty in processing time. Cell formation was also studied in an integrated form with 
scheduling (Solimanpur, 2004; Lockwood et al., 2000) and in an integration of exceptional elements 
with CF decisions (Tsai et al., 1997; Mahdavi et al., 2007). During the past two decades, there has 
been a great effort on applying meta-heuristics and heuristics methods to solve large-scale CMS 
problems which are also practical and appealing for real-world case studies (Wu et al., 2006; 
Venkataramanaiah, 2007). 
In real-world analysis, there are many input parameters such as costs, demands, processing times, set-
up times in classical CMS problems, which may be highly uncertain and can affect on results, 
significantly. Therefore, there is a need to develop mathematical models for cell formation problem 
under uncertainty where random parameters can be either continues or described by discrete 
scenarios. If probability information is identified, uncertainty is described applying a (discrete or 
continuous) probability distribution function, otherwise, continuous parameters are normally limited 
to lie in some pre-defined intervals. In this article, we apply discrete scenarios to highlight 
uncertainty. Scenario based planning is an approach in which uncertainty is captured by determining 
a number of possible future states by decision makers. The objective is to find solutions, which are 
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satisfactory well under all scenarios. In some applications, scenario planning replaces estimating as a 
way to assess trends and possible changes in the business environment.  
 

2. Formal description of the problem and of the mathematical model 
 

2.1Formal description of the problem 
The integrated cellular manufacturing problem consists of classical cell formation objectives, 
scheduling considerations and also, layout aspects in a supply chain framework. The classical cellular 
manufacturing problem aims to set cell of machines and part families to form independent cells with 
minimum number of inter-cell and intra-cell number movements without suppliers' considerations.  
Within a manufacturing cell, it is critical to integrate strategic objectives with the operational and 
tactical ones in an uncertain decision space. This is because of the fact that in real-world application 
design of products, customers' expectations, products' life cycles and market characteristics can be 
fluctuated during a production plan. Thus, decisions associated with each manufacturing plan must be 
made under uncertain conditions. Scheduling problem in a cellular manufacturing environment is 
formulated as group scheduling problem, which assumes that all part families are processed in the 
same cell and no inter-cellular transfers are needed. Layout consideration is another tactical aspect, 
which can be optimized during design stage and also, has direct impact on the transportation costs 
arisen in a manufacturing systems. The impact of both above objectives will be surveyed through a 
supply chain network design. There are three different objective associated with most of CMS 
problems. The first objective is to optimize under utilization and similarities objectives. The second 
objective is to optimize scheduling costs, which is measured by the flow time criterion. The third 
objective is to find the best location of machines in each work cell in order to optimize intra-cell 
movements. Uncertainty in decision space is considered as some discrete scenarios and thus scenario 
based planning approach will be applied to formulate mathematical model. In addition, stochastic 
optimization framework can be applied to formulate the proposed model.  
Scenario based planning is a method in which decision makers come up with uncertainty by 
indicating a number of possible future states. The goal is to find solutions, which perform well under 
all scenarios. In some cases, scenario planning replaces predicting as a way to assess trends and 
potential modifications in the industry environment (Mobasheri et al., 2989). Companies can thus 
develop strategic responses to a range of environmental adjustments, more adequately preparing 
themselves for the uncertain future. Under such conditions, scenarios are qualitative descriptions of 
possible future states, consequences from the present state with the consideration of potential key 
industry events. In other cases, scenario planning is used as a tool for modeling and solving specific 
operational problems (Mulvey, 1996). While scenarios here also depict a range of future 
circumstances, they also represent quantitative descriptions of different values. 
It is assumed that processing time of parts on machines and product demand are uncertain described 
by discrete scenarios. There are a set of scenarios where each occurs with probability sp . Since there 
are multiple scenarios for any CMS problem, group scheduling decisions must be made under each 
scenario. The primary strategy in group scheduling is to minimize the expected waiting costs (leads to 
holding cost) in cells for parts under all scenarios. So, in this formulation, total expected cost includes 
expected holding costs, cost of subcontracting exceptional elements and transportation between 
machines based on the location of machines. The following assumptions are considered in a problem: 

