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  A multiproduct pipeline provides an economic way to transport large volumes of refined 
petroleum products over long distances. In such a pipeline, different products are pumped 
back−to−back without any separation device between them. The sequence and lengths of such 
pumping runs must be carefully selected in order to meet market demands while minimizing 
pipeline operational costs and satisfying several constraints. The production planning and 
scheduling of the products at the refinery must also be synchronized with the transportation in 
order to avoid the usage of the system at some peak−hour time intervals. In this paper, we 
propose a multi−period mixed integer nonlinear programming (MINLP) model for an optimal 
planning and scheduling of the production and transportation of multiple petroleum products 
from a refinery plant connected to several depots through a single pipeline system. The 
objective of this work is to generalize the mixed integer linear programming (MILP) 
formulation proposed by Cafaro and Cerdá (2004, Computers and Chemical Engineering) 
where only a single planning period was considered and the production planning and 
scheduling was not part of the decision process. Numerical examples show how the use of a 
single period model for a given time period may lead to infeasible solutions when it is used for 
the upcoming periods. These examples also show how integrating production planning with the 
transportation and the use of a multi−period model may result in a cost saving compared to 
using a single−period model for each period, independently. 

 © 2010 Growing Science Ltd.  All rights reserved.
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1.   Introduction 

Pipelines have been a widely used mode of transportation for petroleum products and their 
derivatives for the last 40 years. The annual transportation cost in the petroleum industry usually 
surpasses billions of dollars, since large volumes have to be transported over long distances. 
Evidently, pipeline systems play an important role in the industry. Although the initial capital 
investment required to setup these transportation systems is high, the operating costs are very low 
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comparing with other transportation modes such as rail and highway. The final price of the product 
depends on its transportation cost, making the optimization of the transportation process a problem of 
extreme relevance. Consequently, the related scheduling activities for product distribution using 
pipeline systems have been a focus for over 30 years. The simplest pipeline has one source, one 
destination, and one type of product to be delivered, e.g. the pipelines used in the transportation of 
crude oil from coastal ports to inland refineries. At the next level of complexity, the pipeline could 
have multiple destinations; and a more realistic pipeline would also handle multiple petroleum 
products treated in refineries such as kerosene, naphtha, gas oil, etc. (Sasikumar et al., 1997). These 
multiproduct pipelines are commonly named polyducts. In a polyduct, different products are pumped 
back-to-back without any separation devices as shown in Fig.1. 

Final distribution depots

Mixed product (TRANSMIX)

Refinery

 

Fig. 1. Typical operation of a polyduct system 

The main challenge in operating polyduct systems is planning the optimal sequence, length and 
starting time of each pumping run from the refinery to the pipeline, together with the optimal timing 
of transferring these products from the pipeline to each depot. Since there is no physical separation 
among different products as they move through the pipeline, some mixing (transmixes) and 
consequent contamination at product interface is inevitable. These transmixes must pass through a 
special treatment that usually involves sending them back to a refinery for reprocessing which 
increases the overall cost, significantly (Techo & Holbrook, 1974). Moreover, if two products are 
known to generate high interface losses, the pipeline schedule must not place them adjacently. 
Another consequence of transmixes is that pumping small amount of products is not economical. 
Hence, each pumping run must fulfill a minimum length to make the pumping schedule efficient. The 
pumping schedule must also take into account the product availability at the refinery and the 
consumption of different products at each depot. The selection of the entry times of the slugs to the 
pipeline must be chosen to avoid high electrical energy cost intervals (pick−hours) while at the same 
time ensuring timely delivery of the products to depots. 

A few papers on this subject have been published in the last decade. Existing approaches can be 
summarized in two groups attending to two fundamental criteria: (a) the type of pipeline system 
considered (a single pipeline system, or a pipeline network), and (b) the technique used to solve the 
proposed models (classical, heuristic, or hybrid methods). In both cases, given the complexity of the 
problem, most authors always introduce some simplification, either topological, relative to the system 
dimensions, to the length of the planning horizon, or relative to the way that the system is operated. 
Regarding to the authors who deal with a single pipeline system, some of them treat the time as a 
discrete variable. Based on this discrete approach, Rejowski and Pinto (2003) proposed an MILP 
formulation whose objective function is the sum of the pumping cost, inventory costs and the 
reprocessing cost associated with transmixes. They proposed two different models depending on 
whether the product contained in one section of the polyduct can simultaneously feed its 
corresponding depot and the next polyduct section or not. In both models, the amount of product 
pumped to the polyduct must be a multiple of certain volume. With this formulation, the cost 
associated with the generation of transmixes is not a function of realistic parameters. Rejowski and 
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Pinto (2004) improved their previous work by adding additional constraints to perform a better 
calculation of the cost associated with the generation of a transmixes. Moreover, they incorporated 
some constraints relative to the minimum number of periods that each section must remain operative 
to guarantee the fulfillment of demand at each terminal. The model was applied, under several 
demand scenarios, to a system composed by a polyduct which takes different petroleum products 
from a single refinery and distribute them over five terminals located along its route. Additionally, 
Rejowski and Pinto (2008) developed a novel continuous-time representation to model the same 
process considered in their previous papers. Magatao et al. (2004) proposed another discrete approach 
to solve a model applied on a real world pipeline, which connects an inland refinery to a harbor, 
conveying different types of products. Cafaro and Cerdá (2003) formulated a model based on a 
continuous time approach. Rejowski and Pinto (2003) tried to diminish the costs associated with 
pumping and inventory costs associated with the transmixes. Since their approach was continuous, 
they did not make any hypothesis on the size of the slugs injected in the polyduct and considered it as 
a continuous variable. The model was applied over the same system considered by Rejowski and 
Pinto (2003, 2004). The results were better than the work by Rejowski and Pinto (2003, 2004) in 
terms of CPU time reduction. Cafaro and Cerdá (2004) improved their previous work by adding more 
constraints related to the existence of forbidden product sequences. Moreover, a more rigorous 
treatment of the pumping costs was made, and some additional redundant constraints were 
incorporated to the model in order to speed up the branch-and-bound solution algorithm. The authors 
extended their model to include dynamic scheduling over rolling planning horizon in Cafaro and 
Cerdá (2008). Recently, Mirhassani and Ghorbanalizadeh (2008) developed an integer programming 
formulation to deal with the same problem. 

