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  Meta-heuristic approaches are general algorithmic framework, often nature-inspired and 
designed to solve NP-complete optimization problems in cellular manufacturing systems and  
has been a growing research area for the past two decades. This paper discusses various meta-
heuristic techniques such as evolutionary approach, Ant colony optimization, simulated 
annealing, Tabu search and other recent approaches, and their applications to the vicinity of 
group technology/cell formation (GT/CF) problem in cellular manufacturing. The nobility of 
this paper is to incorporate various prevailing issues, open problems of meta-heuristic 
approaches, its usage, comparison, hybridization and its scope of future research in the 
aforesaid area.  
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1. Introduction 
 

Cellular manufacturing (CM) has been evolved to fulfil contemporary market demand where 
traditional manufacturing system was incompetent. Therefore, CM is a solution to efficient batch type 
with low setup time to produce variety of part types, shorter lead time and higher machine utilization 
with superior quality (Sudhakarapandian, 2007). Group technology (GT) is defined as a technique 
which distinguishes similar parts and clustering them into part families based on their manufacturing 
designs, attributes and geometric shapes and it was first proposed by Burbidge (1963). GT is applied 
in cellular manufacturing as an alternative of traditional manufacturing system. Designing 
manufacturing cell is usually called cell formation problem (CF/CFP) which consists of the following 
approaches: similar parts are normally grouped into part families according to their processing 
requirements, dissimilar machines are grouped to form manufacturing cells and consequently part 
families are allocated to cells. Depending on the procedures involved in CFP, three solution 
methodologies are proposed by Selim et al. (1998): (a) part families are accomplished first and hence 
machines are clustered into cells according to the processing requirement of part families. This is 
known as part-family identification, (b) manufacturing cells (clustering of heterogeneous machines) 
are first generated based on uniformities in part routing and then the part families are allocated to 
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cells. This is known as machine groups’ identification, (c) part families and machine cells are formed 
concurrently, which is known as part families/machine grouping.  

Despite the fact that there have been large number of solution methodologies proposed by researchers 
since early 80s to solve CF problems, such as mathematical programming, graph theory, exact 
methods, heuristics, meta-heuristic methods and artificial intelligent techniques such as neural 
network and fuzzy set theory, the clear research trend in literature of CFP (Papaioannou & Wilson, 
2010) manifests a direction towards soft-computing methodologies due to its strong nature of 
converging to attain optimal solution. Meta-heuristic  which is a sub-branch of soft computing, 
exclusively evolutionary algorithms, tabu search, simulated annealing, ant colony optimization, 
particle swarm optimization, bees algorithm, water flow-like algorithm are the frequently adopted 
techniques of this class, and being employed by researchers in CFP in search of better solution 
promptly.  For a better understanding, the notation of this survey, Table 1 summarizes all the 
necessary abbreviations used in this paper.   

Table 1  
List of abbreviations used in this study 
Abbreviations 

 
NP: Non Polynomial 
GT: Group Technology 
CM: Cellular Manufacturing 
CMS: Cellular Manufacturing System 
CFP: Cell Formation Problem 
TS: Tabu Search 
EA: Evolutionary Algorithm 
ACO: Ant Colon Optimization 
PSO: Particle Swarm Optimization 
BA: Bees Algorithm 
WFA: Water Flow-like Algorithm 
SA: Simulated Annealing 
GA: Genetic Algorithm 
TSCF: Tabu Search Cell Formation 
GAA: Group And Assign Method 
TSH: Tabu Search Heuristic 
CBTSH: CB Tabu Search Heuristic 
SCFP : Sustainable Cell Formulation Problem  
MOTS: multi-objective tabu search 
CSDP: Cellular System Design Problem 
EEs: Exceptional Elements 
SAHCF: Simulated Annealing Heuristic Cell Formation 
TSHCF: Tabu Search Heuristic Cell Formation 
2D SA: Two Dimensional Simulated Annealing 
LP: Linear Programming 
DCMS : dynamic cellular manufacturing system  
MFA-SA:Mean field Annealing-Simulated Annealing 
EP : Evolutionary Programming  
GP : Genetic Programming  
DE : Differential Evolution  
SS:  Scatter Search  
MA : Memetic Algorithm  
EOG : Evolutionary Optimization of Granules  
 

 
ANOVA: Analysis of Variance 
MOGGA: Multi-Objective Grouping Genetic Algorithm  
VSM : Volume Sensitivity Model  
MGA : Modified Genetic Algorithm  
ART: Adaptive Resonance Theory 
NSGA II: Non-Dominated Sorting Genetic Algorithm II 
IAECLP: Intra-cell And Inter-Cell Layout Problem 
DECF: Differential Evolution Cell Formation 
EnGGA : Enhanced Grouping Genetic Algorithm  
HMA-RTM: Hybrid Memetic Algorithm and Revised 
TOPSIS method  
SPEA-II: Strength Pareto Evolutionary Algorithm II 
MOSS : multi objective scatter search  
WIP: Work in Progress 
ACS : Ant Colony System  
TSP: Travelling Salesman Problem 
VCMS : Virtual Cellular Manufacturing System  
ACC : Ant Colony Clustering  
FPSO: Fuzzy Particle Swarm Optimization 
QPSO: Quantum Particle Swarm Optimization 
HSAM: Hybrid Simulated Annealing with Mutation 
HGA: Hybrid Genetic Algorithm 
PSA: Parallel Simulated Annealing 
BIP: Binary Integer Programming 
QAP: Quadratic Assignment Problem 
MIP: Mixed-Integer Programming 
NLP: Non Linear Programming 
DS: Dataset 
GGA: Grouping Genetic Algorithm 
SLCA: Single Linkage Clustering Algorithm 
GMPG: General Machine-Part Grouping 
MOMP: multi objective mathematical programming 
IP: integer programming 
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2. CF solution methods based on meta-heuristics 

Classification of CF based meta-heuristic approaches are demonstrated in a taxonomic framework in 
Fig. 1, and detailed descriptions are given accordingly in next subsections,  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Taxonomic framework of meta-heuristics 

Since cell formation problems are NP-complete in nature (Nair & Narendran, 1999), it is difficult to 
obtain global solution(s) which leads us to search for near optimal solution(s). Application of meta-
heuristics in CFP is emerging which parallels the remarkable ability of mimicking natural or 
biological phenomena to find ‘fittest’ solution by incorporating ‘survival of the fittest’ theory 
proposed by Darwin (1929). These techniques have the capabilities to solve the hardest amongst NP-
complete problems called NP-hard and to obtain near-optimal solution. Meta-heuristic techniques 
constitute evolutionary approaches (EA), simulated annealing (SA), tabu search (TS), ant colony 
optimization (ACO), particle swarm optimization (PSO), bees algorithm (BA), water flow-like 
algorithm (WFA). Since late 90s the applications of meta-heuristic techniques to GT/CF problems 
have been encouraging. The literature concerning CMS using these major techniques are discussed 
here. 

2.1 Deterministic meta-heuristics 

2.1.1 Tabu Search (TS) 
 
Tabu search is believed to be one of the most successful meta-heuristic techniques for the NP-
complete applications. A comprehensive introduction to TS can be found in the book by Glover and 
Laguna (1997). Tabu search is essentially a sophisticated and improved type of local search, an 
algorithm which in its simplest form, also known as Hill Climbing, works as follows. Consider a 
starting current solution, evaluate its neighbouring solutions based on a given neighbourhood 
structure, and set the best or the first found neighbour which is better than the current solution as new 
current solution and repeat the procedure until an improving solution is detected in the 
neighbourhood of the current solution. The local search stops when the current solution is better than 
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all its neighbours, that is, when the current solution is a local optimum. The pseudocode 1 shows the 
tabu search procedure. 
 
Pseudocode 1: Tabu Search (TS) 

 
initialize; 
repeat 
              generate all of the acceptable neighbourhood solutions; 
              evaluate the generated solutions; 
              choose the best one as the candidate solution 
              if there is no suitable candidate then choose the best of forbidden solutions as the candidate; 
              update the tabu list; 
              move to candidate solution; 
              if the number of generated solutions are sufficient, diversify; 
until termination condition is met; 
 

 