1) Cell formation, scheduling and layout considerations are integrated in a single mathematical model. 
2) Stochastic optimization framework is applied to formulate the proposed problem. 
3) The location of all suppliers is assumed to be fixed in supply chain network. 
4) The outsourcing costs consist of all cost regarded to the suppliers such as operating cost, 

transportation cost and the costs regarded to the suppliers' location. 
5) All parts are available to be operated at the beginning of the planning period. 
6) While an operation starts on a machine, it cannot be interrupted before completion of the process. 
7) Set-up time for parts is sequence independent and is considered as a portion of the processing time. 
8) Machines are available during the planning period and they are not failed.  
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9) Processing time for each part on each machine is stochastic and described by set of discrete 
scenarios where probability of occurring each scenarios is sp . 

10) Each part has a number of operations which is determined by machine-part matrix. 
11) Cost of sub-contracting and underutilization is known and deterministic. 

 
2.2 Description of the mathematical model 

We use the following notation: 
Sets 

M Set of parts  
N Set of machines  
C Set of cells 
S Set of scenarios  
L Set of locations  

Parameters 

1=ija  If part i require to be processed on machine j, 0 otherwise, 
1, =′jijb  If operation j' of part i is performed after completion of operation j, 0 otherwise, 

ijOC  Outsourcing cost of operation j for part i to the suppliers in a supply chain network, 

maxM  Maximum number of machines permitted in a cell, 

isd  Amount of demand of product i under scenario s, 

uC  Maximum number of cells permitted to be formed, 

sp  Probability of scenario s occurs, 

ijst  Processing time for part i on machine j in scenario s, 

ppmt ′,  The time needed to move from location p to location p', 
T Holding cost per unit of time for parts waiting in cells, 
 

Decision variables 

1=ikx  If part i is processed in cell k, 0 otherwise, 
1=jky  If machine j is assigned to cell k, 0 otherwise, 

1,, =spjz  If machine j is located in pth location under scenario s, 0 otherwise, 

sig ,  The time in which operation of part i in cell k starts, 

sitp ,  Total processing time of part i under scenario s, 
1, =′iiN  If operations of part i starts before operations of part i', 

  

Mathematical model 
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The objective f1 determines expected holding cost through multiplying probability of scenario by the 
total time, where a process is completed. The function f2 computes total expected cost associated 
with the outsourcing operations.  The objective function (1) denotes optimization criterion. Set 
constraint (2) says that each part must be assigned to a single cell. Set constraint (3) states that each 
machine can be assigned only to one cell. Set constraint (4) ensures that each machine must be 
allocated to one location under each scenario. Set constraint (5) specifies that at most one machine 
can be allocated to each location in each cell. Set constraint (6) computes total operation time for 
each part under each scenario, which consists of processing time and intra-cell transportation time. 
Constraints (7) and (8) ensure that a cell cannot process more than one product at the same time if 
both parts i and i' are located in the same cell. Constraint (10) determines the maximum number of 
machines allowed to be located in each cell. Set constraint (11) specifies the type of decision 
variables.  
 
2.3  Linearization of the proposed model 
The aim of this section is to reformulate the model as a mixed-integer linear programming model by 
introducing new sets of variables. In this way, different nonlinear terms are replaced by new sets of 
variables. In some terms such as objective function f2, set constraints (5), (6), (7)  and (8) there are 
two binary variables which are multiplied (this problem is defined by quadratic 0-1 problem).   
 
2.3.1  Linearization quadratic 0-1 problem 
Consider a quadratic 0-1 term 21 xxz ×=  where 21 , xx  are binary variables. This term specifies that z 
must be 0 if and only if at least one x is 0. On the other hand, z must be 1 if and only if both variables 
are 1. This term can be transformed to a set of linear auxiliary constraints. Based on this 
transformation, the original 0-1 quadratic program can then be solved directly by the branch-and-
bound method. In this section, we convert these terms applying linearization methods.  
 