There are other works to solve problems topologically more complexes. De Felice and Charles (1975) 
described the use of a simulator to obtain the optimal sequence for the pumping of new products into 
a network composed by two sources, three intermediate pump stations, seven terminals and twelve 
polyducts connecting all these elements. Hane and Ratliff (1993) used a directed graph acyclic to 
represent the polyduct, in which nodes represent sources and terminals and arcs represent different 
polyduct sections. The direction of each arc determines the sense of the flow throughout the 
corresponding section, without the possibility of considering reversible sections. Campognara and De 
Souza (1996) also used a directed graph representation and considered reversible polyduct sections, 
limited storage capacity at terminals and forbidden product sequences. Camacho et al. (1990) studied 
polyduct networks with several terminals and ramifications where the objective was not to program 
the shipments through the polyduct, but to obtain the optimal operation over the pumping equipment 
installed in order to diminish the electrical cost dealing with the product delivery dates at each 
terminal. De la Cruz et al. (2003) proposed the most complex problem found in literature from the 
topological point of view. The pipeline network is composed by several sources (refineries, ports or 
storage centers), destinations (terminal depots from which the final distribution is performed by 
trucks) and intermediate nodes to store product. De la Cruz et al. (2004, 2005) extended their 
previous work by developing an MINLP model. After the linearization of some nonlinear constraints, 
they proposed a hybrid algorithm to solve it, based on the use of classical and heuristic methods. 
Other authors choose heuristic methods instead of exact methods to perform the search of the 
solution. Sasikumar (1997) proposed a heuristic to find a feasible solution. Also, Mildilú et al. (2002) 
used a heuristic method to get a near-optimal solution attending to the sum of the costs due to the 
penalties by delay in the deliveries and the costs associated with the shutdowns and starting of the 
pipeline. Finally, de la Cruz et al. (2003, 2004, 2005) proposed a genetic algorithm (GA) to solve 
large-scale models based on a discrete time approach over polyduct networks.  

The papers reviewed above consider the scheduling of the pumping operations of multiple products 
for a single planning period. However, similar to other manufacturing and distribution problems, 
production and distribution of refined petroleum products are also subject to recurring scheduling 
problems over multiple periods where a single period may be few days, weeks or months. In such 
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situations, demands for different products need to be satisfied during the operating period. In these 
cases, the use of a single−period model repeatedly to solve a multiple period problem may lead to 
infeasible solutions. Since the demand for the upcoming periods are not considered in the 
optimization process, the solution tends to use more available inventory to satisfy the current 
demands rather than requiring new pumping operations. Thus, when we use the model for the 
upcoming period, the solution may be infeasible as it is impossible to satisfy the demands due to the 
delay in product delivery and minimum inventory. Whenever feasible solutions are possible by using 
a set of single−period models independently for a multi-period problem, the combined optimal costs 
are higher than solving the multi−period model, directly. However, according to Forrest and Oettli 
(2003), most of the oil industries operate their upstream operations, refining, and transportation 
groups as completely separate entities and integrating certain functions may be required for a better 
performance of the system. The production planning and scheduling of the products at the refinery 
must also be synchronized with the transportation to avoid pumping during high energy cost intervals. 
Based on the above considerations and the single period MILP model developed in Cafaro and Cerdá 
(2004), we propose a multi−period model for planning pumping operations of multiple products from 
a single source to multiple destinations which also integrates the production planning with 
transportation in order to reduce the operational cost of the system. This work improves our previous 
work in Defersha et al. (2008) in the following aspects: 

• The objective function is modified in order to improve the estimation of the inventory levels at 
refinery. 

• The linearization procedure of the MINLP model is elaborated (see Appendix I) 

• Additional sets of constraints are provided to speed up the convergence of the branch and 
bound algorithm (see Appendix II). 

• The numerical example is expanded to provide detailed analysis of results. 

The remainder of this paper is organized as follows. Problem description and the developed model 
together with the nomenclature used in this paper are presented in details in Section 2. In Section 3, 
the proposed MINLP model is illustrated by solving a large−scale product pipeline scheduling 
problem involving two periods under several scenarios. Conclusions are shown in Section 4. Finally, 
an Appendix shows some constraints related to the linearization process used over the proposed 
MINLP model, together with an additional set of constraints to speed up the convergence of the 
branch and bound algorithm. 

2.   Problem description 

A petroleum refinery facility produces and distributes different petroleum products to several depots 
through a single pipeline. Demands for various products at the depots must be satisfied in successive 
planning periods. Demands are based on forecasts and/or customer orders. Inventory levels both in 
the refinery and depot tanks must be kept within permissible ranges. Given the following information: 

• the sequence of slugs in transit along the pipeline and their actual volumes at the beginning of 
the first period, 

• product inventories available at the refinery and the depot tanks at the beginning of the first 
period, 

• maximum values for the slug pump rate, the product supply rate from the pipeline to depots and 
the product delivery rate from depots to local markets, 

• the length of each planning period, 

the problem goal is to establish the optimal production plan and schedule for all the products, 
sequence of new slug injections in the pipeline together with their initial volumes, and the product 
assigned to each one in order to: (1) meet product demands at each depot during each period; (2) keep 
inventory levels in the refinery and depot tanks within the permissible range; and (3) minimize the 
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delivery cost of products to depots, pumping cost, interface losses, and inventory carrying costs. At 
the same time, variations in sizes and coordinates of the slugs as they move along the pipeline as well 
as the changes of inventory levels in refinery and depot tanks are tracked over each planning period. 
Moreover, forbidden sequences must be avoided when planning the sequence of the pumping 
operations. In order to solve this problem it is necessary to develop a mathematical model composed 
of an objective function and a set of constraints. Next sections show all these equations using the 
nomenclature defined in this paper, resulting in an MILP that can be solved with any commercial 
solver. All the equations of the model can be grouped on the following subsets: 

(1) Objective function 
(2) Production planning 
(3) Pumping of new slugs into the pipeline 
(4) Location of each slug pumped into the pipeline 
(5) Volume of product transferred from slugs to depots 
(6) Fulfillment of market demands 
(7) Control of inventories in refinery tanks 
(8) Control of inventories in depot tanks 

 

2.1   Nomenclature 

Sets: 

T Set of time periods in the planning horizon indexed by t=1...T 
P Set of refined petroleum products indexed by p=1,...,P 
J Set of distribution terminal depots along the pipeline indexed by j=1,...,J 
K Set of peak−hour intervals in any time period indexed by k=1,...,K 
R Set of potential production runs of a given product in any time period indexed by 1,...,R 
I Set of potential slugs to be pumped in any time period indexed by i=1,...,I 
O Set of old slugs in the pipe line at the beginning of the planning horizon indexed by o=1,...,O 
S Set of product pairs {(p,p’),...} representing forbidden pumping sequences 

