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  The hub location problem appears in a variety of applications, including airline systems, cargo 
delivery systems and telecommunication network design. Hub location problems deal with 
finding the location of hub facilities and the allocation of demand nodes to these located hub 
facilities. In this paper, a new model for the capacitated single allocation hub covering location 
problem is presented. Instead of using capacity constraints to limit the amount of flow received 
by the hubs, the second objective function is introduced to minimize service times in the hubs. 
The service time in the hubs includes the waiting time of received flows in a queue and the time 
to get services. Due to the NP-hardness of the problem, a new weight-based multi-objective 
imperialist competitive algorithm (MOICA) is designed to find near-optimal solutions. To 
validate the performance of the proposed algorithm, the solutions obtained by the MOICA are 
compared by the exact solutions of the mathematical programming model. 

 © 2011 Growing Science Ltd.  All rights reserved
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1. Introduction 
 

Hub-and-spoke networks are common in many areas of everyday life from passenger travel through 
an airline’s network of airports, to postal delivery, communication, cargo and public transportation 
networks. Therefore, the application of this problem appears whenever it is impossible or too 
expensive to establish a direct link between each pair of origins and destinations. In this situation, 
some nodes are considered as a hub and remaining nodes are allocated to the located hubs. The 
problem defines the basic setting of a hub location network problem in order to decide which nodes 
should become hubs and how the flow in the network should be consolidated and redistributed. 

In particular, hub networks use a set of hub nodes to consolidate and reroute the flows, and a reduced 
number of links, where economies of scale are applied, to connect the large set of origins/destination 
points. In the literature, four major types of hub location problems exist: (1) capacitated and 
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uncapacitated hub location problem (UHLP), (2) p-hub median problem, (3) p-hub center problem, 
and (4) hub covering location problem.  

In a hub location problem (HLP), the objective is to minimize the total cost of locating hubs and 
transporting cargo flows through the hub network. In a p-hub median problem (pHMP), the objective 
is to locate p hubs in the network so that the total cost of transporting flows through the network is 
minimized. Unlike the UHLP the number of hub is given as input. In a p-hub center problem (pHCP), 
the objective is to find the optimal location of p hubs and the allocation of non-hub nodes to the hubs 
and minimize the longest path in the network. Finally, in a hub covering location problem (HCLP), 
the number of hubs is not given and the objective is to find the best location of hubs in the network 
and allocation of nodes to hubs such that the total cost of locating the hubs is minimized. The HCLP 
contains cover constraints, which limit the number of non-hub nodes that can allocate to each hub. 

Three coverage criteria for hubs were defined by Campbell (1994). The origin destination pair (i, j) is 
covered by hubs k and m if:  

• the cost from i to j via k and m does not exceed a specified value, 

• the cost for each link in the path from i to j via k and m does not exceed a specified value, and 

• each of the origin-hub and hub-destination links meets separate specified values. 

All of the above types are divided in two major parts: namely single allocation and multiple 
allocations hub location problems. In single allocation hub networks, each non-hub node is allocated 
to exactly one hub (Ernst et al., 1996a; Ernst et al., 1996b; O’Kelly, 1987). In multiple allocation 
networks (Ernst, 1998), a non-hub node can be allocated to more than one hub. In this study, it is 
considered that hubs network is a complete graph and that the non-hub nodes can be linked directly 
to, at least, one hub (Aykin, 1988, Campbell, 1996, Campbell, 2002). Nevertheless, some other 
studies can be found in the literature that consider the incomplete network for a hub location problem 
(Alumur et al., 2009; Campbell, 2005; Contreras et al., 2009a; Contreras et al., 2010; Nickel et al., 
2001; Yaman, 2008). 

Another common assumption in the literature is that there are no direct links between each pair of 
non-hub nodes. Therefore, a traffic should be routed at least one hub. Hub location problems can be 
classified as a capacitated or uncapacitated problem depending on whether there are limits on flows 
transferred through the network. These limitations may be applied on links or hub nodes (Campbell, 
2002). Capacities on hub nodes can limit the volume of flow into the hub (Ebery et al., 2000; Ernst et 
al., 1999; Aykin, 1994), or for the total flow through the hub.  

The single-allocation hub location problem, in which hubs are capacitated, is known in the literature 
as the capacitated single-allocation hub location problem (CSAHLP). A number of studies exist in the 
literature considering this type of problem. Campbell (1994)  0presented the first mixed-integer linear 
programming (MILP) formulation for the CSAHLP. There is a limit on the entire flow entering into 
the hubs. The costs include establish costs for opening the hubs and flow transporting costs namely 
consolidation, distribution and transfer costs.  

The first formulation for the multiple allocation case was given by Campbell (1994). The rest of the 
literature on hub location problems were primarily focused on the linearization of the quadratic model 
proposed in O'Kelly (1987); for example, Campbell (1996), Ernst and Krishnamoorthy (1996b), 
O'Kelly et al. (1995), and Skorin-Kapov et al. (1996). These studies introduced different 
mathematical formulations and solution procedures for the minimization of the total transportation 
cost. The first computational results for single allocation hub covering problem were presented by 
Kara et al. (2003) and Ernst et al. (2005) who proposed a better mathematical formulation for the hub 
covering problem using the “radius” idea. For the single allocation uncapacitated hub location 
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problem, Labbe´ and Yaman (2004) derived a family of valid inequalities that generalizes the facet-
defining inequalities and can be separated in a polynomial time. The capacitated multiple allocation 
case was studied by Aykin (1994), Ebery et al. (2000), Boland et al. (2004), and Marin (2005).  