2.3.2 Linear model 
To convert the proposed model, the following substitutions are performed, 
Type1) jkik yx × is replaced by ijkMIP1  
Type2) jkspj yz ×,, is replaced by jpksMIP2  
Type3) spjspj zz ,',',, × is replaced by sppjjMIP ',,',3  
Type4) kiik xx '× is replaced by kiiMIP ,',4  
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21min ffF +=  (11) 
subject to  
Constraints (2), (3), (4) and (9)  
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ikijk xMIP ≤1  (26) 
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In above formulation, auxiliary constraints (17), (18) and (19) guarantee linearization type 1. 
Auxiliary constraints (20), (21) and (22) ensure linearization type 2. Auxiliary constraints (23), (24) 
and (25) indicate linearization type 3. Finally, auxiliary constraints (26), (27) and (28) guarantee 
linearization type 4, M also represents a large positive number.  
The proposed linear model will be discussed analytically and sensitivity analysis will be performed 
respect to the robust optimization terminology in the section 5.  However, the proposed linear model 
is Np-hard problem, and thus applying it for real-world applications requires an effective solution 
procedure that can solve it for large-scale problems in reasonable amount of time. Next section, we 
first introduce an effective solution approach based on the combination of two solution methods 
under an optimization rule and then detailed computational results will be presented in section 5.   
 

3. Solution procedure 
It is known that cellular manufacturing problems are NP-hard and they cannot be solved in practical 
computational time. In this paper, we propose a nonlinear and stochastic model for the cellular 
manufacturing design integrated with scheduling aspects under supply chain considerations. Note that 
scheduling in continuous form is classified as an extremely hard problem especially for large-scale 
problems. Thus, we use a combination of genetic and simulated annealing methods to solve the 
resulted problem. In this way, employment of shortest processing time (SPT) method which is an 
optimization technique in scheduling theory as a sub-ordinate part of hybrid genetic algorithm 
simplify decision making in scheduling phase. In addition, employment of an intelligent index 
intensifies efficiency of the aggregation between GA and SA. 
 

3.1 Defining intelligent index  
In order to better aggregation of GA and SA process and improve the quality of solutions, an 
intelligent index, updated after each generation is created. In this criterion, a matrix is defined 
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indicating the best aspects for all the best solutions obtained so far. In other words, this criterion 
always keeps the best information about suboptimal solutions and then notifies decision maker about 
the solution space characteristics. Application of the intelligent index is to select the best parents for 
SA process and to improve the quality of the new solutions. In this rule, a matrix is defined denoting 
the number of times in which each part or machine is assigned to each cell for the best solutions 
found so far. In the best solution of each generation, if part i is assigned to cell k, then we define 
matrix array [i, k] = [i, k] + 1. Also, if machine j is located in cell k, then we define the matrix array 
[no. of parts + j, k] = [no. of parts + j, k] + 1. Thus, a parent is chosen for SA process if only it has a 
high similarity with the defined matrix in assignment (or with high score) among all parents. 
Based on above discussions, solution procedure will be performed by the following steps. 
Step 1) Initialize the necessary parameters used in GA and SA, 
Step 2) Generate first population and determine cell formation decision, randomly, 
Step 3) Using SPT rule, scheduling decision or the time, generate the first population and assign the 

machines in different places, randomly,   
Step 4) Select parents for crossover operation and generate new solutions based on random 

combination of parents, 
Step 5) Update intelligent index for all existing solutions, 
Step 6) Select parents based on intelligent index and perform simulated annealing process and go to step 7, 
Step 7) If selected component for neighborhood generation set a part go to step 8, otherwise go to step 9, 
Step 8) Change cell assignment of the part randomly and go to step 10, 
Step 9) Select a cell with free capacity and then assign the machine to the new cell and new position or 

change the location of the machine with another machine located in a same cell. Go to step 10, 
Step 10) Update SPT method for new solutions achieved by crossover and simulated annealing, 
Step 11) Determine pool made of parents and new solutions, 
Step 12) Update an intelligent index for the next generation, 
Step 13) Select solutions for the next generation. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                              
 
 
 
 