Parameters: 

cidp,j Unit inventory cost of product p at depot j 
cirp Unit inventory cost of product p at refinery tanks 
cfp,p’ Unit reprocessing cost of interface material involving products p and p’ 
cpp,j Unit pumping cost to deliver product p from the refinery to depot j 
ρk,t Unit penalty cost for pipeline operation during the peak−hour interval k of period t 
IPHk,t Lower limit of the kth peak−hour interval of period t 
FPHk,t Upper limit of the kth peak−hour interval of period t 
hmax Length of a time period t (each time period is assumed to be of equal length) 
ID0p,j Inventory level of product p at depot j at the beginning of the planning horizon 
IFp,p’ Interface volume between consecutively pumped slugs containing products p and p’ 
IR0p Inventory level of product p at refinery tanks at the beginning of the planning horizon 
IRminp Minimum allowed inventory level of product p at refinery tanks 
IRmaxp Maximum allowed inventory level of product p at refinery tanks 
PRmin Minimum allowable length of a production run 
lmin Minimum time length of a new slug pumped into the pipeline 
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lmax Maximum time length of a new slug pumped into the pipeline 
qdp,j,t Overall demand of product p to be satisfied at depot j in period t 
vm Maximum supply rate to the local market 
vbmin Minimum pumping rate of slugs into the pipeline 
vbmax Maximum pumping rate of slugs into the pipeline 
W0o Size of the old slug o at the beginning of the planning horizon 
WIF0o Interface volume between old slug o and o−1 
F0o Upper coordinate of old slug o at the beginning of the planning horizon 
yoo,p Parameter denoting if an old slug o contains product p 
σj Volumetric coordinate of depot j from the refinery 
τp,p’ Changeover time between injections of products p and p’ 
vrp Production rate of product type p 

Continuous variables: 

LRr,p,t Time length of the rth production run of product p in period t 
CRr,p,t Completion time of the rth production run of product p in period t 
Li,t Time length of the ith slug pumped in period t 
Ci,t Completion time of the ith slug pumped  in period t 
Ap,i,t Volume of product p injected in the pipeline while pumping the ith slug in period t 
Doo,j,i,t Volume of the old slug o transferred from the pipeline to depot j while pumping the ith 

slug in period t 
DVoo,p,j,i,t Volume of product p transferred to depot j from the old slug o while pumping the ith 

slug in period t 
Di,t,j,i’,t’ Volume of the ith slug pumped in period t transferred from the pipeline to depot j while 

pumping slug i' in period t’≥t 
DVi,t,p,j,i’,t’ Volume of product p transferred to depot j from ith slug pumped in period t while 

pumping slug i’ in period t’≥t 
Foo,i,t Upper coordinate of old slug o at time Ci,t 
Fi,t,i’,t’ Upper coordinate of the ith slug pumped in period t from the refinery at time Ci’,t’ 

Hi,t,k Portion of Li,t pumped within the kth peak−hour time interval in period t 
IDp,j,i,t Inventory level of product p in depot j at time Ci,t 

IRSp,i,t Inventory level of product p in refinery at time Ci,t−Li,t 

IRFp,i,t Inventory level of product p in refinery at time Ci,t 

Nt Current number of slugs pumped in period t 
qlr,p,i,t Volume of the rth production run of product p in period t available at time Ci,t−Li,t 

qur,p,i,t Volume of the rth production run of product p in period t available at time Ci,t 

qmp,j,i,t Volume of product p transferred to depot j during the time interval (Ci−1,t, Ci,t) 
Qi,t Original volume of the ith slug pumped in period t 
Woo,i,t Volume of the slug o in period t at time Ci,t 

Wi,t,i’,t’ Volume of the ith slug pumped in period t at time Ci’,t’ 

WIFi,t,p,p’ Interface volume between slugs i and i−1 in period t if they contain products p and p’ 
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Binary variables: 

ui,t,k Variable denoting that ith slug pumped in period t starts after IPHk,t 

vi,t,k Variable denoting that ith slug pumped in period t ends before FPHk,t 

xoo,j,i,t Variable denoting that a portion of the old slug o can be transferred to depot j while the 
ith slug is pumped in period t 

xi,t,j,i’,t’ Variable denoting that a portion of the ith slug pumped in period t can be transferred to 
depot j while pumping the slug i’ in period t’ 

yi,t,p Variable denoting that the ith slug pumped in period t contains product p 
ylt,p Variable denoting that the last slug pumped in period t contains product p 
ypr,p,t Variable denoting that rth production run of product p in period t is performed 
zlr,p,i,t Variable denoting that the ith slug pumped in period t starts before the rth refinery 

production run of product p has ended 
zur,p,i,t Variable denoting that the ith slug pumped in period t ends after the rth refinery 

production run of product p has started 

2.2   Objective function 

The objective function of the model is given in Eq. (1) and comprises five different terms. The first 
and the second terms are the pumping costs at daily normal and peak−hours time intervals, 
respectively. The third term is the cost of reprocessing the interface material between consecutive 
slugs. The last two terms stand for the cost of holding product inventory in refinery and depot tanks, 
respectively. These two terms are based on an average of product inventory levels at the time instants 
when new slugs are pumped into the polyduct. Since the proposed model of this paper also integrates 
the production planning as a decision variable, the fourth term (inventory cost at refinery tanks) 
differs from the proposed one by Cafaro and Cerdá (2004). Moreover, this term, is also modified over 
the proposed one at Defersha et al. (2008) in order to improve the estimation of the inventory levels at 
refinery. The production at refinery along the time interval [t×hmax-(CI,t-LI,t)] is added to the 
inventory level at the beginning of the last pumping rung at period t. 
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2.3   Production planning 

Constraint in Eq. (2) states that the rth production of a given product p in a given time period t must 
begin and end within the time limits of the period t. The production runs of different product types 
can be performed concurrently and discharged to their respective designated refinery tanks, while the 
production runs for a given product type p are chronologically ordered. This chronological order is 
enforced using Eq. (3). By other hand, the actual number of production runs of a given product to be 
performed in any time period is not known in advance. However, at optimal solution, only a certain 



  26

numbers of the first runs will be actually performed as enforced by the constraints shown in Eqs. (4) 
and (5), where M1 is a relatively large number, which can be set to 1.1×hmax. Finally, the constraint 
shown in Eq. (6) states that a production run of a given product must be longer than the minimum 
allowable duration whenever it is performed. 