2.1.2 TS in Cell Formation 
Logendran et al. (1994) developed CMS design model for selection of machines and unique process 
plan and hence designed two TS based heuristic each with 2 methods namely method 1 and method 2. 
They further proposed an extensive statistical analysis based on randomized block design and 
reported that heuristic 2 had better performance than heuristic 1. Sun et al. (1995) modelled the CFP 
with an objective of minimizing inter-cell material flows as a graph partition problem and developed 
a TS-based iterative improvement algorithm to solve the resulted problem. The algorithm improves 
existing cell configuration through a simple local searching scheme. Aljaber et al. (1997) designed the 
CFP based on graph theory and a pair of shortest spanning path problems, and proposed a TS 
heuristic for the solution of the problems, which produced better quality solutions with higher CPU 
time. Lozano et al. (1999) presented one-step approach to part-machine grouping and he assumed 
some limits to the sizes of machine cells and part families. He then implemented a TS algorithm 
which was benchmarked against several SA techniques, heuristics and another TS method and a 
quadratic integer programming model was proposed with the help of weighted sum of intracell voids 
and intercell moves, where his proposed method outperformed other procedures with reduced 
computational time. Onwubolu and Songore (2000) addressed CFP with three objective functions: 
minimizing intercell moves, minimizing cell load variation and combining both the former objectives 
and designed a TS method which offers freedom to consider maximum cell size and number of 
machines within cell and they reported encouraging results. Adenso-Diaz et al. (2001) developed a TS 
based methodology to solve CFP with a focus on different machine grouping problems. They reported 
that their proposed method could outperform two SA-heuristic techniques with reasonably less 
execution time for medium to large problems. Spiliopoulos and Sofianopoulou (2003) developed a 
multi-stage cell design approach where the primary part was implemented by a TS algorithm, 
integrated with proper short-term and long-term memory structures. The overall search strategy 
depicts the benefit of adaptive memory and responsive exploration. Design of experiment was also 
implemented for tuning the input parameters to detect the near-optimal solutions, efficiently. 
Logendran and Karim (2003) also considered long-term memory based on minimal frequency to 
solve CFP, and a TS approach was developed to improve solutions which was initially developed 
followed by six different versions of it in order to investigate the impact of long term memory and the 
use of fixed versus variable tabu list sizes. All approaches outperformed the mixed-integer 
programming model obtaining solutions which are close to optimal in no significant amount of time. 
Cao & Chen (2004) stated a CFP with fixed charge cost by minimizing the summation of inter-cell 
material handling cost, cell construction cost and machine related costs using an  embedded 
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optimization procedure to transform the original mixed integer programming model into a pure binary 
problem, hence applied TS to yield optimal or near optimal solution of the reduced problem. Wu et al. 
(2004) developed comprehensive TS heuristic which consists of dynamic tabu tenure and a long term 
memory structure known as TSCF for CFP when process plans for parts and production factors such 
as production volume and cell size were taken into account. Two other methods for quickly 
generating the initial solutions were also developed, namely GAA and the random approach. 
Computational results were observed to be promising for a GAA accompanied with TS approach for 
small to medium sized problems. Tavakkoli-Moghaddam et al. (2005) explained that dynamic 
condition of CFP becomes more complex and proposed TS, SA and GA methods to solve this type of 
problems. Their study indicated that SA is better in terms of solution and complexity than TS, GA, 
but by improving GA operator’s functionalities can also produce better result since this can be added 
with other meta-heuristic approaches such as TS, SA. Jeffrey Schaller (2005) stated new heuristics 
based on TS namely TSH, CBTSH for CFP and compared the solution with existing methods from 
literature. Study depicts although both the above methods are good but CBTSH is recommended due 
to its ability to handle large problems. Foulds et al. (2006) introduced mixed integer programming 
model combined with assignment of parts to individual machines, the grouping of individual 
machines into cells, and the modification of individual machines to increase their part processing 
capability, called sustainable cell formulation problem (SCFP) heuristic and solved this class of 
problems with tabu search with much better result. Lei and Wu (2006) worked with multi-objective 
CF and proposed a Pareto-optimality based on multi-objective tabu search (MOTS) with different 
objectives: minimization of the weighted sum of intercell and intracell moves and minimization of the 
total cell load variation. A new approach was stated to determine the non-dominated solutions among 
the solutions produced by the TS. The computational results demonstrated strong ability of MOTS to 
find Pareto-optimal solution. Ateme-Nguema and Dao (2007) investigated an ACO based TS 
heuristic for cellular system design problem (CSDP) and the methodology proved to be much quicker 
than traditional methods when considering operational sequence, time and cost. Rodrigues and Weller 
(2008) considered alternative routing to minimize extra-cellular processing of task and a branch and 
bound based hybrid TS was also designed to solve the CFP and the proposed technique was then 
compared successfully with the available methods in the literature. Ateme-Nguema and Dao (2009) 
further proposed quantized Hopfield network for CFP to find optimal or near-optimal solution and TS 
was employed to improve the performance and the quality of solution of the network. Wu et al. 
(2009) proposed a hybrid TS to solve CFP and its variants and the core solution searching algorithm 
combined in the scheme could be easily modified to other meta-heuristic approaches, such as the SA, 
GA, based on the problem characteristics or the user preferences. This methodology uses mutation 
operation of GA to avoid early convergence to local optimum. 
Preceding study reports the significance of TS based methodologies in cell formation problem; while 
Table 2 illustrates various frameworks of TS methods. 

2.2 Probabilistic meta-heuristics 

2.2.1 Single solution based method 
 
Simulated annealing (SA) is found as the only algorithm in this class which is applied on cell 
formation problems which is the oldest among meta-heuristic methods. The SA algorithm simulates 
the physical annealing process, where particles of a solid arrange themselves into a thermal 
equilibrium. 
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Table 2  
Various attributes of proposed TS based methodologies  
References Initial Construction Neighborhood structure and 

transition rule 
Stopping criteria 

 
Logendran et al. (1994) 

 
Smallest achievable annual 
operating cost of parts 
determines initial solution 

 
Single move needed to reach next 
configuration and Forward 
perturbation scheme adopted 

 
Specified no. of local optima 
evaluated or prescribed CPU 
time lapses 

Sun et al. (1995) Randomly generated Single or double move needed to 
reach next set of configurations 
and move is not forbidden & the 
move maximizes the gain 

prescribed computational time 
or a prescribed number of 
transitions performed 

Aljaber et al. (1997) Random or a heuristic solution Adjacent Pairwise Interchange or 
insert or swap move proposed. 

number of iterations exceeds a 
specified constant or without 
improving the current solution 

Lozano et al. (1999) Random generation Exchange & insertion move for 
machines and union and splitting 
move for cells 

number of iterations without 
significant improving the 
current solution 

Onwubolu and Songore 
(2000) 

machines are randomly 
assigned to cells 

Feasible transfer of one machine 
from one cell to another. 
Intensification and diversification 
employed to improve the search 

the intensification and 
diversification 
lengths used to terminate the 
solution search 

Adenso-Diaz et al. (2001) Random generation Exchange, insertion, union and 
splitting moves 

number of iterations exceeds a 
specified constant or without 
improving the current solution 

Spiliopoulos and 
Sofianopoulou (2003) 

Random generation Simple move of machine from cell 
to cell or swap move of two 
machines 

iterations are stopped 
when the corresponding value 
can no more be improved 

Logendran and Karim 
(2003) 

specific neighbourhood function 
used to generate feasible 
solution 

Inside and outside perturbation 
schemes adopted for machine 
location identification and part 
machine assignment 

number of iterations without 
improvement and the number 
of entries into the inside index 
list 

Cao & Chen (2004) Random generation Using swap move neighborhood 
configuration is generated 

predetermined number of 
iterations has been reached; or 
the solution has not been 
improved after a certain 
number of consecutive 
iterations 

Wu et al. (2004) Random approach and the 
group-and-assign method 

Single, exchange and double 
moves are proposed 

If the iteration limit is 
exceeded 

Tavakkoli-Moghaddam et 
al. (2005) 

Random generation Generate neighbouring solution Xn 

by move m   (Xn-1՜ Xn) 
Predefined Number of accepted 
solutions 

Jeffrey Schaller (2005) a feasible solution consists of an 
assignment for each operation 
for each part to a cell 

Move is created by assigning the 
operation of one part to a cell that 
is different from its assignment and 
retaining all of the other cell 
assignments for the operations for 
each of the parts 

If the three tabu list sizes each 
fail to produce an improved 
solution 

Foulds et al. (2006) Generated by Initial allocation of 
machines to cells 

single transformation applied with 
the least objective function value  

If best value achieved and 
doesn’t change in consecutive 
iteration 

Lei and Wu (2006) Stochastically generate an initial 
feasible solution 

Exchange move between 
stochastically or randomly selected 
machines 

predetermined number of 
iterations 

Ateme-Nguema and Dao 
(2007) 

Cell configuration proposed 
using ACO 

ANT based move using probability 
for an ant to select an arc between 
two machines  

Error less than a predefined 
value 

Ateme-Nguema and Dao 
(2009) 

iterative process employed Hybrid Hopfield network 
determines neighborhood set 

when the error is smaller or 
equal to a fixed threshold value 

Wu et al. (2009) similarity coefficients methods 
and rank order clustering can 
generate feasible solution 

Mutation operator applied to 
invoke neighborhood configuration 

If best value achieved and 
doesn’t change in consecutive 
iteration 

 
An introduction to SA can be found in the book by Aarts and Korst (1990). The standard type of 
applications concerns combinatorial optimization problems of the following form where S is a finite 
set of feasible solutions. 
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minx∈S g(x) 

 
The algorithm uses a pre-defined neighbourhood structure on ‘S’. A control parameter called 
temperature in analogy to the physical annealing process governs the search behaviour. In each 
iteration, a neighbour solution y to the current solution x is computed. If y has a better objective 
function value than x, the solution y is accepted, that is, the current solution x is replaced by y. If, on 
the other hand, y does not have a better objective function value than x, the solution y is only accepted 
with a certain probability depending on (i) the difference of the objective function values in x and y, 
and (ii) the temperature parameter. The pseudocode 2 demonstrates SA procedure. 
 
Pseudocode 2: Simulated Annealing (SA) 

initialize; 
repeat 
          generate a candidate solution; 
          evaluate the candidate; 
          determine the current solution; 
          reduce the temperature; 
until termination condition is met; 
 
 