Costa et al. (2008) presented a bi-objective approach where the model proposed by Ernst and 
Krishnamoorthy (1999) is enlarged with the inclusion of a second objective function to be minimized 
and quantifies the time to process the flow entering the hubs. Contreras et al. (2009b) proposed a 
similar formulation for the same problem studied by Ernst and Krishnamoorthy (1999). In addition, 
Jabal-Ameli et al. (2011) presented a location-routing problem that can be used for new contribution 
in this area.          

This paper presents the capacitated single allocation hub covering location problem (CSAHCLP) and 
it is organized as follows. Section 2 describes the basic definition of multi-objective optimization 
problems. Section 3 elucidates two multi-objective models for the hub covering location problem. 
Section 4 explains the weight-based imperialist competitive algorithm in order to find an optimal or 
near optimal solution. Section 5 presents and analyzes the computational results, and finally some 
conclusions are drawn in Section 6. 

2. Multi-objective optimization problem 

The main difference between single and multi-objective optimization problems is the number of the 
obtained optimal solutions. In a single-objective optimization algorithm, the decision maker (DM) is 
looking for one and only one optimal solution, while in multi-objective optimization problems, a set 
of solutions depending on non-dominance criterion are found that is named the Pareto sense. In the 
following section, we provide a summary of some basic definitions to better understand the multi-
objective optimization problem. A multi-objective linear problem (MOLP) can be described as 
follows. 

min
௫

   ሾ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ௞݂ሺݔሻሿ் 
subject to  

ݔ א ܵ,  
where k is the number of objectives, ௜݂ሺݔሻ is the ith objective function (i = 1, 2, . . . , k) and S is the 
feasible region. 

Definition 1. Let ݖଵ ൌ ൫ ଵ݂ሺݔଵሻ, ଶ݂ሺݔଵሻ, … , ௞݂ሺݔଵሻ൯ and ݖଶ ൌ ൫ ଵ݂ሺݔଶሻ, ଶ݂ሺݔଶሻ, … , ௞݂ሺݔଶሻ൯ א ܴ௞ be 
two objective vectors. Then, ݖଵ dominates ݖଶ if and only if ݖଵ ൑ ଵݖ ଶ andݖ ് ଵሻݔଶ (i.e., ௜݂ሺݖ ൑

௜݂ሺݔଶሻ for all i and ௜݂ሺݔଵሻ ് ௜݂ሺݔଶሻ for at least one i). 

Definition 2. A feasible solution ݔ௘ to the MOLP is called to be locally optimal in the Pareto sense if 
there exists a real ߝ ൐ 0 such that there is no solution ݔ௟ that dominates the solution ݔ௘ with ݔ௟ א
ܴ௞ ת ,௘ݔሺܤ εሻ, where ܤሺݔ௘, εሻ shows a bowl shape with a center of ݔ௘ and of radius ε. 

Definition 3. A solution ݔ௘ is globally optimal in the Pareto sense if there is no vector ݔ௟  such that 
 .௘ݔ ௟  dominates the vectorݔ

The main difference between definition 3 and the definition of local optimality lies in the fact that we 
do not have a restriction on the set ܴ௞ anymore. 

3. Multi-objective mathematical formulation 

Multi-objective models are especially ample to be considered in hub location problems, namely 
because of the usual conflict between the quality and the cost of the solutions. In this paper, we 
introduce a new multi-objective model to deal with the limitations of a traditional capacitated hub 
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location problem. As a matter of fact, if a single-objective model with capacity constraints is chosen, 
the number of options of the decision maker (DM) is limited to the acceptance or rejection of the 
optimal solutions. The use of proposed model allows the DM to choose the favorite solution among 
the optimal solutions obtained by the model with considering different combination of weights for the 
objective functions. In all the studies mentioned in Section 1, the objective functions are mostly about 
minimizing the total transportation cost and total shipment time in the hub network through 
connection links between each pair of nodes. However, none of those papers has considered the total 
waiting time in hubs. The total waiting time is equal to the time when entered flows to each hub are 
obliged to wait in a queue to received services. This time includes both the waiting time in a queue 
and the service time in each hub for preparing flows to transfer them to destinations.  

In addition to transportation cost, it considers alternatively the minimization of the time, which flows 
spend in the hubs, to receive services or the minimization of the maximum spent time in the hubs. 
Therefore, minimizing the waiting time is considered as the second objective function. Furthermore, 
the classical capacitated hub covering location problems usually generates solutions determined by an 
excessive concentration on the flows entering to the hubs. Also, this fact leads to more CPU time for 
solving the problems. To avoid this situation, the traditional model is modified by using the second 
objective function instead of the capacity constraint; however, this new object added to the model is 
not free of inconveniences. Before formulating the problem, the following notations are introduced. 

ܰ ൌ ሼ1, … , ݊ሽ Set of nodes. 
௜ܹ௝ Flow to be sent from node i to node j ሺ݅, ݆ א ܰሻ. 

 ௜௝ Transportation cost of a unit of the flow between i and jܥ
 ௞ Fixed cost of opening a hub at node kܨ
 .௞ Capacity of collecting flow at hub k (flow into hub k)߁
 ௞ Maximum collection/distribution cost between hub k and nodes that areݎ

allocated to hub k (radius of hub k). 
௞ܲ Preparation service time of hub k. 
௞ܶ Total spent time in hub k. 

௜ܱ ൌ ෍ ௜ܹ௝
௝אே

 Total flow originating at node i. 

௜ܦ ൌ ෍ ௝ܹ௜
௝אே

 Total flow destined for node i. 