Fig. 1. Flowchart of solution procedure 
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3.2 Hierarchical solution structure  
In order to encode CF and scheduling information for both parts and machines, a two-layer 
hierarchical schema is proposed. A string of integer numbers in the first layer is applied to encode the 
CF results for machine and then part genes. In the second layer with s rows, scheduling information 
including the time in which operations of each part under each scenario starts and also the location of 
each machine are indicated. The genes of the first layer are used to control the genes of the second 
layer in a hierarchical manner. For illustration, consider a data set with 6 parts and 4 machines to be 
classified into two manufacturing cells under two scenarios. Table 1 shows a typical chromosome 
structure. The allele of each gene in the first layer represents the cell number in which the machine or 
part belongs to. For instance, machine 1 is assigned to cell #1 and so on. As such, cell #1 contains 
machines 1, 2 and 5 and also parts 1, 2, and 4. In the second layer, solution contains two rows 
representing the time in which operations of each part in a cell under each scenario starts in the left 
side and also the location of each machine in each cell and under two scenarios on the right side. For 
example, under scenario 1 and in cell 1, operations part 4 start first and 7 time units later operations 
of part 3 will start. In addition, Table 1 denotes other information where the difference between 
sequence starting time in each cell denotes total processing time of prior part. In additions, from table 
1, machines M.1 is located in position 1 under scenario 1 and is located in position 2 under scenario 2. 

 
Table 1  
Sample of solution structure 

 P.1 P.2 P.3 P.4 P.5 P.6 M.1 M.2 M.3 M.4 
Layer 1: assignment 2 2 1 1 1 2 1 2 2 1 

Layer 2: Scheduling & Location 0 11 7 0 15 2 1 2 1 2 
0 16 0 6 11 8 2 2 1 1 

 
3.3 Crossover Operator  
Selected parents ,...,, 321 VVV ′′′  are grouped to the pairs ),....,(),,( 4321 VVVV ′′′′  without loss of generality to 
be combined. For all parts and machines, a random real number λ from the open interval (0, 1) is 
generated. Since each component may be assigned to different cells in each parent, thus in offspring 
each part or machine must be assigned to one of the cells assigned previously in its parent, randomly 
with the probability 0.5 based on the value of λ. The crossover operator on 2V ′  and 1V ′  produces one 
child X where assignment decisions are illustrated in Fig. 2. Once assignment decisions of new child 
have been found, scheduling decisions will be decided by the SPT rule and machines are distributed 
randomly to the specified locations.  
 
Parent 1 P.1 P.2 P.3 P.4 P.5 P.6 M.1 M.2 M.3 M.4 
Layer 1: assignment 2 1 2 2 1 1 1 2 1 2 

Layer 2: Scheduling & Location 19 12 0 8 5 0 1 2 2 1 
14 0 6 0 18 9 1 1 2 2 

 
Parent 2 P.1 P.2 P.3 P.4 P.5 P.6 M.1 M.2 M.3 M.4 
Layer 1: assignment 2 1 1 2 1 1 1 2 2 1 

Layer 2: Scheduling & Location 8 12 0 0 5 21 2 1 2 1 
6 14 0 0 7 25 1 1 2 2 

 
New Solution P.1 P.2 P.3 P.4 P.5 P.6 M.1 M.2 M.3 M.4 
Layer 1: assignment 2 1 1 2 1 1 1 2 2 2 

Layer 2: Scheduling & Location 9 12 19 0 5 0 1 3 1 2 
6 22 13 0 6 0 1 2 1 3 

Fig. 2. Sample of crossover operation 
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3.4 Simulated annealing features 
The main feature of each SA method is to find the best neighborhood solutions where the total 
solution space can be completely searched. In this section, we describe two approaches in order to 
find neighborhood solution by SA algorithm. Note that mutation process in GA method is replaced by 
SA method where decision maker is able to reach the more qualified solutions.   
Move type 1: select a part and change the assignment of the selected part to the new cell, randomly 
Move type 2: select a machine randomly and find the number of the other cells with free capacity so 

that the selected machine can be assigned to them. Then, a new cell with free capacity is 
found randomly and a machine is assigned to the cell.  

After each type, since assignment decisions are changed thus all cells must be rescheduled again by 
SPT rule and location of machines is updated. 