2.2.2 SA in Cell Formation 
 
Boctor (1991) proposed a mixed-integer linear program based CFP to minimize the number of EEs 
and employed a SA method which is indeed efficient for small and large-scale experiments by 64%. 
Venugopal and Narendran (1992) suggested simple SA searching method and applied it on cell design 
problem in cellular manufacturing which seems to perform better than K-means algorithm for large-
scale problem. Liu and Wu (1993) introduced a general form of simulated annealing technique for 
CFP with due consideration of penalty cost in objective function and reported promising results for 
some large-size problems. Chen and Srivastava (1994) proposed a quadratic programming model of 
CFP to maximize the sum of machine similarities within cells, subject to cell size limitation. The 
proposed SA method shows better performance when compared with graph-partitioning heuristic. 
Souilah (1995) suggested a SA based resource clustering technique into manufacturing cells and 
utilize the shop-floor surface effectively and tested the algorithm successfully with numerical 
examples. Murthy and Srinivasan (1995) introduced fractional CFP model using remainder cell as a 
linear integer programming problem to minimize count of EEs and proposed a SA and heuristic 
method. Vakharia and Chang (1997) proposed two combinatorial search approaches for the CF 
problem based on SA (SAHCF) and TA (TSHCF) for CFP to minimize the total expenditures of the 
machines and the material handling needed to transfer the loads among cells. The study indicated that 
SAHCF outperformed TSHCF in terms of solution quality and computational time. Zolfaghari and 
Liang (1998) considered processing time, machine capacity and machine duplication and a new 
grouping efficacy which takes into account the processing time and incorporate their SA method. 
Authors further introduced a Hopfield network for good seed solution and shorter convergence time. 
Su and Hsu (1998) presented parallel SA for machine-part CFP which minimizes total cost, total 
machine loading unbalance, also considered operation sequences, setup time, operation time, intercell 
and intracell transportation cost of a part. The parallel SA uses merits of GA and satisfactory result is 
obtained while testing on large problems. Zhou and Askin (1998) proposed multiple techniques: a 
greedy heuristic, minimum increment heuristic, SA heuristic for CFP to minimize machine cost, 
variable production cost, setup cost and intracell material handling cost and reported good results. 
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Sofianopoulou (1999) demonstrated a nonlinear integer programming model of CFP by considering 
processing sequence of each part and developed a 2D SA method to determine machine cells and 
part-to-process plan assignments and an LP model was developed to find part family and some good 
results were reported for mid-size problems. Caux et al. (2000) stated a new method to solve cell 
formation problem with alternative routings and machine capacity constraints. The proposed 
algorithm simultaneously deals with the cell formation problem and the part-routing assignment 
problem whereas the other methods are based on branch and bound and SA. One of problems was 
then solved from the solutions of the other. The method is limited to large-size problem and 
unconstrained problem due to calculation time. Adil and Rajamani (2000) studied the trade-off 
between cell compactness and cell independence in terms of cost of intercell and intracell moves and 
developed a nonlinear mathematical model and SA to minimize the total move costs. Abduelmola and 
Taboun (2000) implemented productivity model of CFP which was initially formulated as 0-1 integer 
programming model. They modified SA to solve large-scale problems where input data include the 
number of parts, machines and cells, demand, selling price, inter and intra-cell costs, and maximum 
number of machines allowed in each cell. Baykasoglu et al. (2001) proposed multi-objective CFP by 
minimizing total load imbalance, extra capacity requirement and dissimilarity among parts and 
formulated a solution methodology based on SA and co-operative game theory approach to handle 
multi-objectivity. The study shown by Xambre and Vilarinho (2003) is a CFP model with multiple 
and functionally identical machines to minimize intercell flows by considering flow volume among 
the operations. Jayaswal and Adil (2004) proposed SA based heuristic methodology for CFP with due 
consideration of operational sequence, machine replication, alternative process routing to minimize 
the sum of costs of intercell moves, machine investment and machine operating costs. The algorithm 
produced good results for large-scale problems. Das et al. (2006) proposed the multi-objective mixed 
integer-programming model for CMS design by minimizing machine operating and utilization cost 
and total material handling cost and maximizing system reliability. The methodology introduced is 
hybridized SA with GA operator to obtain better neighbouring solutions. Mahesh and Srinivasan 
(2006) addressed a multi-objective incremental CFP and lexicographic based simulated annealing 
algorithm which yields good results for small-size problems but it depends on initial solution for 
medium to large-scale problems. Study proposed by Wu et al. (2007) depicted a hybrid SA method 
with genetic operation considering alternative process routing and insertion move was utilized in 
solution improvement stage in order to speed up solution search and to escape from local optima. 
Arkat et al. (2007) developed a sequential CFP model based on SA for large-scale problems and 
compared their method with GA. They reported similar results for both methods where SA needed 
less computational time. Safaei et al. (2008) proposed a model of dynamic cellular manufacturing 
system (DCMS) with different objectives of minimizing total machine cost, intercell and intracell 
material handling cost, reconfiguration cost and solved their model using mean field annealing (MFA) 
embedded SA and MFA-SA. This new methodology outperforms conventional SA because of MFA’s 
strong capability to generate initial solution in significant amount of time. Defersha and Chen (2008c) 
studied a mathematical programming model to form manufacturing cells over multiple time period to 
minimize different cost components such as machine investment cost, inter-cell material handling 
cost, operating cost, subcontracting cost, tool consumption cost, setup cost and system 
reconfiguration cost. They also developed a parallel SA incorporating several problem specific 
perturbation operators and constraint handling techniques to solve the resulted problem formulation 
and examined their method on some mid-size problems. Tavakkoli-Moghaddam et al. (2008) 
introduced an integer programming model for dynamic CFP. A multi-period planning horizon was 
assumed where product mix and demand were different but deterministic for each period. A SA 
algorithm was developed and the results were compared with the optimal results found through the 
mathematical model and reported that the efficiency found with mean deviations from the optimality 
to be less than 4%. Wu et al. (2008) experimented with a SACF model which is sequential in nature, 
which follows minimization of number of voids and EEs. This searching technique is guided by 
single and exchange move in order to converge to optimality. Tavakkoli-Moghaddam et al. (2009) 
presented common cells and specific cells and part families in such a way that the demand for parts in 
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each period could be satisfied in a batch size form. In their proposed model there are two kinds of 
capital constraints: capital constraints to set up cells and capital constraint to provide required 
equipment to manufacture parts. They also used SA for the proposed model where there are three 
objectives: Minimization of the sum of costs of delay of delivering the part to the customers by 
common and specific cells in each period; minimization of the costs of keeping cells idle time for 
each period; and maximization of the unused capital, to solve. They also compared their results with 
LINGO 6 software package. A hybrid methodology based on Boltzmann function from simulated 
annealing and mutation operator from GA was proposed by Wu et al. (2009) to optimize the initial 
cluster obtained from similarity coefficient method (SCM) and rank order clustering (ROC). The 
computational experiment shows 36% of the test problems yielded better efficiency measures for 
CFP. The abovementioned SA based literature survey focuses only on cell formation issues. 
Therefore, to project the detailed outcomes of individual SA based methodologies and several criteria 
selection, Table 3a and Table 3b are presented. 

2.2.3 Population based methods 
Population based methods are those which not only mimic the biological or natural phenomena but 
also they start with a set of initial feasible solutions called ‘population’ and the objective would be to 
guide that search in state space to reach to the optimal solution.  
 

2.2.4 Evolutionary Approaches (EA)  
Evolutionary algorithms (EAs) are global, parallel, search and optimization methods, found on the 
principles of natural selection (Darwin, 1929) and population genetics (Fisher, 1930). In general, any 
iterative, population based approach that uses selection and random variation to generate new 
solutions can be regarded as an EA. EA is executed iteratively on a set of coded chromosome, called 
a population, with three basic genetic operators: selection, crossover and mutation. Each member of 
population is called an individual or a chromosome and is represented by a string. EA uses only the 
objective function information and probabilistic transition rules for genetic operations. Crossover is 
the primary operator of EA. The basic structure of an EA algorithm is presented by pseudocode 3. 
These techniques have its origin in several landmarked evolutionary approaches experimented in CF, 
mainly seven different categories of EAs are identified, evolutionary programming (EP) (Suer, 1997), 
genetic programming (GP) (Dimopoulos, 2006), differential evolution (DE) (Kao et al., 2008), scatter 
search (SS) (Bajestani et al., 2009), memetic algorithm (MA) (Muruganandam et al., 2005), 
evolutionary optimization of granules (EOG) (Chi and Lin, 2002) and genetic algorithms (GA) 
(Goldberg, 1989). All these algorithms have the genetic operations embedded inside with minor 
variations, and other heuristics or meta-heuristics can be combined with these algorithms to form 
hybrid methods, which are being used in recent literatures. Most heavily adopted algorithm in this 
category is GA or genetic algorithm. 
 
Pseudocode 3: Evolutionary Approaches (EA) 

Initialize; 
repeat 
              evaluate the individuals; 
              repeat 
                      select parents; 
                      generate offspring; 
                      mutate if enough solutions are generated; 
              until population number is reached; 
              copy the best fitted individuals into population as they were; 
Until required number of generations are generated. 
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Table 3a  
Various attributes of proposed SA based methodologies  
References Initial solution Neighbourhood 

solution 
Temperature 
reducing function 

Stopping condition 

Boctor (1991) generated at random generated at random Modified function Maximum no. of iteration 

Venugopal and 
Narendran 
(1992) 

Randomly assign 
machines to cells 

Randomly swap tow 
machines 

Geometric Freezing temperature 

Chen and 
Srivastava (1994) 

by randomly assigning 
the m machines into K 
cells 

randomly moving a 
machine from its 
present cell to another 
randomly selected cell 

Tl = Tl /1+λ Tl Value of the objective function 
does not change or number of 
iterations exceeds the maximum 
allowed value. 

Souilah (1995) generated at random generated at random Modified function 
taken from literature 

a given final temperature is 
reached 

Murthy and 
Srinivasan 
(1995) 

generated at random generated at random Geometric: Ti = αTi-1 Maximum iteration (200) or 
threshold temperature (2.0) value 
reached 

Vakharia and 
Chang (1997) 

a machine and parts 
assignment to cells 

generated at random Modified function Best objective value 

Su and Hsu 
(1998) 

machines are grouped 
into cells 

Crossover and 
mutation of GA is 
used to generate more 
candidate solution 

geometrically 
decreased with rate 
0.95 

Freezing temperature 

Zhou and Askin 
(1998) 

Heuristic to obtain 
initial solution 

generated at random geometrically 
decreased with rate 
0.993 

Ck < ε 

Zolfaghari and 
Liang (1998) 

Generated a random 
seed solution using 
improved Hopfield 
network method. 

generated at random 
by reassigning a 
machine from its 
current cell to another 
cell 

θt = θ0 / (1 +  ln t) maximum allowed number of 
iterations 

Sofianopoulou 
(1999) 

generated at random generated at random geometrically 
decreased with rate 0.9 

Number of iterations exceeds the 
maximum allowed value. 

Caux et al. 
(2000) 

represented by a vector 
of cells and index no. 
indicates machine 

insertion or a 
permutation applied 

Logarithmic: T = 
C/ln(n+1) 

Number of iterations exceeds the 
maximum allowed value. 