௜ܺ௞ is 1 if node i is allocated to hub at node k; otherwise, it is 0. 
௞ܻ௟
௜  Total amount of flow from location i (origin) that is routed via hubs k and l

ߙ א ሾ0,1ሿ Cost discount factor for between two hubs. 
ߜ א ሾ0,1ሿ Cost discount factor for between non-hub nodes and hubs. 
  A large value ܯ
 

Now, the waiting time in each hub is calculated as follows. According to Fig. 1, circles are entered 
flows to a hub illustrated by a square. The first arrived unit flow does not wait in the queue and is 
transferred after Pk time unit. But, the other flows should wait until the prior flows receive services. 
For example, the second unit flow should wait as long as 2Pk before being transferred. This waiting 
time includes: (1) time ௞ܲ when the first unit receives services in the hub and (2) time ௞ܲ for getting 
services for the second unit flow. So the time, in which the second flow spends in the hub k, is equal 
to 2×Pk. Similarly, we have 3×Pk, (n-1) Pk and n×Pk for third, the (n-1)th and nth flow unit, 
respectively. Therefore the total spent time in hub k is as follows: 

௞ܶ ൌ ௞ܲ ൅ 2 ௞ܲ ൅ 3 ௞ܲ ൅ ڮ ൅ ሺ݊ െ 1ሻ ௞ܲ ൅ ݊ ௞ܲ. (1)

Eq. (1) can be written as follows. 
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௞ܶ ൌ ሺ1 ൅ 2 ൅ 3 ൅ ڮ ൅ ሺ݊ െ 1ሻ ൅ ݊ሻ ൈ ௞ܲ. (2) 

Therefore, Eq. (2) is written as follows. 

௞ܶ ൌ ௞ܲ ൈ ෍ ݊
௡

௜ୀଵ

, (3)

௞ܶ ൌ ௞ܲ ൈ
݊ ൈ ሺ݊ ൅ 1ሻ

2 . (4)

Finally, Eq. (4) can be written as follows, 

௞ܶ ൌ ௞ܲ ൈ
ሾ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ ሿଶ ൅ ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ

2 , (5)

where  ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞
௡
௜ୀଵ  is the total flows entering to hub k. Therefore, Eq. (5) can be the second 

objective function. 

                                           Entering flow waiting in a queue 

 

 
 

Fig. 1. Entering flows to the hub waiting in a queue 

A number of researchers have proposed many formulations for the CSAHLP. Our model is based on 
the formulation presented by Ernst and Krishnamoorthy (1999), which seems to be the most effective 
formulation for this kind of problem. 

CSAHCLP Model: 

min        ෍ ෍ ௜௝ሺܥߜ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ෍ ෍ ௞௟ܥߙ ௞ܻ௟
௜

௡

௟ୀଵ

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ௞ܺ௞௞ܨ

௡

௞ୀଵ

 (6)

subject to  

෍ ௜ܺ௞

௡

௞ୀଵ

ൌ 1 ݅ ൌ 1, … , ݊ (7)

௜ܺ௞ ൑ ܺ௞௞ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (8)
௜௞ܥ ௜ܺ௞ ൑ ݅ ௞ݎ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (9)

෍ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡

௜ୀଵ

൑ ݇ ௞߁ ൌ 1, … , ݊ (10)

෍ ௞ܻ௟
௜

௡

௟ୀଵ

൅ ෍ ௜ܹ௝ ௝ܺ௞

௡

௝ୀଵ

ൌ ௜ܱ ௜ܺ௞ ൅ ෍ ௟ܻ௞
௜

௡

௟ୀଵ

 ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (11)

௞ܻ௟
௜ ൑ ݅ ௞௞ܺܯ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (12)

௞ܻ௟
௜ ൑ ܯ ௟ܺ௟ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (13)

n 2 1 3 .... 

 

Hub 
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௜ܺ௞ א ሼ0, 1ሽ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (14)

௞ܻ௟
௜ ൒ 0 ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (15)

The objective function sums the transportation cost over all (i,j) pairs and the fixed cost of 
establishing a hub. Eq. (7) together with constraint (14) enforces single allocation for each node. 
Constraints (8) assure that no node is assigned to a location unless a hub is opened at that site. 
Constraint (9) makes sure that node i can only be allocated to k, if cost ܥ௜௞ between i and k is at most 
the radius ݎ௞. Constraint (10) shows the capacity constraint that limits the amount of flows processed 
by hub k. Eq. (11) is the divergence equations for commodity i at node k in a complete graph, when 
the demand and supply at the node is determined by the allocations ௜ܺ௞. Constraints (12) and (13) 
ensure that the value of ௞ܻ௟

௜  can be more than zero if nodes k and l are the valid hubs. Constraint (15) 
is a domain constraint.  

In this paper, the main idea is to eliminate the capacity constraint given in Eq. (10) and to introduce 
the second objective function that measures the flow-time spent in the hubs. Two approaches are 
considered for the second objective function: (1) summing the total time spent for processing the flow 
gathered by the hubs that, of course, has to be minimized (SAHCLP-1) and (2) minimizing the 
maximum spent time on the hubs (SAHCLP-2). The formulations for the two proposed models in this 
paper are as follows. 