( ) ( ), , , , , ,1 ; , ,− ⋅ ≤ − ≤ ≤ ⋅ ∀r p t r p t r p tt hmax CR LR CR t hmax r p t (2)
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2.4   Pumping of new slugs into the pipeline 

Eq. (7) states that the ith pumping run in period t must also end within the time limits of that period. A 
single product can be assigned to a slug flowing inside the pipeline by Eq. (8). The pumping of a new 
slug to the pipeline should never start before completing the pumping of the preceding slug and the 
subsequent changeover operation. This constraint is enforced using Eq. (9a) if the two sequence slugs 
are pumped within the same period t, or by Eq. (9b) for the last slug at t−1 followed by the first slug 
at period t. The volume of the ith slug pumped in the pipeline in period t is limited by Eq. (10). 
Moreover, the length of slug i in any period t is also limited by Eq. (11). The actual number of slugs 
to be pumped in any time period is not known in advance which is similar to what we had in 
production runs. However, at the optimal solution, the first few or more slugs will be actually pumped 
as shown in Eq. (12). 
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In order to extend the proposed model by Cafaro and Cerdá (2004) to several periods, it is necessary 
to include an additional set of constraints to measure the exact number of new slugs that are really 
pumped into the polyduct at each period. This number is given by Eq. (13). The type of the product 
contained in the slug actually pumped at last in period t is determined from the value of the binary 
variable ylt,p, which is determined by using Eq. (14) and Eq. (15). The volume of interface material 
between consecutive slugs is calculated by Eqs. (16). Moreover, because of product contamination, 
there are some forbidden product sequences which can be avoided by Eqs. (17), where S is the set of 
forbidden product sequences (p, p’). 
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Finally, there are an additional set of constraints to calculate the portion of slug i in period t pumped 
into the pipeline within the kth peak−hour interval of that period, Hi,t,k. The four constraints shown in 
Eq. (18) are required to set the values of all the binary variables ui,t,k and vi,t,k.  
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i t i t k t i t k

i t i t k t i t k

i t k t i t k

i t k t i t k

C L IPH u i t k

C L IPH u M i t k

C FPH v M i t k

C FPH v i t k  

(18)

Now, given the four combinations of these two binary variables, four cases should be considered 
depending on if slug i pumped into the pipeline in period t, within the kth peak−hour interval of that 
period, starts or not after IPHk,t, and ends or not before FPHk,t: 

(a) ui,t,k=0 and vi,t,k=0: If the pumping of slug i in period t starts before and ends after the kth 
peak-hour interval, the constraint needed to calculate the right value of Hi,t,k is: 

  ( ), , , , ; , ,i t k k t k tH FPH IPH i t k= − ∀  

(b) ui,t,k=0 and vi,t,k=1: In this case, just the ending time of the pumping of slug i in period t is 
inside the kth peak-hour interval and there can be two different instances depending on the 
value of Ci,t. If Ci,t is smaller than IPHk,t, the pumping of slug i will occur outside the kth 
interval and Hi,t,k=0, otherwise, part of slug i is pumped within the kth interval, and Hi,t,k is 
calculated by: 

  ( ), , , , ; , ,i t k i t k tH C IPH i t k= − ∀  

(c) ui,t,k=1 and vi,t,k=0: In this case, only the starting time of pumping slug i in period t is inside 
the kth peak-hour interval. Two instances can arise depending on when the pumping of slug i 
begins. If (Ci,t−Li,t) is higher than FPHk,t, then the pumping run is completely outside the kth 
peak-hour interval and Hi,t,k=0, otherwise: 

  ( ) ( ), , , , , ; , ,i t k k t i t i tH FPH C L i t k= − − ∀  

(d) ui,t,k=1 and vi,t,k=1: Finally, if the start time (Ci,t−Li,t) and the completion time (Ci,t) for the 
pumping of slug i in period t both belong to kth peak-hour interval, the pumping run of slug i 
is completely inside the kth peak-hour interval, and Hi,t,k is calculated by: 

  ( ), , , ; , ,i t k i tH L i t k= ∀  



  28

One way to select the right constraint among the four previous cases to calculate the value of Hi,t,k is 
to include into the model Eqs.(19)-(21). Since pipeline energy costs are to be minimized, at the 
optimum, the equation associated to cases (a)-(d) becomes Eqs.(19)-(22) respectively. 

( ), , , , , , 1 , , 1 ; , ,i t k k t k t i t k i t kH FPH IPH u M v M i t k≥ − − ⋅ − ⋅ ∀ (19)
( ) ( ), , , , , , 1 , , 11 ; , ,i t k i t k t i t k i t kH C IPH v M u M i t k≥ − − − ⋅ − ⋅ ∀ (20)

( ) ( ) ( ), , , , , , , 1 , , 11 ; , ,i t k k t i t i t i t k i t kH FPH C L u M v M i t k≥ − − − − ⋅ − ⋅ ∀ (21)
( ) ( ), , , , , , , 12 ; , ,≥ + + − ⋅ ∀i t k i t i t k i t kH L u v M i t k (22)

2.5   Location of each slug pumped into the pipeline 

A set of constraints is necessary to calculate the upper coordinate of all the slugs into the pipeline. 
Eqs. (23) calculate the upper coordinate at time Ci,t of the old slug o<O and o=O, respectively. Eq. 
(24a) establishes a relationship between the upper coordinate at time Ci’,t’ of a new slug i pumped in 
period t and the next slug i+1 pumped in a different period t’>t. Eq. (24b) is similar to Eq. (24a) but 
for a new slug i=I pumped in period t and immediately followed by the first slug pumped in period 

1+t . Eq. (24c) is to calculate the upper coordinate at time Ci’,t of the new slug It <  which is 
immediately followed a later slug pumped in the same period as slug i. Eq. (24d) states that the upper 
coordinate of a slug just at the end of its pumping is equal to its volume at Ci,t. 
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(24)

2.6   Volume of product transferred from slugs to depots 

This section shows the set of constraints used to calculate the volume of product transferred from 
slugs to depots. Constraints show in Eqs. (25) and (26) are used to calculate the volume transferred 
from an old slug o and new slug i, respectively, to depots while pulping new slugs. 
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There are also some feasibility conditions for transferring material from a slug to a depot. Eqs. (27) 
and (28) state that the transfer of material from a slug s1 to a depot is feasible if and only if the outlet 
to the depot is reachable from this slug while pumping a later slug s2. Moreover, the feasibility of 
material transfer from a slug s1 while pumping a later slug s2 to a depot j requires two conditions: (a) 
the upper pipeline coordinate of the slug s1 at the completion time of the ejection of a later slug s2, 
decreased by the volume of the interface material for all j<J, should not be lower than the volumetric 
coordinate of the depot, fixed by Eqs. (29)−(32) where M2=1.1×vbmax×hmax, and (b) the lower 
coordinate of slug s1 at the completion time of the pumping of the slug that immediately precedes 
slug s2 must be less than the depot coordinate. 