Adil and 
Rajamani (2000) 

The number of cells is 
set equal to the number 
of machines. 

randomly  moving 
machine to the cell to 
get new machine 
assignment  

Geometric: Ti = αTi-1 Maximum iteration or acceptance 
ratio reaches its lower bound or 
objective value does not change 

Abduelmola and 
Taboun (2000) 

generated at random generated at random Geometric: Ti = αTi-1 Best objective value 
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Table 3b 
Various attributes of proposed SA based methodologies 
References Initial solution Neighbourhood 

solution 
Temperature 
reducing function 

Stopping condition 

Baykasoglu et 
al. (2001) 

generated randomly generated at random geometric: Ti = 
0.9Ti-1 

Maximum iteration or objective 
value does not change in 200 
iterations 

Xambre and 
Vilarinho 
(2003) 

operations are allocated to 
machines by decreasing 
order of their usage rate & 
machines are grouped into 
cells  

Choosing randomly the 
first core machine & 
following the initial 
solution generation steps 

geometric: Ti = 
0.9Ti-1 

freezing temperature of 10 is set 
and if no improvement for 
consecutive 5 temperature level 

Jayaswal and 
Adil (2004) 

generated randomly obtained by perturbing an 
operation assignment of a 
part to a different 
machine type/cell 

Geometric: Ti = 
αTi-1 

Maximum iteration or acceptance 
ratio reaches its lower bound or 
objective value does not change 

Das et al. 
(2006) 

Random generation Crossover and mutation 
of GA is used to generate 
more candidate solution 

Geometric: Ti = 
αTi-1 

Maximum iteration or predefined 
temperature value reaches 

Mahesh and 
Srinivasan 
(2006) 

Using one of the 
algorithms developed in 
past research by authors 
themselves. 

two perturbation schemes 
with equal probability 
used. 

geometrically 
decreased with rate 
0.95 

final temperature is reached 

Wu et al. 
(2007) 

Based on routing selection 
and assignment to 
machine cells 

Mutation or insertion 
move applied 

geometric: Ti = 
C.Ti-1 

Best objective value found 

Arkat et al. 
(2007) 

Random generation Random generation geometric: Ti = 
C.Ti-1 

Freezing temperature 

Safaei et al. 
(2008) 

stochastic heuristic is used Four heuristic operators 
are used 

geometric: Ti = 
C.Ti-1 with C 
ranges between0.85 
& 0.95 

maximum number of consecutive 
temperature trials reached 

Defersha and 
Chen (2008c) 

Randomly generated Six different solution 
perturbation schemes are 
used 

geometric: Ti = 
C.Ti-1 

Maximum iteration reached 

Wu et al. 
(2008) 

using parts assignment 
and machines assignment 
procedures 

New parts assignment 
plan through 
neighbourhood searching 
by performing single 
move. 

geometrically 
decreased with rate 
0.7 

If predefined temperature value 
reaches 

Tavakkoli-
Moghaddam et 
al. (2009) 

created in a purely 
random manner 

random value will be 
uniformly chosen and its 
corresponding cell will be 
located 

geometric: Ti = 
C.Ti-1 with C 
ranges between0.5 
& 0.99 

when the temperature will be 
reached to the required final level 

Wu et al. 
(2009) 

Based on routing selection 
and assignment to 
machine cells 

Mutation or insertion 
move applied 

geometric: Ti = 
C.Ti-1 

Best objective value found 
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2.2.5 EA in Cell Formation 
Venugopal and Narendran (1992) studied the nature of GA for multi-processor system and efficiently 
reached to optimality for CFP which deals with multi-objectivity. Gupta et al. (1996) implemented 
GA as a solution methodology to CF problem and solved multiple objectives such as total movements 
of components and cell load variation. Joines et al. (1996) developed an integer programming model 
using GA to solve CFP; the method shows a new chromosome representation which reduces the size 
of the model, the efficiency was demonstrated by comparing the maximum number of states visited 
by the GA to the entire state space for sample data sets. Morad and Zalzala (1996) proposed genetic-
based methods to solve two problems in the manufacturing systems: the cell-formation problem in 
CM and the batch scheduling problem. In the cell-formation problem, multi-criteria optimization 
incorporating processing such as the machine capacity and processing times were used. The results 
showed that the processing criterion certainly affects the formation of cells. Hwang and Sun (1996) 
demonstrated a two phase GA heuristic for CFP which was more effective than traditional methods in 
terms of global efficiency, group efficiency and intercell move factors where cell designers could 
choose the number of cells and upper limit of cell size. Zhao et al. (1996) introduced fuzzy clustering 
method for inexact real-data structure and proposed GA due to its population-wide and stochastic 
nature. Kazerooni et al. (1997) proposed simultaneous grouping of parts into part families and 
machines into cells by considering production volume, process sequence, alternative routing and 
developed a GA to solve the problem with greater efficiency. Suer (1997) proposed an evolutionary 
programming technique for cell formation in cellular manufacturing environment. Al-Sultan and 
Fedjki (1997) stated a genetic operation based heuristic method and formulated an integer quadratic 
programming model of CFP and tested against the previously proposed methods with prospective 
solutions. The approach proposed by Pierreval and Plaquin (1998) is very useful where no prior 
knowledge is needed to assign weight or a particular distance in the multicriteria problem 
formulation. The method is based on a niched Pareto evolutionary algorithm. The algorithm shows a 
set of non-dominated (or Pareto) solutions with respect to several objectives. Gravel et al. (1998) 
presented a double-loop genetic algorithm which provides a method for computing efficient solutions 
for the multiple route bicriterion cell formation problems. The method could be implemented to make 
the best choice of the existing cell design by competent part-routing through the cells. Here only the 
internal loop of the genetic procedure is used to determine the specific route used for each part. The 
research work by Hsu and Su (1998) presented a GA which could be effective methodology to group 
machines when dealing with multiple objectives such as simultaneously minimizing total cost and 
intracellular and intercellular machine loading imbalances. Moon and Gen (1999) proposed a GA 
based approach to design independent manufacturing cells by giving due consideration to production 
volume, machine capacity, processing time, number of cells and cell size. Zhao and Wu (2000) used 
multiple objectives and part routing of CF problems and solved the resulted model with the help of a 
modified GA and reported that the method could be time consuming for large-scale problems. Mak 
and Wong (2000) implemented a CFP model based on total cell flows and a genetic method was also 
developed for efficient clustering and then ANOVA test was also incorporated to select appropriate 
system parameters and effectiveness of the technique was demonstrated on some benchmark 
problems. Mak et al. (2000) suggested a genetic search technique to solve CFP which maximizes 
bond energy measure. An adaptive scheme was also embedded in the method which helps to adjust 
the GA parameters while searching and the technique was tested successfully on benchmark 
problems. Plaquin and Pierreval (2000) developed an evolutionary algorithm based on genetic 
operators for CFP based on four constraints criterion: bounded size of cells, machines that must stay 
together, machines that must not stay together, machines around which the cells have to be formed 
and reported faster convergence characteristics. Lee-Post (2000) proposed that GT coding system 
(DCLASS) could be efficiently used with SGA to cluster part families which is well suited for part 
design and process planning in production. The results indicated that the technique could consume 
negligible computational time to find near-optimal solution. Chu and Tsai (2001) proposed a GA 
based heuristic technique to model CFP where new similarity coefficient developed to adjust the gene 
value of each part and heuristic mutation applied to tune the gene value of machine and part. Brown 
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and Sumichrast (2001) introduced GGA in order to find more efficient solution methodology for 
machine-part CF problems. Onwubolu and Mutingi (2001) addressed CFP with three objective 
functions: minimizing intercell moves, minimizing cell load variation and combining both the former 
objectives and designed a GA method which competed with hybrid GA and TS method. The 
computational result is indeed encouraging. Dimopoulos and Mort (2001) developed genetic 
programming (GP) based method to model single linkage clustering (SLCA) problem with multiple 
objectives. Chi and Lin (2002) proposed new technique called evolutionary optimization of granules 
(OEG) which is a mixed form of granular computing and GA, applied on CFP, and the result obtained 
is efficient due to the simplicity of computation and the ability to handle large-scale  problem. Wu et 
al. (2002) proposed a heuristic genetic algorithm with a new dynamic selection method to deal with 
concurrent decisions which involved highly correlated objectives and a new group mutation operator 
was developed to increase the mutation probability, to simultaneously solve the cell formation and 
machine layout decisions, where a two-layer hierarchical chromosome structure was developed for 
problem domains to deal with concurrent decisions. Zolfagharia and Liang (2003) considered 
processing time, lot size, and machine capacity for general machine-part grouping (GMPG) problem. 
They also proposed a GA method where input parameters were carefully tuned using design of 
experiment and multi-factor ANOVA test. They reported significant improvement and indicated the 
importance of parameter selection. Mansouri et al. (2003) proposed multi-objective GA to solve 
multi-objective CF problems; the chromosome is taken here as a vector of many decision variables 
and the fitness function is a function of multiple sub-objective functions. This tedious technique 
proposed optimal solution compared with other multi-objective CF methodologies. Zolfaghari and 
Liang (2004) introduced a GA methodology for CFP which dealt with processing time, lot size, 
machine capacity, and machine duplication. Solimanpur et al. (2004) introduced a GA with multiple 
fitness function to solve a multi-objective mathematical programming based model which generates 
several solutions along the Pareto-optimal frontier and developed decision support system for CF 
problem. Chi and Yan (2004) attempted to test GA in fuzzy environment considering the 
manufacturing factors of multi-process plan, fuzzy product demands and fuzzy technical feasibility of 
machines, the developed methods satisfied for the practical production situations as well as the 
cellular manufacturing system could become more flexible to match the real application. Chan et al. 
(2004) proposed a multi-objective mathematical model of machine-part grouping problem with 
alternative routing, machine aggregation and disaggregation and a GA approach was used to solve the 
proposed model. According to Goncalves and Resende (2004), GA could be more effective with local 
heuristics in CFP domain. The research work by Yasuda et al. (2005) showed that GGA was efficient 
methodology to solve multi-objective CF problem when dealing with processing time, available time 
on machine. Muruganandam et al. (2005) applied memetic algorithm (MA) which is a modified 
version of GA embedded with TS on CFP and they reported that MA could outperform when 
compared with GA and TS individually for large-size problems. A genetic algorithm was used in 
fuzzy environment by Pai et al. (2005) to solve part-machine CF problem. Vin et al. (2005) 
introduced a multi-objective grouping genetic algorithm (MOGGA) combined with CF heuristic by 
considering process sequence, production volume and alternative routing. The evaluation of the 
solutions was also based on various criteria such as the CF evaluation, the similarity among different 
products assigned to a machine, the cost and flexibility evaluation on the basis of limit of machine 
utilization. Rogers and Kulkarni (2005) introduced new method called bivariate clustering of matrix 
for CFP and a GA based method employed to solve the problem. Rajagopalan and Fonseca (2005) 
proposed a volume sensitivity model (VSM) for the first time with production volume limit for 
individual component rather than using product mix and implemented GA model to show that when 
machine movement is not viable then volume limit can enhance the choice of optimal routing of 
components. Rajagopalan and Fonseca (2006) further published their GA based model to workout CF 
problem with an objective to reduce intercellular and intracellular material handling cost with other 
cost components such as backtracking cost, machine skipping cost and penalty cost. The cost function 
was developed using heuristic algorithm which was used as fitness function of GA model. The 