SAHCLP-1 Model: 

min  ෍ ෍ ௜௝ሺܥߜ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ෍ ෍ ௞௟ܥߙ ௞ܻ௟
௜

௡

௟ୀଵ

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ௞ܺ௞௞ܨ

௡

௞ୀଵ

  (6)

min   ෍ ௞ܲ ൈ
ሾ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ ሿଶ ൅ ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ

2

௡

௞ୀଵ

 
 

(14)

subject to   

෍ ௜ܺ௞

௡

௞ୀଵ

ൌ 1 ݅ ൌ 1, … , ݊ (7)

௜ܺ௞ ൑ ܺ௞௞ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (8)

௜௞ܥ ௜ܺ௞ ൑ ݅ ௞ݎ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (9)

෍ ௞ܻ௟
௜

௡

௟ୀଵ

൅ ෍ ௜ܹ௝ ௝ܺ௞

௡

௝ୀଵ

ൌ ௜ܱ ௜ܺ௞ ൅ ෍ ௟ܻ௞
௜

௡

௟ୀଵ

 ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (11)

௞ܻ௟
௜ ൑ ݅ ௞௞ܺܯ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (12)

௞ܻ௟
௜ ൑ ܯ ௟ܺ௟ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (13) 

௜ܺ௞ א ሼ0, 1ሽ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (14) 

௞ܻ௟
௜ ൒ 0 ݅ ൌ 1, … , ݊;  ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (15) 
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SAHCLP-2 Model: 

min  ෍ ෍ ௜௝ሺܥߜ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ෍ ෍ ௞௟ܥߙ ௞ܻ௟
௜

௡

௟ୀଵ

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ௞ܺ௞௞ܨ

௡

௞ୀଵ

  (6)

min max
௞

ቆ
ሾ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ ሿଶ ൅ ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ

2 ൈ ௞ܲቇ  
 

(16)

subject to  

෍ ௜ܺ௞

௡

௞ୀଵ

ൌ 1 ݅ ൌ 1, … , ݊ (7)

௜ܺ௞ ൑ ܺ௞௞ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (8)

௜௞ܥ ௜ܺ௞ ൑ ݅ ௞ݎ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (9)

෍ ௞ܻ௟
௜

௡

௟ୀଵ

൅ ෍ ௜ܹ௝ ௝ܺ௞

௡

௝ୀଵ

ൌ ௜ܱ ௜ܺ௞ ൅ ෍ ௟ܻ௞
௜

௡

௟ୀଵ

 ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (11)

௞ܻ௟
௜ ൑  ௞௞ܺܯ

 

݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (12)

௞ܻ௟
௜ ൑ ܯ ௟ܺ௟ 

 

݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (13)

௜ܺ௞ א ሼ0, 1ሽ 
 

݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (14)

௞ܻ௟
௜ ൒ 0 

 

݅ ൌ 1, … , ݊;  ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (15)

For the second model, after linearizing the second objective function, we have:  

SAHCLP-2* Model: 

min  ෍ ෍ ௜௝ሺܥߜ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ෍ ෍ ௞௟ܥߙ ௞ܻ௟
௜

௡

௟ୀଵ

௡

௞ୀଵ

௡

௜ୀଵ

൅ ෍ ௞ܺ௞௞ܨ

௡

௞ୀଵ

  (6)

min   ߚ     (17)

subject to  

ߚ ൒
ሾ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ ሿଶ ൅ ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ

2 ൈ ௞ܲ ݇ ൌ 1, … , ݊ (18)

෍ ௜ܺ௞

௡

௞ୀଵ

ൌ 1 ݅ ൌ 1, … , ݊ (7)

௜ܺ௞ ൑ ܺ௞௞ ݅ ൌ 1, … , ݊;  ݇ ൌ 1, … , ݊ (8)

௜௞ܥ ௜ܺ௞ ൑ ݅ ௞ݎ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (9)
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෍ ௞ܻ௟
௜

௡

௟ୀଵ

൅ ෍ ௜ܹ௝ ௝ܺ௞

௡

௝ୀଵ

ൌ ௜ܱ ௜ܺ௞ ൅ ෍ ௟ܻ௞
௜

௡

௟ୀଵ

 ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (11)

௞ܻ௟
௜ ൑ ݅ ௞௞ܺܯ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (12)

௞ܻ௟
௜ ൑ ܯ ௟ܺ௟ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (13)

௜ܺ௞ א ሼ0, 1ሽ ݅ ൌ 1, … , ݊; ݇ ൌ 1, … , ݊ (14)

௞ܻ௟
௜ ൒ 0 ݅ ൌ 1, … , ݊;  ݇ ൌ 1, … , ݊; ݈ ൌ 1, … , ݊ (15)

4. Proposed weight-based imperialist competitive algorithm (MOICA) 

One of the approaches to solve a multi-objective optimization problem is to assign a weight ݓ௜ to 
each normalized objective function ௜݂

ᇱሺݔሻ such that the problem is converted into a single objective 
problem with a scalar objective function as follows. 

min     ݂ ൌ ଵݓ ଵ݂
ᇱሺݔሻ ൅ ଶݓ ଶ݂

ᇱሺݔሻ ൅ ڮ ൅ ௞ݓ ௞݂
ᇱሺݔሻ (19)

where ௜݂
ᇱሺݔሻ is the normalized objective function ௜݂ሺݔሻ with ∑ ௜ݓ ൌ 1. Solving such a problem with 

the objective function (17) for a given weight vector ݓ ൌ ሼݓଵ, ,ଶݓ … ,  ௞ሽ yields a single solution. Ifݓ
multiple solutions are desired, the problem should be solved different times with different weight 
combinations. For the given problem at hand, even finding a feasible solution is challenging. With 
this motivation, in this section, we develop an imperialist competitive algorithm (ICA) to solve the 
problem. The ICA is a new meta-heuristic algorithm introduced by Atashpas-Gargari and Lucas 
(2007) for solving continuous optimization problems. The general form of the ICA and the steps of 
the proposed solution algorithm are described in Sections 4.1 and 4.2, respectively. 