 
4. Numerical Experiments 
In order to verify the performance of the hybrid method approach, we have solved 21 random 
instances. Decision maker has stabilized a time criterion to determine the number of solved instances. 
In order to generate medium-sized problems, decision maker started from a small-sized problem and 
increased gently the size of problem by a specific rule (one by one per each parameter) until the exact 
approach cannot reach the optimum solution within a predetermined running time. In a similar 
approach, for large-scale problems, decision maker has started from the largest medium-size problem 
and increase the size of the problem by a specified rule until the branch and bound algorithm cannot 
find the feasible solution within a predetermined running time. These problems are generated 
randomly based on the consideration of similar data in the literature. The final numerical results are 
compared with global solutions obtained by the Lingo 8 software, which uses branch and bound 
algorithm to solve such problem. We make the following assumption based on the explained 
discussion.  

•  A problem is considered small if there is an optimal solution using branch and bound within 
5400 seconds. 

• A problem is considered medium size whenever branch and bound method can find feasible 
solution within 5400 seconds. 

• A problem is considered large-scale if branch and bound cannot find a feasible solution within 
5400 seconds. 

• For small-scale problems hybrid method is compared against global solutions and heuristic 
solutions. 

• For medium-scale problems hybrid method is compared against the best solutions by branch 
and bound algorithm and heuristic solutions. 

• For large-scale problems hybrid method is compared against only heuristic solution. 
 
4.1  Effectiveness of hybrid method against branch and bound and heuristic algorithms 
In this section, we present 21 random instances classified into three categories of small, medium and 
large-scale problems in which they are solve by proposed hybrid method, branch and bound and 
heuristic procedure introduced in the literature. Table 2 summarizes the details of our computations. 
For small size problems, it appears that there is not much difference among the entire objective 
functions obtained by hybrid method algorithm, benchmark heuristic procedure and global optimums. 
Thus, it is concluded that there is no percentage error when different small-scale problems are 
selected. It implies that the proposed hybrid genetic algorithm and heuristic procedures are effective 
to solve the presented model in this class of problems.  
For medium size problems, to illustrate effectiveness of the proposed hybrid method, instances are 
solved by both B&B algorithm and benchmark heuristic procedure. As we described earlier, for these 
problems Lingo solver, which uses branch-and-bound method cannot find global solutions in 
maximum run time (5400 seconds). Therefore, solutions obtained by hybrid method are compared 
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with the best objective function of branch-and-bound method within limited time to measure 
effectiveness of the introduced hybrid method algorithm. In addition, we have solved these problems 
by benchmark heuristic procedure to learn more about the behavior of the proposed algorithm. 
Therefore, the performance evaluation is based on the best objective function found in 5400 seconds 
using B&B algorithm. These results indicate the comparison among the results obtained by B&B, 
benchmark algorithm and hybrid method and characteristics of the examples. The last column shows 
the percentage of gap between B&B and hybrid method solutions. As shown in the last row, the 
average value of the gap is 23.89%, which indicates better performance of hybrid method compared 
with the best solutions found by B&B algorithm in limited running time. Indeed, from table 1 when 
the scale of problems is increased, solutions obtained by benchmark heuristic procedure is located 
between the solutions of B&B and hybrid method solutions ( Bestbound FFF ≤≤ * ) and therefore, hybrid 
method has a better performance rather than benchmark heuristic algorithm in medium sized 
problems, too.  
For large size problems, we present 10 numerical examples to compare the performance of the 
proposed hybrid method with the benchmark heuristic solutions. Since Lingo solver cannot obtain 
feasible solutions for these problems within the maximum running time (5400 seconds), we obtain 
the best solutions only by benchmark method and it will be a basis to measure performance of the 
presented hybrid method. In this section, we define a measurement called ‘improvement percent’ 
computed by (heuristic OFV – hybrid method OFV)/ hybrid method OFV × 100 where OFV is the 
objective function value. The numerical results reported here and the last row indicates that the 
average value of improvement percent which is 6.16% implicates to a better performance of hybrid 
method rather than heuristic procedure for large-scale problems. In other words, hybrid method 
solutions are better about 6.16% than heuristic solutions, which imply hybrid method is so effective 
to solve large-scale problems. 
Since the proposed method presents better results against heuristic algorithm in almost all examples, 
therefore the differences between two above methods (i.e. amount of the improvement percent) are 
strictly significant and the ANOVA test method is not required.   
 