  100

method is believed to be a significant improvement in cell formation and depicted better grouping 
efficacy. Filho and Tiberti (2006) introduced grouping genetic algorithm with new crossover, 
mutation operators, correction scheme and a new codification scheme of chromosomes based on 
machine groups rather than individual machine and the methodology efficiently seemed to converge 
faster. Hu and Yasuda (2005) pursued a research based on alternative process routes for cell formation 
problem and developed a GGA methodology with new chromosome representation, separate 
crossover heuristic and special mutation technique which produces efficient and optimal solution. 
Nsakanda et al. (2006) modelled a CFP with multiple dimensions such as operations sequence, part 
demands, machine capacities, multiple process plans and multiple routings and developed a GA 
method combined with price-direct decomposition method, and computational experiment produced 
good results for large-scale problems. Boulif and Atif (2006) stated graph partitioning formulation of 
CFP which first uses a binary GA and then a branch and bound method to enhance GA. Result 
produced, the binary GA outperforms classical GA and branch and bound enhanced GA outperforms 
binary GA. Chan et al. (2006) developed two mathematical models, one was CFP to minimize 
intracell and intercell part movement and the other was CLP to minimize intercell part travelling 
distance unit. A GA method was developed for both the problem models to find multiple optimal 
solutions. Defersha and Chen (2006) developed a mathematical model, which incorporates dynamic 
cell configuration, alternative routings, sequence of operations, multiple units of identical machines, 
machine capacity, workload balancing among cells, operation cost, subcontracting cost, tool 
consumption cost, set-up cost and other practical constraints. A two-phase GA based heuristic 
technique was also proposed to solve this CFP and the method was tested on some examples with 
greater efficiency. Wu et al. (2006) introduced a hierarchical GA method to solve CF problem 
simultaneously with group layout problem. The result shown this concurrent concept is able to 
produce better quality solution than traditional sequential methods by 2-20%. Car and Mikac (2006) 
proposed a method to solve CFP based on emergent synthesis idea, which was employed using a 
modified genetic algorithm (MGA) which is believed to generate better results for CFP problems. 
Dimopoulos (2006) proposed GP-SLCA model to solve large-scale problems. His technique is a 
single-objective technique and can be clubbed with NSGA-II, a multi-objective technique, and this 
combination seems to be a powerful tool to handle very large-scale problem. Ponnambalam et al. 
(2007) proposed a GA based technique in their work using non binary real valued workload data as an 
input matrix and developed a modified grouping efficiency. Their method seemed to outperform 
traditional techniques such as K-mean clustering and ART1 algorithms. Pillai and Subbarao (2007) 
designed GA as robust design methodology which works with a forecast of product mix and demand 
changes from period to period of a planning horizon and does not allow the composition of machine 
cells to change over time. James et al. (2007) demonstrated a hybrid GGA technique combined with 
local search for CFP which reduces variability of the solutions obtained and outperforms many well-
known techniques including conventional GGA. Tavakkoli-Moghaddam et al. (2007) assumed 
demand of parts to be dynamic and uncertain in fuzzy environment and developed an integer coded 
GA method to handle any size of the given problem. Boulif and Atif (2008) considered dynamic 
production factors like input data, with realistic constraints and avoiding assumptions like static 
number of cells, hence proposed a better GA based methodology with the help of fuzzy logic. 
Mahapatra and Pandian (2008) studied the operational time and sequence of operation of parts, to 
minimize cell load variation and exceptional elements by applying GA methods. The solution 
outperforms K-mean clustering technique and C-link clustering algorithms. Chan et al. (2008) 
introduced CFP with IAECLP with two objectives of minimizing intracell and intercell part 
movement and total sum of intracell and intercell part distance unit due to machine sequence and 
sequences of newly formed cells and then applied GA on top of it for better result. Kao et al. (2008) 
presented a new DE-based algorithm to solve cell formation problems, namely DECF algorithm. 
Each chromosome vector represents a solution which contains machine and part cluster centers 
together. A set of chromosome vectors iteratively moves to a better position in a continuous search 
space through three operations of mutation, crossover and selection. The experimental results show 
that DECF can compete with other well established methods. Defersha and Chen (2008a) developed a 
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mathematical programming model integrated with cell configuration and lot sizing in a dynamic 
manufacturing environment and implemented a hybrid GA embedded with linear programming 
technique, and reported that a simplex method can be used to solve the linear programming sub-
problem which in turn can generate near optimal solution efficiently. Defersha and Chen (2008b) 
further used parallel GA with island model for dynamic cell formation problem with parameters 
including connection topology, migration policy, migration frequency migration rate, and a repair 
heuristic. The authors demonstrated that the model could outperform previous sequential methods. 
Tariq et al. (2009) developed a local search heuristic based GA as a methodology of CFP, which uses 
integer type representation, multi-point crossover and roulette wheel selection procedure which yields 
best solution ever found in literature. Tunnukij and Hicks (2009) presented the enhanced grouping 
genetic algorithm (EnGGA) to solve the CFP without predetermining the number of manufacturing 
cells or the number of machines and parts within each cell. The method replaces the replacement 
heuristic in a standard GGA with a greedy heuristic and employs a rank-based roulette–elitist strategy, 
as a new strategy for creating successive generations. Output of EnGGA outperforms other traditional 
methods. Another study shown (Mahdavi et al., 2009) that cell formation with an objective of 
minimizing total number of voids and EEs in part-machine incident matrix by using a GA embedded 
with a heuristic inspired mutation is efficient and it yields significantly improved solution. Haleh et 
al. (2009) developed new hybrid technique based on memetic algorithm and revised TOPSIS method 
called (HMA-RTM) and applied on multi-objective CFP based on total cell moves and cell load 
variation and compared the result with GP-SLCA method, satisfactory output obtained. Cao et al. 
(2009) formulated a mathematical model for optimal lot splitting into alternative routes to account for 
either positive or negative effects of production run length on product quality in a cellular 
manufacturing environment. Optimal lot splitting is required to balance the cost of inter-cell material 
handling and the cost of replacing defective parts. They also developed a heuristic method based on a 
genetic algorithm for the proposed model for large-scale problems, and the solutions found by the 
developed heuristic method were very encouraging. Kor et al. (2009) aimed to implement SPEA-II 
method for multi-objective CFP and compared with GP-SLCA method, which produced good result. 
Bajestani et al. (2009) presented a new multi objective scatter search (MOSS) for dynamic CFP with 
two objectives of minimizing total cell load variation and sum of the miscellaneous costs. A memetic 
algorithm also introduced for the best next-population solutions to generate diverse initial solution 
and the results indicated superiority over SPEA-II and NSGA-II. The methodology  proposed by 
Noktehdan et al. (2010) introduced a differential evolution (DE) approach by combining the features 
of grouping genetic algorithm (GGA) to solve CF problems and compared the optimality of solutions 
effectively with previous research data and found better grouping efficacy. Fan et al. (2010) discussed 
the dual resource-constrained system model for CFP, where the minimum distance of parts and 
employees move among cells, the number of hired employees and the load balance of staff are all 
considered and a GA was used to solve simple numerical example to validate the model. Pailla et al. 
(2010) proposed two methodologies for CFP, one was a modified evolutionary algorithm based on 
genetic operator-heuristic and the other was based on simulated annealing. The experimental result 
indicated that the evolutionary technique was an efficient local search mechanism which could reduce 
the CPU time in terms of the number of iterations and the SA method could outperform every 
technique including the former evolutionary methodology. Neto and Filho (2010) designed a multi-
objective optimization model using GA for CFP, where fitness evaluation was performed via 
simulation of cellular system where congestion effect was incorporated and dynamic routing policy 
was used. Computational result exhibits improvement in terms of WIP level, intercell movements by 
reducing machine investment. The work proposed by Deljoo et al. (2010) based on dynamic 
production condition considered as factors affecting CF problems such as, product mix, demand of 
parts during some period, machine movement, addition of new equipment, providing flexibility in 
cellular manufacturing, which was further solved using some modified GA. 
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The abovementioned EA based literature survey criticises several infinitesimal issues related to the 
techniques proposed by researchers. Tables 4a to 4d render the detailed outcomes of individual 
methodologies. 
  
Table 4a  
Various attributes of the proposed EA based methodologies  
References Initial Population Fitness function Selection strategy Stopping Criteria 
Venugopal and 
Narendran (1992) 

randomly generate 
the initial 
population 

Total intercell moves and 
within cell load variation  

stochastic remainder 
selection without 
replacement scheme 

Fixed no. of 
iteration 

Gupta et al. (1996) Randomly generate 
the initial 
population 

Objective function taken stochastic remainder 
selection without 
replacement scheme 

Fixed no. of 
iteration 

Joines et al. (1996) Random seeding Nonlinear form of 
grouping efficacy 

Normalized geometric 
ranking scheme 

maximum number 
of generations 

Morad and Zalzala 
(1996) 

initial population is 
generated at 
random 

Objective function taken elitist strategy maximum number 
of generations 

Hwang and Sun 
(1996) 

permutations 
generated with the 
numbers 

Scaled fitness  
sfji = fitness + offset 
/(sum (fitness/PS +offset) 

stochastic remainder 
sampling without 
replacement 

maximum number 
of generations 

Zhao et al. (1996) randomly generated 
by heuristic 

rank - based 
evaluation function 

roulette 
wheel approach 

maximum number 
of generations 

Kazerooni et al. 
(1997) 

randomly generated number of elements in 
the MCS matrix which 
have a value equal to 
zero or below Ln 

tournament strategy maximum number 
of generations 

Suer (1997) randomly generated total number machine 
types 

reproduction 
probability based 
scheme 

Fixed no. of 
iteration 

Al-Sultan and 
Fedjki (1997) 

random generation objective function value biased roulette 
wheel approach 

maximum number 
of generations 

Pierreval and 
Plaquin (1998) 

randomly 
generating 
algorithm 

total cost or the 
homogeneity of the 
workload distribution on 
each cells 

niched pareto 
tournament selection 

If all the machines 
are placed in cell 

Gravel et al. (1998) generated randomly objective function value chosen by fitness When the diversity 
drops to zero or loss 
of diversity of the 
machine cell 
population should 
not exceed 3%. 