 4.1. Imperialist competitive algorithm  

Evolutionary optimization algorithms are generally inspired by modelling the natural processes and 
other aspects of species evolution, especially human evolution. However, imperialist competitive 
algorithm (ICA) uses socio-political evolution of human as a source of inspiration for developing a 
strong optimization strategy (Atashpas-Gargari & Lucas, 2007). Imperialism is the policy of 
extending the power and the rule of a government beyond its own boundaries. A country may attempt 
to dominate others by direct rule or by less obvious means such as a control of markets for goods or 
raw materials. Atashpas-Gargari and Lucas (2007) described the algorithm as like other evolutionary 
ones, the method is initiated using an initial population and any individual of the population is called 
a country. Some of the best countries (in optimization terminology, countries with the least cost) are 
selected to be the imperialist states and the rest form the colonies of these imperialists. All the 
remained colonies of initial countries are divided among the mentioned imperialists based on their 
power. The power of each country is measured based on the objective function of the proposed 
model.  

After dividing all colonies among imperialists and creating the initial empires, these colonies start 
moving toward their relevant imperialist country. This movement is a simple model of assimilation 
policy which is pursued by some of the imperialist states. The total power of an empire depends on 
both the power of the imperialist country and the power of its colonies. For this fact, we consider the 
total power of an empire as the sum of power of imperialist country and a percentage of mean power 
of its colonies. Then, the imperialistic competition begins among all the empires. Any empire that is 
not able to succeed in this competition will be eliminated from the competition. The imperialistic 
competition will gradually result in an increase in the power of powerful empires and a decrease in 
the power of weaker ones. Weak empires will lose their power, and ultimately they will collapse. The 
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movement of colonies toward their relevant imperialists along with competition among empires, and 
also the collapse mechanism will hopefully cause all the countries to converge to a state in which 
there is one empire in the world and all the other countries are colonies of that empire. In this ideal 
new world, colonies have the same position and power as the imperialist.  

4.2. Improved imperialist competitive Algorithm 

Since basic ICA is used for continuous problem, not only do we adopt this algorithm with discrete 
problems, but also we improve this algorithm by adding some new assimilation methods. For this 
fact, we use a crossover function of the genetic algorithm (GA) and the new near building policy. 
These methods lead to better approximated solutions closer to an optimal solution and less 
computational time in comparison with the traditional GA. Following, we explain the steps of the 
proposed ICA.      

4.2.1. Representation of the solution 

Any solution encoding procedure should show the location of hub nodes and the allocation of non-
hub nodes to the hubs. One of the procedures uses integer numbers for presenting the given network. 
The solutions are presented as a vector, in which the length of the vector is equal to the number of 
nodes in the network. Each bit shows a node in the network, in which its value explains the number of 
the hub or the node is allocated to. Further, when the value of the bit is equal to the number of the 
node, the node is considered as a hub. For example, a sample solution is obtained as follows: 

Ind= [1 7 3 7 3 3 7 1 9 9] 

In this solution nodes 1, 3, 7 and 9 are hubs. Also, nodes 2 and 4 are allocated to hub 7, nodes 5 and 6 
are allocated to hub 3, node 8 is allocated to hub 1, and node 10 is allocated to hub 9. 

4.2.2. Initial population   

The creation of the initial population is processed in three steps. In the first step, the number of hubs, 
p, is determined, randomly. The number of hubs in this study is not given so it can be any number of 
nodes in the network with minimum 2 and maximum n. In the second stage (i.e., location stage), p 
number of hubs are located randomly among n nodes of the network. Finally, in the allocation step, 
the remaining nodes are allocated to the located hubs based on their shortest distance from located 
hubs and the capacity of the mentioned hubs. The above process is applied iteratively to create the 
entire population.  

4.2.3. Evaluation function 

The solutions in the imperialist competitive algorithm are named as country. The evaluation function 
is an operation to evaluate how good the network configuration of each country is. Also, it makes the 
comparison between different solutions possible. In this paper, the evaluation function includes of 
calculating the value of the summation of the objective function of the network represented by each 
country. In order to prevent an object from being dominated by the other object, the authors used 
normalized weight base objective function. Let Z1

* and Z2
* be the optimal objective functions that are 

obtained by considering only one of the objective functions Z1 and Z2 (Malekinezhad et al., 2011). 
Therefore the evaluation function in the proposed algorithm is as follows. 
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where ݓ௜ is generated randomly or determined by the DM, so that ∑ ௜ݓ ൌ 1 and ܿ௜ is the objective 
function value of the ith solution.    

4.2.4. Imperialism  

To produce the initial imperialist, we consider some of the best countries (those countries have the 
minimum cost = ௜ܰ௠௣) as emperors. We consider the remaining countries ( ௖ܰ௢௟) as colonies. After 
that, the remaining countries are allocated to emperors according to authority of each emperor, which 
is obtained by computing the normalized cost for each emperor as follows, 

௡ܥ ൌ  ܿ௡ െ max
௜

ሼܿ௜ሽ, 

where ܿ௡ is the cost of the nth emperor, and ܥ௡ is the normalized cost for the nth emperor. Now, a 
proportional power for each emperor for allocating the colonies to them is computed as follows, 

௡ܲ ൌ ஼೙

∑ ஼೔
ಿ೔೘೛
೔సభ

. 

Finally, a number of colonies, in which each emperor can seize, are: 

ܰ ൈ ௡ܥ ൌ ሼ ݀݊ݑ݋ݎ ௡ܲ ൈ ሺ ௖ܰ௢௟ሻሽ, 

where ܰ ൈ  ௡  is the number of colonies that the nth emperor can seize. After allocating the coloniesܥ
to emperors, the imperialism competition will be started. Each emperor tries to develop its colonies.  