( ), , , , , , ; , , ,≤ ∀o j i t o j i tDo xo o j i t  (27)

( )
( )

, , , ', ' 2 , , , ', '

, , , ', 2 , , , ',

; , , , ', ' : '
; , , , ' : '

≤ ⋅ ∀ <
≤ ⋅ ∀ ≤

i t j i t i t j i t

i t j i t i t j i t

D M x i t j i t t t
D M x i t j i i i (28)

( ), , , , , ; , , , :o i t o j o j i tFo WIF0 xo o j i t j Jσ− ≥ ⋅ ∀ <  (29)
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(30)

( ), , , , , ; , ,σ≥ ⋅ ∀o i t J o J i tFo xo o i t  (31)
( )
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, , ', , , , ',

; , , ', ' : '
; , , ' : '

σ
σ

≥ ⋅ ∀ <
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F x i t i t t t
F x i t i i i  

(32)

As stated previously, material can be transferred from a slug to a depot if the depot is reachable from 
the slug. However, there should be an upper bound on the volume of material that can be transferred 
from the slug to the depot. Eqs. (33) are to impose such an upper bound on material transfer from an 
old slug o to a depot j, while the constraints in Eqs. (34) are similar to (33) but for the material 
transfer from new slugs to depots. Previously, it was stated a second feasibility condition, (b), for a 
transfer of material from a slug s1 while pumping a later slug s2 requires that the lower coordinate of 
slug s1 at the completion time of the injection of the slug that immediately precedes slug s2 must be 
less than the depot coordinate. 
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(34)

This condition can be satisfied by the constraint shown in Eq. (35) which imposes an upper bound on 
material transfer from a new slug i to a depot j. Moreover, because of the liquid incompressibility, the 
overall volume transferred from the slugs in transit while pumping a new slug i’ in period t’ must be 
equal to Qi’,t’, as shown in Eq. (36). 

( ) ( )1, , ' 1, ' , , ', ', ' , , , ', ' 2
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The total volume transferred from a slug s1 to all the depots other than the last depot while pumping a 
latter slug s2 during the time interval (Cs2−Ls2,Cs2) should not exceed its saleable contents at time 
Cs2−1. Whereas, the total volume transferred from slug s1 to all depots including the last one must be 
less than its total volume (i. e. including the interface material) at time Cs2−1. Thus, the interface will 
remain in the pipeline until reaching the last depot where it is withdrawn and reprocessed. Otherwise, 
a new interface will be generated, thus leading to higher product losses, Rejowski and Pinto (2001). 
The upper bound on material transfer from an old slug o to all the depots other than the last depot is 
imposed by Eqs. (37), and that including the last depot by Eqs.(38). Similar sets of constraints were 
also formulated to impose upper bound on material transfer from new slugs i to the depots by Eqs. 
(39) and (40). 
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2.7  Fulfillment of market demands 

There are also several constraints associated with the fulfillment of market demands. The constraints 
shown in Eqs. (41) state that the amount of product p delivered from depot j to local market during 
the time intervals (C1,t, hmax·(t−1)), (Ci,t, Ci−1,t) and (hmax·t, CI−1,t), must be supplied at the 
specified flow rate vm. Additionally, Eq. (42) states that the total volume of product p transferred 
from depot j to the local market during the time period t should meet the overall demand qdp,t,j. 
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(42)

2.8   Control of inventories in refinery tanks 

In order to control the inventory levels at refinery tanks it is necessary to define some binary 
variables: (a) a binary variable zui,t,r,p with a value of 1 if the pumping of slug i in period t ends after 
beginning the loading of the rth production run of product p; and (b) a binary variable zli,t,r,p with a 
value of 1 if the pumping of slug i in period t begun after completing the loading of the rth production 
run of product p. The values of these binary variables are fixed by the nonlinear constraints shown in 
Esq. (43) and (44). 
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( ) ( ), , , , , , , , , , , , , , , ; , , ,r p t r p t i t r p i t r p t r p t i t r pCR LR zu C CR LR hmax t zu i t r p− ⋅ ≤ ≤ − + ⋅ ⋅ ∀ (43)

( ), , , , , , , , , , , , ; , , ,r p t i t r p i t i t r p t i t r pCR zl C L CR hmax t zl i t r p⋅ ≤ − ≤ + ⋅ ⋅ ∀  (44)

• Volume of production run r of product p already loaded in the assigned refinery tank at time Ci,t. 
 

The variable qui,t,r,p is the volume of rth production run of product p in period t already loaded in the 
designated refinery tank at time Ci,t. Three cases can be considered: 

(a) Ci,t≥CRr,p,t, then zui,t,r,p=1 and the full run r has been loaded in the designated tank 

(b) Ci,t≤CRr,p,t−LRr,p,t, then zli,t,r,p=0 and the production run r has not yet begun 

(c) CRr,p,t−LRr,p,t≤Ci,t≤CRr,p,t then zli,t,r,p=1 and a portion of the production run r has been loaded in 
the designated tank the time interval of (CRr,p,t−LRr,p,t, Ci,t) 

Considering the above three cases, an upper bound on qui,t,r,p can be set by the following nonlinear 
constraints: 

( ), , , , , , , , ; , , ,i t r p p r p t i t r pqu vr LR zu i t r p≤ ⋅ ⋅ ∀ (45)

( ) ( ), , , , , , , , , , , ; , , ,i t r p p i t r p t r p t i t r pqu vr C CR LR zu i t r p⎡ ⎤≤ ⋅ − − ⋅ ∀⎣ ⎦ (46)

The variable qli,t,r,p is volume of rth production run of product p in period t already loaded in the 
designated refinery tank at time Ci,t−Li,t. Two cases can be considered: 

(a) (Ci,t−Li,t)≥CRr,p,t, then qli,t,r,p=1 and the full run r has been loaded in the designated tank at time 
(Ci,t−Li,t) 

(b) (Ci,t−Li,t)≤CRr,p,t, then qli,t,r,p=0 and a portion of the production run r has been loaded in the 
designated tank at time (Ci,t−Li,t) 

Considering the above three cases, a lower bound on qli,t,r,p can be set by the nonlinear constraints 
shown in Eqs. (47) and (48), where M3=1.1×max(vrp)× hmax. 

( ), , , , , , , , ; , , ,i t r p p r p t i t r pql vr LR zl i t r p≥ ⋅ ⋅ ∀  (47)

( ) ( ) ( ), , , , , , , , , 3 , , , ; , , ,i t r p p i t i t r p t r p t i t r pql vr C L CR LR M zl i t r p⎡ ⎤≥ ⋅ − − − − ⋅ ∀⎣ ⎦ (48)

• Volume of product p withdrawn from refinery tank and pumped in the pipeline during the time 
interval of (Ci,t−Li,t, Ci,t). 

 

 
The volume of the material withdrawn from the refinery tank containing product p and pumped as the 
ith slug in period t is equal to the volume of the slug Qi,t if the slug has been assigned to product p (i.e. 
yi,t,p=1). Otherwise, no material is withdrawn from the refinery tank during the time interval of 
(Ci,t−Li,t, Ci,t). 
 

( ), , 2 , , ; , ,i t p i t pA M y i t p≤ ⋅ ∀  (49)
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• Maximum and minimum allowed inventories in refinery tanks. 