Hsu and Su (1998) generated randomly total cost, and total 
machine loading 
imbalances 

chosen by fitness maximum number 
of generations 

Moon and Gen 
(1999) 

generated randomly objective function value Deterministic selection 
strategy 

maximum number 
of generations 

Zhao and Wu (2000) generated randomly objective function value chosen by fitness maximum number 
of generations

Mak and Wong 
(2000) 

Generate an initial 
population of 
individuals 
randomly 

objective function values chosen by fitness maximum number 
of generations 

Mak et al. (2000) Randomly 
generated 

Bond energy measure traditional roulette 
wheel selection 
operator 

maximum number 
of generations 

Lee-Post (2000) Generate randomly sum of similarities selected 
probabilistically 

time-bounded rule & 
quality-bounded rule 
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Table 4b  
Various attributes of the proposed EA based methodologies  
References Initial Population Fitness function Selection strategy Stopping Criteria 
Plaquin and 
Pierreval (2000) 

generated randomly inter-cell traffic function Based on aggregates 
and their 
belongingness 

When there is no 
aggregate left to 
place 

Onwubolu and 
Mutingi (2001) 

randomly created 
solution space 

Cost function remainder stochastic 
sampling without 
replacement 

maximum number 
of generations 

Chu and Tsai (2001) variable restriction 
method to generate 
randomly 

minimizing the number 
of EEs 

roulette wheel 
selection method 

number of 
generations 

Dimopoulos and 
Mort (2001) 

randomly created 
similarity 
coefficients 

Grouping efficacy and 
weighted grouping 
efficiency 

Tournament selection number of 
generations 

Brown and 
Sumichrast (2001) 

Random generation Based on objectives rank-based roulette-
wheel 
selection 

number of 
generations 

Chi and Lin (2002) initial radius of the 
hyperboxes 

Objectives and grouping 
efficiency 

stochastic sampling 
method without 
replacement 

Fixed no. of 
iteration 

Wu et al. (2002) randomly generate 
the initial 
population 

Total number of EEs roulette wheel 
approach 

maximum number 
of generations 

Zolfagharia and 
Liang (2003) 

randomly generated generalized grouping 
efficacy 

random selection, 
roulette wheel 
selection, stochastic 
universal sampling

maximum number 
of generations 

Mansouri et al. 
(2003) 

Randomly Generate 
Initial Solutions 

݅ܨ ൌ ݅ܥሺ/݅ܥ  ݂݅ሻ 
Ci=normalize factor, 
fi=objective value 

Reminder Stochastic 
Sampling Without 
Replacement in 
conjunction with a new 
Elitism operator 

either it converges 
to a robust non-
dominated frontier 
or a predetermined 
number of 
generations 

Chan et al. (2004) random population Γܽ ൌ ݐݏܾܼ݁
ܼܽൗ  

Za = objective value of 
the alternative 

Individuals with 
higher fitness value 

variation in the 
value of 
the best objective 
function 

Chi and Yan (2004) generated randomly Fuzzy objective function roulette wheel 
approach 

maximum number 
of generations 

Goncalves and 
Resende (2004) 

randomly generated objective function elitist strategy Maximum No. of 
generation 

Solimanpur et al. 
(2004) 

randomly generated Total objective function Probabilistic selection Maximum No. of 
generation 

Zolfaghari and 
Liang (2004) 

randomly generated Based on objectives Best fit parents 
selected randomly 

Maximum No. of 
generation 

Muruganandam et 
al. (2005) 

Generated 
randomly 

ሻݐሺܨ ൌ 1
1  ݂ሺݐሻൗ  

f(t) = objective value 

roulette wheel 
selection method is 
adopted 

maximum number 
of generations 

Pai et al. (2005) generated randomly grouping efficacy roulette wheel 
selection 
principle 

maximum number 
of generations 

Vin et al. (2005) Generate an initial 
population using a 
resource planning 
(RP) heuristic 

Cost function Individuals with 
higher fitness value 

maximum number 
of generation 
without 
improvement 
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Table 4c  
Various attributes of the proposed EA based methodologies  
References Initial Population Fitness function Selection strategy Stopping Criteria 
Rogers and Kulkarni 
(2005) 

randomly generated objective function + 
penalty function 

standard proportional 
selection incorporating 
the elitist model 

Maximum No. of 
generation 

Rajagopalan and 
Fonseca (2005) 

randomly 
generated 

Production volume 
function considering 
upper limit and lower 
limit of VSM 

tournament selection Maximum No. of 
generation 
considering upper 
limit and lower limit 
of VSM 

Hu and Yasuda 
(2005) 

Random heuristic ݏݏ݁݊ݐ݅ܨ ൌ 
െ1ܣ ൈ ܥ ൈ ݂1 െ ܿ/2ܣ

ൈ ݂2

probabilistic selection Maximum No. of 
generation 

Rajagopalan and 
Fonseca (2006) 

randomly 
generated 

material handling cost + 
penalty cost 

tournament selection a run of 5000 
generation 

Filho and Tiberti 
(2006) 

special procedure 
based on random 
generation 

Sum of the objectives Roulette Wheel 
selection procedure 

Maximum No. of 
generation 

Nsakanda et al. 
(2006) 

randomly generated 
using population 
diversity 

Total move cost + total 
outsourcing cost 

stochastic remainder 
selection without  
replacement method 

No. of generation, 
number of 
chromosomes 
evaluations exceeds, 
improvement in 
fitness value, 
population diversity 
drops 

Boulif and Atif 
(2006) 

randomly generated 
initial population 

objective function Roulette wheel random 
procedure

Maximum No. of 
generation

Chan et al. (2006) initially generated 
randomly 

Γܽ ൌ ݐݏܾܼ݁
ܼܽൗ  

Za = objective value of 
the alternative 

Chromosomes with 
higher fitness value 

little change of 
improvement in the 
best objective 
function 

Defersha and Chen 
(2006) 

Random generation Sum of the objectives biased roulette wheel 
approach where each 
individual chromosome 
in the current 
population has a roulette 
wheel slot sized in 
proportion to its 
transformed fitness 

Maximum No. of 
generation 

Wu et al. (2006) randomly 
generated ݂ ൌ  ሾ݃ሺ݅ሻ/݃ሺݔሻሿ

௦௭



 

g(x) = objective 
function 

roulette wheel and elitist 
approach 

Maximum No. of 
generation 

Car and Mikac 
(2006) 

random selection 
of individuals 

sum of total number of 
voids and the total 
number of EEs 

Individuals with 
higher fitness value 

Maximum No. of 
generation 

Dimopoulos (2006) randomly created 
similarity 
coefficients 

objective value tournament selection Maximum No. of 
generation 

Ponnambalam et al. 
(2007) 

generated randomly objective function maximum fitness 
function value 

Maximum No. of 
generation 

Pillai and Subbarao 
(2007) 

randomly created 
population 

objective function Best fit chromosomes Maximum No. of 
generation 

James et al. (2007) Random generation ݂ ൌ ሺܰܰ/ݎ2  1ሻ 
r = rank; N = no. of 
ranked chromosomes 

Rank-based roulette 
wheel selection 

No. of generation 

Tavakkoli-
Moghaddam et al. 
(2007) 

greedy generational 
handling strategy 

objective function + 
penalty function 

roulette wheel sampling Maximum CPU time, 
standard deviation 
of generation,  
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Table 4d  
Various attributes of the proposed EA based methodologies  
References Initial Population Fitness function Selection strategy Stopping Criteria 
Boulif and Atif 
(2008) 

Random generation objective function roulette wheel 
approach 

Maximum No. of 
generation 

Chan et al. (2008) random population objective function Best fit chromosomes little change in the 
best objective 
function 

Kao et al. (2008) Random generation Grouping Efficacy Best fit chromosomes Fixed no. of 
iteration 

Defersha & Chen 
(2008a) 

Random generation Sum of the objectives biased roulette wheel 
approachis simulated 
as suggested by 
Goldberg (1989) 

No. of generation, 
improvement in 
fitness value 

Defersha & Chen 
(2008b) 

Random generation Sum of the objectives biased roulette wheel 
with replacement 

improvement in 
fitness value 

Mahapatra & 
Pandian (2008) 

Generate random 
population 

objective function Random selection Maximum No. of 
generations 

Haleh et al. (2009) Generate random 
population 

objective functions 
and RTM method used 

Best fit chromosomes Maximum No. of 
generations 

Mahdavi et al. 
(2009) 

special procedure 
was developed 

total number 
of voids and EEs 

Roulette Wheel 
selection procedure 

Maximum No. of 
generations 

Tariq et al. (2009) Random generation objective function Best fit chromosomes 
& roulette wheel 
approach 

improvement in 
fitness value 

Tunnukij and Hicks 
(2009) 

Random generation Grouping efficacy Random selection & 
Rank-based 
Roulette-elitist 
strategy 

Maximum Number 
of 
generation 

Kor et al. (2009) Random generation closeness to the true 
Pareto front and even 
distribution of 
solutions 

Binary tournament 
selection with 
replacement 

Maximum No. of 
generations 

Cao et al. (2009) Random generation Objective function value Best fit chromosomes No. of generation, 
improvement in 
fitness value 

Bajestani et al. 
(2009) 

Based on memetic 
procedure 

Objective function value Similarity-rate function 
is used 

Maximum No. of 
generation 

Neto & Filho (2010) first half is 
generated by using 
problem-specific 
information & 
second half is 
generated randomly 

Feasibility correction is 
used to check objective 
value therefore fitness 

NSGA-2 built-in 
‘‘crowding” 
tournament used 

Maximum No. of 
generation 

Pailla et al. (2010) Random Generation 
& constructive 
heuristic used 

grouping efficacy Selection probability 
function used from 
Joins et al. (1996) 