4.2.5. Assimilation methods 

After forming initial empires, the colonies in each of them start moving toward their relevant 
imperialist country. This movement is called the assimilation policy that was pursued by some of the 
imperialist states. In the following, three methods for assimilating colonies are presented.  

4.2.5.1. Near building policy 

In this section, a new method for assimilating colonies is explained. At first, all hubs of the emperor 
are determined. Second, half of them will be chosen and located instead of the same number of hubs 
in each colony, in which we want to assimilate. Those colonies, which will be selected for 
assimilating, are limited and they are chosen randomly among weaker colonies. After the hubs are 
located in colonies, we allocate the remaining nodes to the located hubs. In this process, if a colony 
gaines better position (i.e., lower cost) than the emperor, the position of emperor and the best 
assimilated colony will be exchanged. For example, if the position of an emperor in search space is 
Emp= [1 2 7 6 6 7 2 2 9 10], the hub locations will be [1 2 6 7 9 10]. Now we select half of the hub 
locations matrix, randomly. For example: hubs 6, 9 and 10 have been chosen. Then for each chosen, 
we locate nodes 6, 9 and 10 as hubs. Finally, we allocate the remaining nodes to these hubs.  
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4.2.5.2. Association policy 

In this method, each emperor combines its features with colonies. The crossover in the GA is used. 
After each association, the country passes from the filtering step in the program to guarantee that the 
country will have a valid structure at the end of this process. For example, suppose that the emperor is 
Emp= [1 2 7 6 6 7 2 2 9 10] and the colony is Col=[2 2 3 4 7 3 7 8 8 2]. Then, we choose the 
association point randomly. For example, if the association point is 6, then two solutions ([1 2 7 6 6 
7] and [7 8 8 2]) will be combined. Therefore, the colony are changed to [1 2 7 6 6 7 7 8 8 2]. 

4.2.5.3. Revolution policy 

In our proposed ICA, the revolution policy consists of creating a new solution. It likes the mutation 
operator in the GA. This method is similar to create the initial solution as mentioned in Section 3.2.2. 
In any imperialism, a number of colonies, which will be revolted, are limited. The authors set the 
revolution rate close to 0.1 (i.e., if the imperialism has 20 members, then just two of them will be 
revolted). 

4.2.6. Cost of a imperialism 

The total cost of imperialism is computed by:   

ܶ. ௡ܥ ൌ ௡ሻݎ݋ݎ݁݌ሺ݁݉ݐݏ݋ܥ ൅ γ. ݉݁ܽ݊ሼܿݐݏ݋ሺݎ݋ݎ݁݌݉݁ ݂݋ ݏ݁݅݊݋݈݋ܥ௡ሻሽ, 

where γ is the positive factor between 0 and 1. Also, ܶ ൈ  ௡ is the total cost of the nth imperialism. Ifܥ
the γ  value is low, the cost of the nth imperialism closes to the cost of the nth emperor. The usual 
value γ is 0.3. 

4.2.7. Imperialist competition 

As all empires try to take the possession of the colonies of the other empires and control them, the 
imperialistic competition gradually brings about a decrease in the power of weaker empires and an 
increase in the power of more powerful ones (Atashpas-Gargari & Lucas, 2007). The imperialistic 
competition is modelled by just picking one (or some) of the weakest colonies of the weakest empires 
and making a competition among all empires to possess this (or these) colony (or colonies). During 
this competition, each emperor, who cannot develop its colonies, will be eliminated and seized with a 
stronger imperialism. This process is continued until it remains only one emperor. Also, the algorithm 
can be stopped after predefined iterations. 

4.2.8. Pseudo code for imperialist competitive algorithm (ICA) 

The main steps of the proposed ICA are summarized in the pseudo code shown in Fig. 2. 

5. Experimental evaluation 

This section evaluates the performances of the proposed imperialist competitive algorithm. These 
algorithms are coded and implemented in MATLAB 7.0 running on a PC with Pentium 4, CPU 
1.4GHz, RAM 512 MB. Furthermore, for the optimal solution in small sizes, the authors use the 
CPLEX software. 

5.1. Parameters tuning 

It is worthy to note that the quality of an algorithm is significantly affected by the values of its 
parameters. In this section, the authors study the behaviour of the different parameters of the ICA. In 
order to tune the proposed ICA, the authors apply a full factorial design in the design of the 
experiment (DOE) method (Montgomery, 2000). Then four instances for tuning each set of 
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parameters are randomly generated, resulting in the total of 240 instances. The stopping criterion is 
n×m×0.4 seconds of the computational time. This stopping criterion allows for more time as the 
number of nodes increases. We use the relative percentage deviation (RPD) for the objective function 
value as the common performance measure in order to compare the levels of parameters. The RPD is 
calculated by: 

ܦܴܲ ൌ
௦௢௟݈݃ܣ െ ௦௢௟݊݅ܯ

௦௢௟݊݅ܯ
ൈ 100 

where ݈݃ܣ௦௢௟ is the objective function value obtained for the proposed ICA, and ݊݅ܯ௦௢௟ is the best 
solutions obtained for each instance by the CPLEX software. 

The proposed ICA has three parameters, namely the number of imperialists (Imp-Num), the number 
of colonies (Popsize), and the crossover point in assimilation procedure (CrossP). The considered 
levels of the parameters are shown in Table 1. The associated results are analyzed by the means of the 
analysis of the variance (ANOVA) method. The means plot and least significant differences (LSD) 
intervals at the 95% confidence level for the levels Imp-Num, Popsize, and CrossP parameter factors 
are shown in Figs. 3 to 5, respectively.  