The inventory level at a refinery tank must be greater than the minimum allowable level IRminp at the 
end of every pumping run as shown in Eqs. (51), and less than the maximum allowable level IRminp 
at the start of every pumping run shown in Eqs. (52). 
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2.9   Control of inventories in depot tanks 

Finally, the amount of product p transferred from a slug to a depot while pumping another slug is 
calculated using the constraints shown in Eqs. (53)−(56). Moreover, Eq. (57) and Eq. (58) are used to 
keep all the inventory levels into its feasible ranges. 
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3.   Numerical Examples 

The proposed MINLP model will be illustrated by solving a large−scale product pipeline scheduling 
problem involving two periods under several scenarios. The first scenario is to illustrate the 
possibility of an infeasible solution in the second period where a single period model is used 
independently for two periods. The second scenario illustrates the cost saving in using a multi−period 
model even when feasible solutions can be obtained by solving a single−period model for the two 
periods, independently. The last scenario is to illustrate the advantage of integrating the production 
planning and scheduling with the transportation. Data for the first period in all the scenarios were 
taken for the example first introduced by Rejowski and Pinto (2003) and next by Cafaro and Cerdá 
(2004). Data for the second period were chosen to prove, through the three scenarios, the proposed 
multi−period model reduces the total cost compared with the single−period one. All the scenarios 
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involve a single pipeline transporting four refined petroleum products (P1: Gasoline; P2: Diesel oil; 
P3: LPG; P4: Jet fuel) to five distribution terminals (D1−D5) located along the pipeline. The locations 
of the five depots with regards to the pipeline origin are 100, 200, 300, 400 and 475, respectively in 
hundred of cubic meters. Common data for all the scenarios are shown in Tables 1 and 2. Table 1 
shows the minimum, the maximum and the initial inventory levels for all the products at the refinery 
and all depots together with the inventory and the pumping costs. The interface material cost and 
volume for each ordered pair of products are given in Table 2. In this table, there are two forbidden 
product sequences (P1−P3) and (P3−P4), denoted with a × symbol. Other parameters of the model are 
lmin=1h, lmax=hmax=75h, ρ=5000 US$/m3, vbmin and vbmax are equal to vm=500 m3/h and τ=0 s. 
 
Table 1  
Levels, inventory cost and pumping cost 
Product Characteristic Refinery  Depots 
    D1 D2 D3 D4 D5 
P1 Minimum level (×102 m3) 270  90 90 90 90 90 
 Maximum level (×102 m3) 1200  400 400 400 400 400 
 Initial level (×102 m3) 500  190 230 200 240 190 
 Inventory cost (US$/(m3h)) 0.070  0.100 0.100 0.100 0.100 0.100 
 Pumping cost (US$/m3) ×  3.5 4.5 5.5 6.0 6.9 
P2 Minimum level (×102 m3) 270  90 90 90 90 90 
 Maximum level (×102 m3) 1200  400 400 400 400 400 
 Initial level (×102 m3) 520  180 210 180 180 180 
 Inventory cost (US$/(m3h)) 0.080  0.155 0.155 0.155 0.155 0.155 
 Pumping cost (US$/m3) ×  3.6 4.6 5.6 6.2 7.3 
P3 Minimum level (×102 m3) 50  10 10 10 10 10 
 Maximum level (×102 m3) 350  70 70 70 70 70 
 Initial level (×102 m3) 210  50 65 60 60 60 
 Inventory cost (US$/(m3h)) 0.095  0.200 0.200 0.200 0.200 0.200 
 Pumping cost (US$/m3) ×  4.8 5.7 6.8 7.9 8.9 
P4 Minimum level (×102 m3) 270  90 90 90 90 90 
 Maximum level (×102 m3) 1200  400 400 400 400 400 
 Initial level (×102 m3) 515  120 140 190 190 170 
 Inventory cost (US$/(m3h)) 0.090  0.170 0.170 0.170 0.170 0.170 
 Pumping cost (US$/m3) ×  3.7 4.7 5.7 6.1 7.0 

The cardinality of the set I, i.e. the number of new pumping runs, is initially assumed to be equal to 
the number of oil derivatives transported by the pipeline. After solving the model, the cardinality of I 
is increased by one and the model is solved again.  

Table 2 
Interface material volumes and cost 
 Interface volume (m3)  Interface cost (US$/m3) 
 P1 P2 P3 P4  P1 P2 P3 P4 
P1 0 30 37 35  0 100 100 100 
P2 30 0 × 38  100 0 × 100 
P3 35 × 0 ×  100 × 0 × 
P4 37 38 × 0  100 100 × 0 
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The procedure is repeated until no further decrease in the pipeline operation cost at the optimum is 
achieved. In all the scenarios, the optimal solution was found at the first major iteration. After 
linearizing the MINLP model according to the process shown in the Appendix I and adding the 
speed−up constraints shown in Appendix II, the resulting MILP mathematical formulation was solved 
on a Pentium IV 2.6 GHz / 512 MB RAM processor with CPLEX using ILOG OPL Studio 3.6, ILOG 
(2003). 

3.1   Scenario I: Feasible solutions for several periods 

The first example involves two periods of 75h each. A pair of time intervals for each period (15h−25h 
and 40h−50h for the first period; 90h−100h and 115h−125h for the second one) presents much higher 
pumping cost. Usually, the pipeline stream is stopped during high−energy cost intervals, unless 
unsatisfied products demands force to keep the slug sequence moving along the pipeline. Data for this 
scenario are given in Tables 3 and 4. Table 3 provides the product demands to be satisfied at each 
distribution terminal at the end of each period. Table 4 shows the scheduled production runs at the oil 
refinery for both periods. There is initially a sequence of five old slugs (S5−S4−S3−S2−S1) inside the 
pipeline containing products (P1−P2−P1−P2−P1) arranged in this order, and featuring the following 
volumes (75/175/125/25/75) in hundred of cubic meters. Slug S1 occupies the farthest position from 
the refinery plant. 

Table 3 
Product demands for each period 
 Demand for period 1 (×102 m3)  Demand for period 2 (×102 m3) 
 D1 D2 D3 D4 D5  D1 D2 D3 D4 D5 
P1 100 110 120 120 150  20 20 20 20 20 
P2 70 90 100 80 100  20 20 20 20 20 
P3 60 40 40 0 20  20 20 20 20 20 
P4 60 50 50 50 50  20 20 20 20 40 
 
Table 4 
Scheduled production runs at the oil refinery for each period 
Data for period 1  Data for period 2 
Product 
 

Volume 
(×102m3) 

Rate 
(×102m3/h) 

Interval (h) 
 

 
Product 
 

Volume 
(×102m3) 

Rate 
(×102m3/h) 

Interval (h) 
 

P1 250 5 0−50  P1 250 5 75−125 
P2 250 5 0−50  P2 250 5 75−125 
P3 125 5 50−75  P3 125 5 125−150 
P4 125 5 50−75  P4 125 5 125−150 
 