Maximum No. of 
generation 

Noktehdan et al. 
(2010) 

truncated geometric 
distribution 

Cost Function Best fit chromosomes Maximum No. of 
generation 

Fan et al. (2010 ) Random generation Objective function of 
CFP used 

Roulette wheel method Maximum No. of 
generation 

Deljoo et al. (2010) Sequential strategy 
used 

Objective function of 
CFP used 

Best fit chromosomes 
taken & normalized 
method used 

No. of generation, 
upper bound of 
solving time, 
improvement in 
fitness value 
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2.2.6 Ant Colony Optimization (ACO) 
 
The first ACO algorithm appeared in early 90s by Dorigo and ACO is now a widely studied meta-
heuristic for combinatorial optimization problems, as the recent book by Dorigo and Stutzle (2004) 
testifies. The concept is based on the observation of foraging behaviour of ants: when walking on 
routes from the nest to a source of food, ants seem to find not just a simple random route, but a quite 
‘good’ one, in terms of shortness, or equivalently, in terms of time of travel; thus, their behaviour 
allows them to solve an optimization problem. This kind of accomplishment of biological ants can be 
explained by the way of communication and choosing the right way to go. In fact, when an ant starts 
walking, it normally deposits a chemical called pheromone on the ground and the pheromone usually 
disappears during the time since it evaporates. Therefore, the more pheromone exists in a particular 
place, the more chance to have food around and this could help ants find shorter routes to choose food 
since there are more pheromone on these routes. This is basic idea of ACO algorithm. Following 
pseudocode 4 shows ACO approach, 
 

2.2.7 ACO in Cell Formation 
ACO is successfully implemented on CFP with various flavours of the algorithm. Islier (2005) 
proposed artificial ant system to optimize CF problems by means of touring of Ants from minor 
places (machine/component) to major places (cells). The methodology was compared with previous 
AI techniques such as SA, TS, GA and shown GA is only comparable with the ant system 
methodology. Prabhaharan et al. (2005) also proposed an ant colony system (ACS) approach for CFP 
to minimize total cell load variation and intercell moves considering demands for number of parts, 
routing sequences, processing time, machine capacities, and machine workload status. The result 
shown ACS outperformed existing GA method in several cases. Giri et al. (2007) reported a TSP 
based heuristic embedded with ACO to form optimal part/machine clusters based on the overall 
machine sequence which leads to configurations with a minimum number of movements among the 
cells. The ACO is used here to obtain optimum machine sequence for maximum part volume flow. 
Since TSP was used hence graph theory based approach was also followed. Mak et al. (2007) studied 
the virtual cellular manufacturing system (VCMS) and explained that the application of an ACO with 
minor modification and adding some heuristics to produce efficient manufacturing cells could reduce 
the cost of production schedule by minimizing material handling cost. The methodology was applied 
for some combustion engine manufacturing company and the result was compared with GA where the 
proposed technique performs better in terms of reduced computational time. Kao et al. (2008) 
proposed ant colony clustering (ACC) technique to solve CF problems. Their focus area was to form 
efficient part families by the chemical recognition phenomena followed by ants to form cluster. They 
also showed improved solution and found optimal grouping efficiency. Megala et al. (2008) 
suggested a modified ant colony optimization algorithm based on ACO to solve CFP with existing 
data sets from literature and the results showed the ability of the algorithm to maximize grouping 
efficacy. Spiliopoulos and Sofianopoulou (2008) developed new ACO based robust methodology, 
used tight eigen-value based bound to differentiate solutions to accelerate the search. The method is 
applied on cell design problem with maximum cell size and the processing sequence of the parts, and 
avoids difficulties associated with the use of the traditionally used part-machine incidence matrix and 
improved result found for medium-to- large size problems. Solimanpur et al. (2010) proposed ACO to 
solve CFP with the consideration of operational sequence and production volume with the objectives 
to reduce intercell moves and number of voids, and the ACO converges to optimality. Li et al. (2010) 
proposed MAX-MIN ant system integrated local search technique for ACO-CF model implemented 
in hyper-cube framework. The result is not only better than previous techniques, it can also increase 
efficacy by allowing residual cells in diagonal blocks. Xing et al. (2010) proposed two part-machine 
clustering techniques, one is with ART1 neural network based approach and another is ant colony 
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system (ACS) based approach, the computational result found is ACS is better than the ART1 
method, by using grouping efficiency measure. 
 
 
Pseudocode 4: Ant Colony Optimization (ACO) 
 
Initialize; 
i← 0; 
repeat 
              generate a feasible solution; 
              evaluate goodness η; 
              if η > ηmax then begin update elite list; shift the bounds end; 
              if i mod α = 0 then alter the solution; 
              if i mod β = 0 then intensify elite pheromone traces; 
              update pheromone trails; 
              i← i + 1; 
until i=σ; 
 

2.2.8 Particle Swarm Optimization (PSO) 
 
PSO algorithm was first proposed by Kennedy and Eberhart (1995) in the mid-90s, which is one of 
the latest evolutionary optimization techniques. PSO is inspired by the metaphor of social interaction 
and communication in a flock of birds or school of fishes. In these groups, there is a main agent who 
guides the movement of the whole swarm. The movement of every individual is based on the main 
agent and on his own knowledge. PSO is population-based and evolutionary in nature. Therefore, 
particles in a PSO method normally follow the main agent which is the one with the best 
performance. The pseudocode 5 suggests the steps of PSO. It can be observed that PSO is more 
efficient and less complex than other population based method applied in CF domain.  
 

2.2.9 PSO in Cell Formation 
 
Andres and Lozano (2006) developed very first PSO technique for cell formation problem. The 
solution encoding corresponds to a vector of particle-position, which are to be updated with the 
iterations. The approach indicated that PSO has a greater capability of finding optimal solution in 
reasonable amount of time. Ming and Ponnambalam (2008) proposed a hybrid PSO approach 
combined with GA for CF problem and PSO to find optimal layout, the methodology considered 
randomly generated initial particles and velocities and it was successfully applied to minimize total 
cell load variation and total components move. Durán et al. (2010) reported a modified PSO with 
proportional likelihood instead of using velocity vector on CF problems where the objectives are the 
minimization of cell load variation and inter cellular parts movement and reported the stability of the 
method with low variability. Mehdizadeh and Tavakkoli-Moghaddam (2009) proposed a Fuzzy PSO 
(FPSO) technique to solve CF problem in the context of part-machine clustering where each particle 
corresponds the cluster center vector and swarm represents a number of candidates clustering for the 
current data vector and they showed that for a large-scale problem the proposed technique could 
produce better solution. Caprihan et al. (2009) stated a quantum PSO (QPSO) method and designed a 
virtual cellular manufacturing system (VCM) and the proposed method was tested with GA and 
lexico goal programming approach where QPSO approach consumed less CPU time and yielded 
better solution. A similar study was also performed by Anvari et al. (2010) where a hybrid particle 
swarm optimization technique for CFP was reported. The initial solutions generated either randomly 
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or using a diversification generation method and the technique also utilized mutation operator 
embedded in velocity update equation to avoid reaching local optimal solutions. Thereafter with due 
consideration, a wide variety of machine/part matrices were effectively solved by this approach. 
   
Pseudocode 5: Particle Swarm Optimization (PSO) 

 
Initialize; 
repeat 
          Evaluate fitness for each particle; 
          Update the global best and local best position. 
          Update particle velocity by v[i+1] = w0v[i]+c1*rand()*(pbest[i]    

present[i])+c2*rand()*(gbest[i]-present[i])  
          Update particle position by present[i+1] = present[i]+v[i] 
Until maximum number of generation reached 
 

2.2.10 Bees Algorithm (BA) 
 
One of the newest techniques evolved in this genre is Bees algorithm invented by D.T. Pham (2006). 
The BA is an optimization algorithm inspired by the natural foraging behaviour of honey bees to find 
the optimal solution. The phenomenon behind this algorithm is the food foraging behaviour of honey 
bees. Honey bees are normally able to extend their colony over long distances and in various possible 
directions simultaneously to take advantage of substantial number of food sources. A colony succeeds 
by redistributing its foragers to suitable fields. Normally, more bees must be recruited for flower 
patches with ample amounts of nectar or pollen that can be gathered with less effort. The pseudocode 
6 demonstrates the BA procedure. 
 

2.2.11 BA in Cell Formation 
 
BA is successfully implemented in CF domain by Pham et al. (2007) in order to reduce intracell and 
intercell moves by considering bond energy and grouping efficacy measure. The initial solutions 
generated randomly with certain number of scout bees. In the searching phase more scout bees are 
assigned in the vicinity of best sites which are selected according to computed fitness values. The 
algorithm shows its highly competitive nature to obtain optimal solution when compared with other 
established methods. 
 
Pseudocode 6: Bees Algorithm (BA) 

 
Initialize; 
repeat 
          Evaluate fitness of the population. 
          while (stopping criterion did not meet) 
                            Select sites for neighbourhood search. 
                            Recruit bees for selected sites (more bees for the best e sites).  
                            Evaluate fitnesses. 
                            Select the fittest bee from each site. 
                            Assign remaining bees to search randomly and evaluate their fitnesses. 
          end while 
until maximum number of generation reached 
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2.2.12 Water Flow-like Algorithm (WFA) 
 
WFA was first proposed by Yang and Wang (2007) as a nature inspired optimization algorithm for 
object clustering, to overcome the shortcoming the single and multiple-solution-agent-based 
algorithms. It mimics the behavior of water flowing from higher to lower level which helps in the 
process of searching for optimal solution. WFA is given in pseudocode 7.  

2.2.13 WFA in Cell Formation 
 
Wu et al. (2010) introduced water flow-like algorithm (WFA) in CFP, which deals with dynamic size 
of solution agents, overcomes the drawbacks of single agent based and multi agent based techniques. 
WFACF model proposed by the researchers utilizes similarity coefficients method and machine 
assignments and part assignments method to generate initial solution for later stage and flow splitting 
and moving operation are employed to obtain better neighbourhood solutions. The method has two 
stages; the first step produced feasible solutions without substantial improvement in solution to derive 
a cell size quickly, which is then implemented as input to the second stage to detect the near-optimal 
solution. The result shown is better than existing procedures. 
 