1. Generate random sample of countries N  

2. Initiate imperialism 

a. For each country compute the evaluation function ci  

b. Sort the set N descending based on ci 

c. Select Nimp powerful countries as the emperor 

d. Normalize the cost of each emperor Ci  

e. Compute the authority of each emperor for seizing countries Pn 

f. Assign Ncol remained countries to emperor according to Step 2.e. by N×Cn  

3. For each imperialism do 

a. Move the colony toward the relevant emperor (assimilating) 

b. Compute the cost of assimilated countries 

c. If the new colony gained lower cost than that of emperor then 

 Exchange the positions of that colony and the imperialist 

d. Compute the total cost of imperialism T×Cn 

e. Select the weakest colony (colonies) from the weakest empire and give it 
(them) to the strongest empire 

4. If there is an imperialism with no colonies then 

 Eliminate that imperialism 

5. If stop conditions have been fulfilled then stop the algorithm or go to Step 3.  

Fig. 2. Pseudo code for the CCA 
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Table 3  
Computational comparison of the IP model and the heuristic algorithm for n = 10 
Parameters  CPLEX  ICA 
n ࢾ ࢻ w(ݓଵ,  (%) ଶ)  OFV*  OFV Gapݓ
10 0.75 0.90 (0.40, 0.60)  1.424  1.424 0 
   (0.45, 0.55)  1.470  1.470 0 
   (0.50, 0.50)  1.531  1.531 0 
   (0.55, 0.45)  1.433  1.433 0 
   (0.60, 0.40)  1.404  1.404 0 
  0.95 (0.40, 0.60)  1.309  1.309 0 
   (0.45, 0.55)  1.402  1.402 0 
   (0.50, 0.50)  1.418  1.418 0 
   (0.55, 0.45)  1.176  1.176 0 
   (0.60, 0.40)  1.038  1.038 0 
 0.80 0.90 (0.40, 0.60)  1.132  1.132 0 
   (0.45, 0.55)  1.364  1.364 0 
   (0.50, 0.50)  1.421  1.421 0 
   (0.55, 0.45)  1.322  1.322 0 
   (0.60, 0.40)  1.212  1.212 0 
  0.95 (0.40, 0.60)  1.582  1.582 0 
   (0.45, 0.55)  1.595  1.595 0 
   (0.50, 0.50)  1.642  1.642 0 
   (0.55, 0.45)  1.486  1.486 0 
   (0.60, 0.40)  1.411  1.411 0 
Average  0 
*Objective function value 

Table 4  
Computational comparison of the IP model and the heuristic algorithm for n = 15 

 

Parameters  CPLEX  ICA 

n ߜ ߙ w(ݓଵ,  ଶ)  OFV  OFV Gapݓ
(%) 

15 0.75 0.90 (0.40, 0.60)  1.422  1.422 0 
   (0.45, 0.55)  1.445  1.445 0 
   (0.50, 0.50)  1.497  1.512 0.98 
   (0.55, 0.45)  1.434  1.434 0 
   (0.60, 0.40)  1.398  1.398 0 
  0.95 (0.40, 0.60)  1.327  1.341 1.02 
   (0.45, 0.55)  1.352  1.352 0 
   (0.50, 0.50)  1.375  1.375 0 
   (0.55, 0.45)  1.311  1.311 0 
   (0.60, 0.40)  1.294  1.294 0 
 0.80 0.90 (0.40, 0.60)  1.427  1.441 1.01 
   (0.45, 0.55)  1.432  1.432 0 
   (0.50, 0.50)  1.476  1.488 0.83 
   (0.55, 0.45)  1.411  1.411 0 
   (0.60, 0.40)  1.402  1.413 0.76 
  0.95 (0.40, 0.60)  1.371  1.388 1.22 
   (0.45, 0.55)  1.395  1.395 0 
   (0.50, 0.50)  1.423  1.436 0.90 
   (0.55, 0.45)  1.404  1.404 0 
   (0.60, 0.40)  1.379  1.393 1.00 
Average 0.38 
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Table 6  
Computational comparison of the IP model and the heuristic algorithm for n = 40 
Parameters  CPLEX  ICA 
n ࢾ ࢻ w(ݓଵ,  ଶ)  OFV  OFVݓ
40 0.75 0.90 (0.40, 0.60)  -  0.878 
   (0.45, 0.55)  -  0.922 
   (0.50, 0.50)  -  1.028 
   (0.55, 0.45)  -  0.591 
   (0.60, 0.40)  -  0.563 
  0.95 (0.40, 0.60)  -  0.651 
   (0.45, 0.55)  -  0.853 
   (0.50, 0.50)  -  0.914 
   (0.55, 0.45)  -  0.579 
   (0.60, 0.40)  -  0.561 
 0.80 0.90 (0.40, 0.60)  -  0.986 
   (0.45, 0.55)  -  1.132 
   (0.50, 0.50)  -  1.210 
   (0.55, 0.45)  -  0.892 
   (0.60, 0.40)  -  0.826 
  0.95 (0.40, 0.60)  -  0.805 
   (0.45, 0.55)  -  0.973 
   (0.50, 0.50)  -  1.113 
   (0.55, 0.45)  -  0.819 
   (0.60, 0.40)  -  0.874 
 