Firstly, the problem is solved for the first period and the results are compared with the proposed ones 
in Cafaro and Cerdá (2004) where the data for this period was taken from. Since we use different 
term in the objective function to calculate the inventory cost at refinery, some differences are 
expected. Fig.2a shows the optimal solution when only the pumping sequence for the first period is 
optimized. The optimal pipeline operation cost is 3,310,333 US$. The model involves 2193 
constraints and 1540 variables. The solution was found after 22 seconds of computation. This 
solution is compared in Fig.2b with the reported one by Cafaro and Cerdá (2004) where the cost 
operation is 3,274,683 US$. Both solutions are quite similar with a small difference due to the 
different term used in the objective function to calculate the inventory cost at refinery. Variations of 
product inventory at refinery and all depot tanks over time can be calculated through simulation. 
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Fig.2c shows such variations for the solution shown in Fig.2a. As can be seen, all inventory levels 
remain in their permissible ranges. Moreover, product inventories at depot tanks tend to remain close 
to their minimum values over the planning horizon because of their higher inventory costs. As it was 
stated on section 2.1, the term used in the objective function to calculate the inventory cost at refinery 
and depots is an approximation of the real value, based on an average value of each product inventory 
over the time horizon. Hence, after the optimization is completed, it is possible to calculate the real 
inventory cost and compare it with the estimated one by the model in order to evaluate the goodness 
of such approximation. The results of this calculation are given in Table 5. As can be seen from this 
table, the difference between the real value and the estimated one by the approximation used on the 
objective function is less than 6% in all cases. Hence, the use of such linear approximation to 
calculate the inventory cost instead of a non−linear term that calculates it exactly is completely 
justified.  
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(c) Evolution of inventories at refinery and 
depot tanks for the solution shown in 
Fig 2a 

Fig. 2. Optimal pipeline schedule for the first period in Scenario I 

Table 5  
Comparison between the real and the calculated inventory levels 
 Refinery Depots  
  D1 D2 D3 D4 D5 
Model (US$) 1,212,272.32 332,694.37 385,500.00 386,250.00 480,375.00 401,062.50 
Real (US$) 1,234,375.90 350,052.97 408,571.82 409,049.72 498,760.83 416,192.68 
Difference (%) 1.79 % 4.96 % 5.65 % 5.57 % 3.69 % 3.64 % 
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According to Fig.2a, it can be seen how the pipeline remains operative from time 3h to 73.07h with 
two temporary stops including the high−energy cost periods going from 15h to 25h and from 27h to 
50h. In other words, it will be working a total of 48.93h well below the overall length of the 
scheduling horizon (75h). Therefore, the pipeline capacity largely exceeds the customer demands to 
be satisfied by pumping new product slugs into the pipeline. Only three new slugs (S8–S7–S6) 
containing products (P3–P1–P4) in the following volumetric quantities (120.35/5.0/60), expressed in 
hundred cubic meters, are pumped into the pipeline over the time horizon. If some demand is 
specified for the second period, it could happen that no feasible solution can be reached for that 
period by running the single−period model from the final state let by the first period. Then, all the 
time that the pipeline remains inoperative could have been used to pump additional material useful to 
satisfy the demand for the second period from the product inventory at depot tanks. The only way to 
take it into account is by running a multi−period model which is capable to deal with the information 
concerning both periods together in the same model. 

To illustrate this situation, the single−period model is run from the final state let at the end of the first 
period. Such state is composed by a sequence of seven old slugs (S7−S6−S5−S4−S3−S2−S1) inside 
the pipeline containing products (P3−P1−P4−P1−P2−P1−P2) arranged in this order, and featuring the 
following volumes (100.37/5/0.35/74.28/165/115) in hundreds of cubic meters. Slug S1 occupies the 
farthest position from the refinery plant. When using this initial state together with the information 
given in Tables 3 and 4 to obtain the optimal pipeline schedule for the second period, the 
single−period model is unable to reach any feasible solution. The reason is because the model is 
unable to pump the necessary amount of product 4 to depot 5 before the end of the planning horizon. 
This situation could have been avoided if such amount of P4 had been pumped during the time in 
which the pipeline was inoperative at the first period. However, the single−period model is unable to 
find this solution since both periods are run, independently. Fig.3 shows the optimal solution when 
the multi−period model is run.  
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Fig. 3. Optimal pipeline schedule reached by the multi−period model for both periods in Scenario I 

As can be seen, this model is able to reach a feasible and optimal solution since data for both periods 
are taken into account into the same optimization process, simultaneously. In this case, the model 
involves 8428 constraints and 5020 variables. The optimal solution is found after 4885 seconds of 
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slugs, however the model uses 8 (4 in each period). This allows a more precise calculation of the 
inventory cost on the objective function. Additional material of product 1 was pumped on the last 
new slug and a portion of the high−energy cost intervals are used to pump product into the pipeline. 
This portion is 37h of the total of 40h that comprises the high−energy cost intervals. Then, a 92.5% of 
the high−energy cost intervals is used to pump material into the pipeline. This is needed to push 10 
units of product 4 on the first new slug to depot 5. Usually, the planning horizon is divided into a 
number of equal-length periods, and demands must be fulfilled when these periods end. At the 
completion time of the current period, the planning horizon moves forward, and a rescheduling 
process based on updated problem data is triggered again over the new horizon. In our case, we have 
a planning horizon composed by two periods of 75 hour each. Hence, we have 75 hours to solve the 
problem before the planning horizon moves one period forward to update the problem data. As we 
can see, this is enough time since an off-shelf optimization package is able to solve the two−period 
problem on this scenario in less than two hours. However, we also realized that if we tried to solve 
the proposed multi−period model for three or more time periods using off-shelf optimization package, 
it could be very time consuming. On these cases, it could be necessary to develop a heuristic 
algorithm to reach near−optimal solutions into the available time given by the period length. 