Pseudocode 7: Water Flow-like Algorithm (WFA) 
 
Initialize; 
repeat 
           repeat 
                     calculate no. of subflows 
                     for each subflow find best neighbourhood solution 
                     distribute mass of flow to its subflows 
                     calculate improvement in objective value 
           until population no. reached 
           merge subflows with same objective values 
           update the no. of subflows 
           update total no. of water flows 
           if precipitation condition met 
                         perform bit reordering strategy 
                         distribute mass to flows 
                         evaluate new solution  
                         update the no. of subflows 
                         update total no. of water flows 
Until maximum generation reached 
 

3. Discussion 

This section takes a transversal view on the reviewed meta-heuristics and points out some open issues 
and possible direction of future study.  

3.1 Comparison based on objective function 

CF problems can be formulated using single objective or multiple objectives, such as intercell or 
intracell part movement, within cell load variation, count of EEs and voids, machine utilization, 
machine investment, machine duplicacy, WIP level etc. by considering operational time, operational 
sequence of parts. Table 5 classifies literatures studied based on multi-objectives with production 
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factor considered. Around 80% of the papers listed in Table 2 are bi-objectives, and around 50% 
amongst them comprised total cell movements and cell load variations.  
 
Table 5  
List of papers with multi-objective CFPs 
 
References 

 
Obj1 

 
Obj2 

 
Obj3 

 
Obj4 

 
Obj5 

 
Obj6 

 
Obj7 

 
Obj8 

 
Obj9 

Neto & Filho (2010) ✓ ✓ ✓       
Zhao & Wu (2000) ✓ ✓ ✓ 
Brown & Sumichrast (2001)  ✓  ✓ 
Gupta et al. (1996)  ✓ ✓   
Hsu & Su (1998)  ✓ ✓ ✓   
Mansouri et al. (2003)  ✓     ✓ ✓  
Solimanpur et al. (2004)   ✓      ✓ 
Yasuda et al. (2005)  ✓  ✓      
Wu et al. (2006)  ✓   ✓     
Dimopoulos (2006)  ✓    ✓    
Tavakkoli-Moghaddam et al. (2007)  ✓ ✓       
Defersha & Chen et al. (2008)  ✓ ✓       
Goncalves & Resende (2004)  ✓    ✓    
Gravel et al. (1998)  ✓  ✓      
Chi & Yan (2004)  ✓  ✓      
Fan et al. (2010)  ✓  ✓      
Morad & Zalzala (1996)  ✓  ✓      
Kor et al. (2009)  ✓  ✓      
Mahapatra & Pandian (2008)    ✓ ✓     
Mak & Wong (2000)  ✓  ✓      
James et al. (2007)  ✓    ✓    
Haleh et al. (2009)  ✓  ✓      
Tariq et al. (2009)  ✓    ✓    
Muruganandam et al. (2005)  ✓  ✓      
Bajestani et al. (2009)  ✓ ✓       
Li et al. (2010)  ✓    ✓    
Solimanpur et al. (2010) ✓ ✓      ✓  
Prabhaharan et al. (2005)  ✓  ✓      
Ming & Ponnambalam (2008)  ✓  ✓      
Su & Hsu (1998)  ✓  ✓      
Das et al. (2006)  ✓      ✓  
Mahesh & Srinivasan (2006)    ✓  ✓   ✓ 
Lei & Wu (2006)  ✓  ✓      
Jayaswal & Adil (2004)  ✓ ✓       
Vakharia & Chang (1997)  ✓ ✓     ✓  
Foulds et al. (2006)  ✓ ✓       
Tavakkoli-Moghaddam et al. (2005)  ✓ ✓       
 
Obj1: Level of WIP 
Obj2: intercell and/or intracell move 
Obj3: Machine investment/modification/relocation 
Obj4: Cell load variation 
Obj5: Count of EEs and/or Voids/Operational sequence/time 
Obj6: machine utilization/cycle time of parts 
Obj7: machine duplication & part subcontracting 
Obj8: system under-utilization/ cells utilization/system reliability 
Obj9: part processing time/cost/total work content of parts 
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3.2 Comparison among different meta-heuristics 

Most of the papers in the CFP literature focus on single meta-heuristic approach, which is compared 
either to the variants of the same technique, or to previously available methods such as similarity 
coefficient method, mathematical programming method, or to simple heuristics such as random 
search, greedy search, or to exact methods when these are available. Few papers perform comparisons 
among different meta-heuristics. Table 6 summarizes various meta-heuristic methods used and 
compared for CF problems.  
 
Table 6  
Papers with comparison between meta-heuristics performance 
 

References 
 

Meta-heuristics 
compared 

 
Winner 

 

Tool used 
 

Winning % 

 
Vakharia and Chang (1997) 

 
SA, TS 

 
SA 

 
** 

 
 

Tavakkoli-Moghaddam et al. 
(2005) 

TS, SA, GA SA VB 6  

Noktehdan et al. (2010) GDE, GGA GDE Matlab 7.4  
Pailla et al. (2010) EA, SA, HGA SA **  
Wu et al. (2009) HSAM, SA, TS,  HSAM C  
Wu et al. (2010) WFA, SA, HGA WFA C WFA 4% 
Attila Islier (2005) Ant System, TS, SA, 

GA 
Ant System **  

Mak et al. (2007) GA, ACO ACO VC++ .NET  
Goncalves & Resende (2004) EA, GA, GP EA VO 2.0b-1  
Mahdavi et al. (2009) GA, SA, EA GA Matlab 7  
Li et al. (2010) ACO, EAs ACO C  
Solimanpur et al. (2010) ACO, GA ACO C  
Spiliopoulos &  Sofianopoulou 
(2008) 

ACO, TS ACO Fortran 90  

Prabhaharan et al. (2005) ACO, GA ACO ** ACO 21% 
Durán et al. (2010) PSO, SA PSO **  
Caprihan et al. (2009) QPSO, GA QPSO ** PSO 7% 
Safaei et al. (2008) MFA, SA, MFA-SA MFA-SA **  
Lei & Wu (2006) MOTS, GA, PSA MOTS **  
Arkat et al. (2007) SA, GA SA **  
Wu et al. (2009) SA, GA SA C SA 25% 
Onwubolu & Songore (2000) TS, SA TS PASCAL 

7.0 
 

Adenso-Diaz et al. (2001) SA, TS TS ** TS 11% 
Bajestani et al. (2009) MOSS, SPEA, NSGA MOSS Matlab 7.0  
Muruganandam et al. (2005) MA, GA, TS MA C  
Haleh et al. (2009) MA, GP MA **  
James et al. (2007) GP, EA, HGGA, GA HGGA VB .NET  
Tunnukij & Hicks (2009) GA, SA, TS, EnGGA EnGGA C  
Yasuda et al. (2005) SA, GGA GGA Matlab 6.0 EA 32% 
**: Data not available 

The table also depicts the winning alternative as well as the percentage of the success. As it can be 
observed, EA has the highest rate of success with 32% amidst other meta-heuristics such as SA, ACO, 
TS, PSO, and WFA. Therefore, it is understandable that frequency of usage and winning capability 
are higher for EA than the other meta-heuristics. However, there are chances for other meta-heuristics 
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Table 7  
Papers based on hybrid meta-heuristic method 
References Problem model Meta-heuristics 
 
Wu et al.  (2009) 

 
NLP

 
TS-mutation 

Ming & Ponnambalam (2008) QAP GA-PSO 
Ateme-Nguema & Dao (2007) BIP ACO, TS 
Su & Hsu (1998) MOMP SA, GA 
Das et al. (2006) IP SA,GA 
Wu et al. (2007) NLP SA, GA 
Safaei et al. (2008) MIP MFA, SA 

3.4 Usage statistics of meta-heuristics in cell formation problems 

Fig. 3 demonstrates a Pareto-analysis of the frequency of usage of the meta-heuristics and also the 
cumulative usage of these techniques in CF domain where EA is winner in most cases and SA and TS 
are believed to be effective methods as well. Cumulative usage indicates that nearly 29% of the 
techniques (EA and SA) accounted for around 73% of usage. 
Finally Fig. 3 depicts that other meta-heuristics which are strongly competitive with EA, SA, TS and 
ACO, such as PSO, BA, WFA, are used fewer number of times.  
Almost all the recently developed meta-heuristics are used to solve single objective CFPs, and only 
few are developed to handle multi-objective problems. Hence, the combined conclusion drawn from 
Fig. 2 and Fig. 3 is that the usage of EA and winning possibility of EA is higher according to the 
research work done till now in CF domain. While comparing with recent review work proposed by 
Papaioannou and Wilson (2010), this present work introduced more intricate study in cellular 
manufacturing. The uniqueness of this paper is to put major concentration in meta-heuristics based 
approaches and a detailed discussion based on many critical issues as stated above. 
From the study presented in this paper, the followings are concluded, 

a. EAs are proven techniques in engineering optimization problem, reflection is found in CF 
domain as well. Since late 90s GA is proposed by many researchers as a stand-alone tool and 
also as a hybrid technique and being used rigorously till present time in search of better 
solutions. 

b. In early stages single objective CFP was of researchers' prime interest, but in later stage since 
manufacturing decisions are becoming more complex, so multi-objective CFPs are taken up 
by considering operational time, sequence, alternative process routing, machine duplicacy, 
dynamic conditions, and various costs related to CMS. 

c. Considering the fact that multi-objectivity is difficult to deal with in CFP, and to tackle these 
problems several multi-objective EA methods are appropriate such as NSGA, SPEA, NPEA 
and MOGA. Therefore, the ones which are frequently used by researchers, reported in Table 
5, such as PSO, ACO, BA, WFA are still in developing stage we may also solve CFP with 
multi-objective algorithms of PSO, ACO, BA, WFA as well. 

d. For many large-scale problems, computational time is a major concern of many researchers, 
and hence better evolutionary optimization techniques are being proposed accordingly. 

e. From late 90s GA, TS, SA are mostly considered techniques in CF domain as an optimization 
tool. 

f. New population based tools such as PSO, ACO are attracting more research interests since 
they are computationally more attractive and less complex.  

g. Many other tools such as BA, WFA, scatter search and other hybrid techniques are also 
evolving with time as CF solution methodologies. 
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