Table 5  
Computational comparison of the IP model and the heuristic algorithm for n = 20 
Parameters  CPLEX  ICA 
n ߜ ߙ w(ݓଵ,  (%) ଶ)  OFV  OFV Gapݓ
20 0.75 0.90 (0.40, 0.60)  1.498  1.535 2.5 
   (0.45, 0.55)  1.525  1.525 0 
   (0.50, 0.50)  1.546  1.572 1.7 
   (0.55, 0.45)  1.473  1.473 0 
   (0.60, 0.40)  1.459  1.491 2.2 
  0.95 (0.40, 0.60)  1.257  1.273 1.3 
   (0.45, 0.55)  1.264  1.303 3.1 
   (0.50, 0.50)  1.285  1.312 2.1 
   (0.55, 0.45)  1.164  1.164 0 
   (0.60, 0.40)  1.153  1.186 2.9 
 0.80 0.90 (0.40, 0.60)  1.350  1.382 2.4 
   (0.45, 0.55)  1.365  1.365 0 
   (0.50, 0.50)  1.392  1.392 0 
   (0.55, 0.45)  1.263  1.302 3.1 
   (0.60, 0.40)  1.235  1.272 3.0 
  0.95 (0.40, 0.60)  1.517  1.556 2.6 
   (0.45, 0.55)  1.532  1.566 2.2 
   (0.50, 0.50)  1.570  1.570 0 
   (0.55, 0.45)  1.523  1.523 0 
   (0.60, 0.40)  1.497  1.551 3.6 
Average 1.64 
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For large-sized problems, the CPLEX software spends more than 10 hours for achieving the optimal 
solutions. Therefore, values Z1 and Z2 are calculated by interrupting the CPLEX software after 
n×m×0.4 seconds. So, the following equation is used to compute the normalized objective function 
instead of Eq. (20). 
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௡
௞ୀଵ

௡
௜ୀଵ ൅ ∑ ௞ܺ௞௞ܨ

௡
௞ୀଵ ൯

ܼଵ
ቋ         

൅ݓଶ ൞
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௡
௜ୀଵ ሿଶ ൅ ∑ ሺ ௜ܱ ൅ ௜ሻܦ ௜ܺ௞

௡
௜ୀଵ

2
௡
௞ୀଵ ൰

ܼଶ
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(21) 

The CPLEX software spends more than 10 hours in solving instances with 40 and 70 nodes. So, we 
run our proposed ICA alone and compare the results for these instances. The proposed algorithm 
spends less than 600 seconds for 70 nodes problems. So, it is more reasonable to use the meta-
heuristic approaches for achieving the near-optimal solution with a little gap. The gaps of the 
proposed ICA are 0.0, 0.38 and 1.64 for 10, 15 and 20 nodes, respectively. 

Table 7  
Computational comparison of the IP model and the heuristic algorithm for n = 70 

Parameters  CPLEX  ICA 
n ߜ ߙ w(ݓଵ,  ଶ)  OFV  OFVݓ
70 0.75 0.90 (0.40, 0.60)  -  0.638 
   (0.45, 0.55)  -  0.659 
   (0.50, 0.50)  -  0.714 
   (0.55, 0.45)  -  0.624 
   (0.60, 0.40)  -  0.621 
  0.95 (0.40, 0.60)  -  0.751 
   (0.45, 0.55)  -  0.803 
   (0.50, 0.50)  -  0.838 
   (0.55, 0.45)  -  0.779 
   (0.60, 0.40)  -  0.783 
 0.80 0.90 (0.40, 0.60)  -  0.953 
   (0.45, 0.55)  -  0.974 
   (0.50, 0.50)  -  1.093 
   (0.55, 0.45)  -  0.948 
   (0.60, 0.40)  -  0.953 
  0.95 (0.40, 0.60)  -  0.898 
   (0.45, 0.55)  -  0.943 
   (0.50, 0.50)  -  0.987 
   (0.55, 0.45)  -  0.879 
   (0.60, 0.40)  -  0.778 
 

A paired t-test is conducted to see whether the significant difference exists between the obtained 
solution of the proposed ICA and the optimal solution of the CPLEX software. Let Di be equal to the 
difference between the computed values of two methods for test problem i. So the statistics are as 
follows:   
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ݐ ൌ
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(22)

 where ܦഥ ൌ ∑ ஽೔
௡

 and ܵ஽ ൌ ට∑ሺ஽೔ି஽ഥሻమ

௡ିଵ
. 

We conduct the paired t-test by 30 test problems in the SPSS software. The calculated statistic is 
equal to 4.059. By referencing to the t table, for 29 df (i.e., degree of freedom), the significance (2-
tailed) is 0.00. The detailed statistics are shown in Table 8. 

Table 8  
Detailed statistics of the paired t-test 
Paired Differences 
  

Mean Std. 
deviation Std. Error mean 

95% confidence interval 
of the difference t df Sig. (2-tailed)

  Lower Upper 

Pair-1  CPLEX -   ICA 0.00925 0.01460 0.00188 0.00548 0.01302 4.908 59 0.000 

 

6. Conclusion 

In this paper, a different model of the capacitated single allocation hub covering location problem has 
been presented. Instead of using capacity constraints to limit the amount of flows that can be received 
by the hubs, the second objective function has been introduced to the presented model (besides the 
traditional cost minimizing function), that tries to minimize both of the transportation time in the hub 
network and the service time in the hubs. According to the basic proposed model, the third model has 
been also proposed, in which the model has minimized the total transportation cost and minimized the 
maximum spent service time in the hubs. To solve the problem, the authors have proposed a new 
imperialist competitive algorithm (ICA). The performance of the proposed ICA has been compared 
with those optimal solutions obtained by the mathematical formulation. The related results have been 
shown in Tables 3 to 7. The maximum gap of the proposed algorithm is 3.3% for 20 nodes instance. 
For sizes 40 and 70, the CPLEX software has spent more than 4 hours in order to gain the optimal 
solutions. Therefore for sizes 40 and 70, the proposed algorithm has run alone. Developing other 
meta-heuristics for the problem given in this paper is an interesting further research direction. Also, 
analyzing the problem with arc constraints as the assumption can be a valuable research subject.    
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