3.2   Scenario II: Improvement of a feasible solution for several periods 

The second scenario involves the same periods treated on scenario 1. However, the demand for the 
second period is chosen to show how even in the case when a feasible solution can be reached by the 
single−period model for both periods, the multi−period model improves the quality of such solution. 
Hence, data for this scenario is the same as given on Tables 3 and 4 but replacing the 40×102 m3 of 
P4 demanded by D5 at period 2 by 20×102 m3. With this change, the single−period model is able to 
reach a feasible and optimal solution for both periods, independently. The optimal solution for the 
first period was shown in Fig.2a with an optimal pipeline operation cost of 3,310,333 US$. Now, the 
single−period model is used again to get the optimal solution for period 2 from the final state in 
period 1 shown in Fig.2a. The optimal solution for period 2 was found after 28 seconds of 
computation with a pipeline operation cost of 3,385,957 US$. Hence, the total computation time was 
43.23 s. The total operation cost for both periods is the sum of the costs obtained for each period, 
resulting in 6,696,291 US$. Fig. 4 shows the optimal pipeline schedule reached by the single−period 
model over both periods. Variations of product inventories at refinery and depot tanks with time are 
also depicted. Note that inventory levels remain within the accepteble range at every tank.  
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Now, the same problem is solved with the proposed multi−period model for both periods, 
simultaneously. In this case the model involves 8428 constraints and 5020 variables. The optimal 
solution was found after 4948 seconds of computation with a pipeline operation cost of 6,437,027 
US$. It results in a cost saving of 259,264 US$ from the solution given by the single−period model. 
The optimal pipeline schedule reached in this scenario is depicted in Fig.5 together with the 
variations of product inventories at refinery and depot tanks over both periods. As it can be seen, the 
solution is composed by 6 slugs. Some portion of the high−energy cost intervals are used to pump 
product in benefit of the inventory cost. This portion is 25.07h of the total of 40h that comprises the 
high−energy cost intervals. Then, a 62.67% of the high−energy cost intervals is used to pump 
material into the pipeline. Table 6 summarizes a comparison between both single and multi−period 
models for scenario II. As can be seen, although the multi−period model improves the quality of the 
solution reached by the single−period model, the computational time is increased two orders of 
magnitude. The improvement on the quality of solution depends on the problem data. In the proposed 
example it is only of 4%, however, it is a great savings taking into account the high cost involved on 
such a kind of processes.  
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Fig. 5. Optimal pipeline schedule reached by the multi−period model for both periods in Scenario II 

Table 6  
Comparison between the single−period (SP) and multi−period model (MP) 

Model 
Variables 

Constraints CPU time (s) Cost (US$) 
Binary Continuous 

SP (Period 1) 244 1296 2193 22 3,310,333 
SP (Period 2) 244 1296 2193 28 3,385,957 
SP (Total) 244 1296 2193 50 6,696,291 
MP 858 4162 8428 4948 6,437,027 

3.3   Scenario III: Integrating the production planning as a decision variable 

In this scenario, production planning and scheduling was considered to be part of the decision making 
process and the multi−period model was solved to generate the planning and scheduling of both the 
production and the transportation. In this case the model involves 8564 constraints and 5116 
variables. The optimal solution was found after 5125 seconds of computation with a pipeline 
operation cost of 5,874,750 US$. The optimal pipeline schedule reached in this scenario is depicted in 
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Fig.6 together with the variations of product inventories at refinery and depot tanks over both periods. 
As it can be seen, the solution is composed by 5 slugs. The integration of production and 
transportation results in a reduction of the pumping cost during high electric energy interval from 
125,370 to 30,720 dollars as it is shown on Table 7. This is due to a reduction on the usage of the 
peak−hour intervals from 62.67% in the Scenario II to 15.36% in Scenario III. The saving was 
archived by synchronizing the production with the transportation. This synchronization enables 
avoiding the need for pumping during high electric energy intervals which otherwise would be 
required to provide rooms in the refinery tanks for the newly refined products.  
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Fig. 6. Optimal pipeline schedule reached by the multi−period model with production planning for 
both periods in Scenario III 

Table 7 
Cost (US$) associated to each term of the objective function for all the models at scenario III 
 
Model 

Daily normal 
pumping cost 

Peak hours 
pumping cost 

Interface 
material cost 

Inventory cost 
at depots 

Inventory cost 
at refinery 

TOTAL 

SP 256,279 0 17,900 3,712,701 2,709,410 6,696,291 
MP 245,741 125,370 17,400 3,725,074 2,323,442 6,437,027 
MP+PP 247,205 30,720 17,900 3,725,203 1,853,722 5,874,750 
 

4. Conclusions 

In this paper we have proposed a multi-period MINLP model for an optimal planning and scheduling 
of the production and transportation of multiple petroleum products from a refinery plant connected 
to several depots through a single pipeline system. Numerical examples show that the use of a single 
period model for a given time period may lead to an infeasible solution when using the model for the 
upcoming periods. The reason is because the demand in the upcoming periods are not considered in 
the optimization process, the minimization of the objective function will satisfy the current demands 
from inventories in depots to reduce inventory cost. This will cause the inventories in the depots to 
fall to the minimum level. Thus, when using the model for the upcoming periods the solution may be 
infeasible to satisfy the demands due to the delay of delivery through the pipeline. The numerical 
examples also show that integrating production transportation decisions can result in reduced pipeline 
operational costs. The size of the developed model will be quite large if applied to solve practical 
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problems. The model also contains a significant portion of binary integer variables. The presence of 
integer variables in the model may lead to extensive computational time in solving real world 
problems. In Scenario II of the numerical example presented in this paper, the computational time 
required to solve the multi−period model for two time periods was more than 100 times than the time 
required to solve a single−period model twice. We also realized that solving the proposed 
multi−period model for three or more time periods using off-shelf optimization package is very time 
consuming. To this end, we are currently working on a heuristic method based on genetic algorithms 
to be able to reach near−optimal solutions into the available time given by the period length. 

 

Appendix I: Linearization of non−linear terms 

Some terms of the constraints shown in Eqs. (43)−(47) are nonlinear. This nonlinearity is due to 
considering the production planning and scheduling as part of the decision process, requiring the 
completion time (CRr,p,t) and the length (LRr,p,t) of a production run to be decision variables. Each of 
the nonlinear terms in those constraints is the product of a continuous variable and a binary variable. 
All these terms can be easily linearized by incorporating some additional non negative real variables 
defined as in Eq. (A1), (Ghezavati & Mehrabad, 2010; Chang & Chang, 2000). 
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Furthermore, the constraints shown in Eqs. (A2)−(A5) are needed to make both models, linear and 
nonlinear, equivalent. M4 is a relatively large number, which can be set to 1.1×T× hmax. Now, the 
nonlinear constraints shown in Eqs. (43)−(47) can be replaced by the linear ones shown in Eqs. 
(A6)−(A10). 
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( ), , , , , , ; , , ,i t r p p i t r pqu vr LRzu i t r p≤ ⋅ ∀
 (A8)

( ) ( ), , , , , , , , , , ; , , ,i t r p p i t i t r p i t r pqu vr C CRzu LRzu i t r p⎡ ⎤≤ ⋅ − − ∀⎣ ⎦ (A9)

( ), , , , , , ; , , ,i t r p p i t r pql vr LRzl i t r p≥ ⋅ ∀  (A10)
 

 

Appendix II: Speed−up constraints 

The following set of redundant constraints can be incorporated to the model in order to speed up the 
branch−and−bound solution algorithm as suggested in Cafaro and Cerdá (2004). They account for the 
fact that every slug in transit moves along the pipeline when a new slug is pumped. The constraints in 
Eqs. (A11) and (A12) state that upper coordinates of the slugs are increasing with time. Similarly, 
lower coordinates of the slugs increase with time as shown in the constraints in Eqs. (A13) and (A14). 
Finally, Eqs. (A15) and (A16) state that the volume of a slug in pipeline transit is always a lower 
bound on the value of its upper volumetric coordinate. 
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