Table 2  
Results associated to the numerical experiments 

 Problem information  

Prob
# 
 

# of 
parts 

# of 
machines 

# of 
scenarios 

# of 
cells 

Max 
machines 
allowed in 
each cell 

B&B 
Solutions 

Hybrid 
method 
solution 

Heuristic 
Solution 

Time 
B&B 

(seconds) 

Time 
Hybrid 
Method 

(seconds) 

Error 

S1 4 3 1 3 2 35 35 35 1 <1 0.00% 
S2 4 4 1 3 2 40 40 40 1 <1 0.00% 
S3 4 3 2 3 2 34 34 34 17 <3 0.00% 
S4 5 4 1 3 3 46 46 46 58 <3 0.00% 
S5 4 4 2 3 3 49 49 49 37 <3 0.00% 
S6 5 4 2 3 3 75 75 75 812 <3 0.00% 
S7 7 5 1 3 3 124 124 124 3015 <3 0.00% 
M1 8 6 1 3 3 135 135 135 >5400 4 19.15% 
M2 9 6 1 3 3 324 324 135 >5400 9 24.86% 
M3 9 7 1 3 4 377 377 292 >5400 13 22.21% 
M4 10 8 2 3 4 397 397 311 >5400 17 29.35% 

         Average  23.89% 
L1 15 10 2 3 5 - 1090 1056 - - 3.15% 
L2 20 13 1 3 6 - 2215 2072 - - 6.45% 
L3 30 19 2 4 6 - 4950 4710 - - 4.85% 
L4 25 16 2 4 6 - 6224 5876 - - 5.65% 
L5 35 22 1 4 6 - 16294 14805 - - 9.14% 
L6 40 25 2 4 6 - 25353 23898 - - 5.74% 
L7 45 25 1 5 6 - 26615 24936 - - 6.31% 
L8 40 28 2 5 7 - 29265 27249 - - 6.89% 
L9 50 25 2 6 7 - 35095 32561 - - 7.22% 

L10 50 30 2 6 7 - 42092 39487 - - 6.19% 
         Average  6.16% 
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4.2 Robustness of the proposed hybrid method 
In Table 3, we compare solutions obtained by hybrid method for problem with 7 parts, 5 machines, 2 
scenarios and 4 cells when different parameters in hybrid method approach are taken with the same 
generations as a stopping rule. It appears that all the minimal costs differ little from each other. From 
Table 3, the percent error does not exceed 1.65 % when different parameters for hybrid method 
algorithm are selected, which implies that the hybrid genetic algorithm is robust to the initial 
parameter settings and effective to solve the model. 
 
Table 3  
Robustness of the proposed method 

 GA parameters  SA parameters 
Total Cost Percentage 

Error Prob. 
No. Pop_Size Pc No. of 

Generation  a k 

1 25 0.80 250  0.95 150 3056 1.35% 
2 25 0.85 300  0.90 200 3050 1.15% 
3 25 0.90 250  0.95 200 3062 1.55% 
4 25 0.75 300  0.85 150 3057 1.40% 
5 25 0.75 250  0.80 150 3065 1.65% 
6 35 0.85 300  0.90 200 3074 1.95% 
7 35 0.95 250  0.95 150 3074 1.97% 
8 35 0.90 300  0.90 200 3086 2.35% 
9 35 0.75 250  0.85 200 3015 0.00% 

10 35 0.95 300  0.85 150 3082 2.22% 
 
5. Conclusions 
In this paper, we have introduced a notation of stochastic cell formation problem (SCFP) considering 
stochastic processing times with discrete scenarios under a supply chain characteristics. A conceptual 
framework and a novel mathematical formulation were defined. The mathematical method was 
transformed into a linear model and a hybrid algorithm was introduced to solve the model in large-
scale problems. Computational experiments indicated that for large-scale problems hybrid method 
works better than heuristic algorithm. Our contributions research field consists of assuming stochastic 
parameters which yields more flexibility and practical aspects for real-world cases. It integrates cell 
formation problem with scheduling and layout aspects under a supply chain and supplier's network, 
linearization of the model and presenting a hybrid genetic algorithm, which leads to successful 
performance for any sizes of problem. 
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