
* Corresponding author Tel +98-917-1003767 Fax +98-711-6271747.
E-mail addresses: rakbari@cse.shirazu.ac.ir (R. Akbari),

© 2010 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2010.03.004

International Journal of Industrial Engineering Computations 2 (2011) 45–60

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Artificial Bee colony for resource constrained project scheduling problem

Reza Akbaria*, Vahid Zeighamib and Koorush Ziaratia

aDepartment of Computer Science and Engineering, Shiraz University, Shiraz, Iran
b Department of Mathematics , School of Science, Shiraz University, Shiraz, Iran

A R T I C L E I N F O A B S T R A C T

Article history:
Received 15 April 2010
Received in revised form
19 July 2010
Accepted 20 July 2010
Available online 20 July 2010

 Solving resource constrained project scheduling problem (RCPSP) has important role in the
context of project scheduling. Considering a single objective RCPSP, the goal is to find a
schedule that minimizes the makespan. This is NP-hard problem (Blazewicz et al., 1983) and
one may use meta-heuristics to obtain a global optimum solution or at least a near-optimal one.
Recently, various meta-heuristics such as ACO, PSO, GA, SA etc have been applied on
RCPSP. Bee algorithms are among most recently introduced meta-heuristics. This study aims at
adapting artificial bee colony as an alternative and efficient optimization strategy for solving
RCPSP and investigating its performance on the RCPSP. To evaluate the artificial bee colony,
its performance is investigated against other meta-heuristics for solving case studies in the
PSPLIB library. Simulation results show that the artificial bee colony presents an efficient way
for solving resource constrained project scheduling problem.

 © 2010 Growing Science Ltd. All rights reserved.

Keywords:
Meta-heuristic
Artificial bee colony
Resource constrained project
scheduling
Makespan
Single mode

1. Introduction

Resource constrained project scheduling is known as an important problem in project scheduling. The
RCPSP is an optimization problem which tries to find the optimum ordering of the activities to
achieve some predefined objectives. It is possible to have many different objectives such as
makespan, robustness, etc which are depended on some predefined goals (Abbasi et al., 2006). The
makespan minimization, which is referred to as finding the minimum time to complete the entire
project, is the most common objective in RCPSP. Also, RCPSP has several varieties so-called single-
mode RCPSP (Ranjbar, 2008), multi-mode RCPSP (Damak et al., 2009), RCPSP with non-regular
objective functions (Neumann et al., 2003), stochastic RCPSP (Rabbani et al., 2007; Ashtiani et al.,
2009), Bin-packing related RCPSP (Fekete & Schepers, 1998), and multi-RCPSP (Krüger & Scholl,
2009). These varieties of RCPSP along with different possible objectives provide a wide area of
research. Hence, scheduling resource constrained project has been the subject of extensive researches
in the recent years.

In this work, we focus on solving single-mode RCPSP with makespan minimization objective. A
large variety of methods ranging from exact to meta-heuristic have been proposed for single-mode
RCPSP. We refer to the survey about the solution techniques provided by Hartman and Briskorn

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

46

(2010). The proposed methods can be classified as exact, heuristics and meta-heuristics. Exact
methods are the first class of RCPSP solvers. Several exact methods have been proposed by authors
to solve the RCPSP. The methods proposed by Stork and Uetz (2005), Sprecher (2000), and
Mingozzi et al. (1998) are among the most representative exact methods. Although exact methods
provide efficiency to solve small-sized instances of the RCPSP, they may not able to solve large-size
instances of the RCPSP in a reasonable computational time. Therefore, we need to use heuristics or
meta-heuristics when solving large problem instances. These approaches provide optimal or near
optimal solutions for the problem at hand. The second class of RCPSP solvers is designed based on
heuristics. The methods presented by Tormos and Lova (2001), Kolisch (1996), and Boctor (1990)
are examples of the heuristic approaches. The methods of this class start with an empty schedule (i.e.
none of the activities has been scheduled). After that, the empty schedule is filled by selecting a
subset of activities in each step and assigning the earliest possible starting times to these activities by
considering the priority rules and scheduling scheme. This process is continued until all the activities
have been considered.

In scheduling process, the activities are selected based on their ranks, and the priority rules are used
for ranking the activities. Meta-heuristics are used to design the third class of RCPSP solvers. Several
meta-heuristic methods such as Tabu-Search (TS) (Tomas & Salhi, 1998), Simulated Annealing (SA)
(Boctor, 1996; Bouleimen & Lecocq, 1993), Genetic Algorithm (GA) (Valls et al., 2008; Mendes et
al., 2009), Scatter Search (Mobini et al., 2009), Electromagnetism (EM) (Debels & Vanhoucke,
2004), Immune Algorithm (IA) (Mobini et al. , 2010), Filter and Fan (FF) (Ranjbar, 2008), and
Particle Swarm Optimization (PSO) (Chen et al., 2010; Zhang et al., 2005; Zhang et al., 2006) have
been proposed by authors. The meta-heuristics approaches can be divided in two main sub-classes.
The first sub-class containing approaches such as tabu search and simulated annealing maintain only
one solution at each cycle of the algorithm. These methods try to find a new solution with better
quality from the current solution iteratively. The second sub-class of meta-heuristics containing
population based approaches such as genetic algorithm, ant colony optimization, particle swarm
optimization, etc, maintain a set of solutions at each cycle of the algorithm. These approaches solve
the RCPSP by employing an initial population of individuals each of which represents a candidate
schedule for the project. Then, they evolve the initial population by successively applying a set of
operators on the old solutions to transform them in to the new solutions.

Some other approaches for resolving RCPSP problem are designed as a hybrid among different
approaches. These methods try to exploit the advantages of two or more methods in order to design
an algorithm with better performance. ANGEL (Tseng & Chen, 2006), ACOSS (Chen et al., 2010),
Neurogenetic (Agrawal et al., 2010), Scatter Search-FBI (Debles et al., 2006), and Hybrid-GA (Valls
et al., 2008) are among most representative hybrid methods presented in literature. Usually in hybrid
algorithms, better performance is obtained by improving the balance between exploration and
exploitation through combination of the potentials of different approaches. Hence, one can use
hybridization as a way to avoid stagnation and premature convergence which are known as the main
deficiencies of meta-heuristic approaches. TS, SA, GA, ACO, PSO, SS, EM, IA, FF, and hybrid
methods are among the most popular meta-heuristic approaches applied on RCPSP. Previous studies
showed that these methods were successful and more efficiency has been obtained by applying them
on RCPSP. Methods such as artificial bee colony (Karaboga & Basturk, 2007) and bee swarm
optimization (Akbari et al., 2010) which are inspired from intelligent behavior of honey bees are
among newly introduced meta-heuristic approaches which have been successfully applied on
optimization problems. It seems that they may be useful for solving RCPSP. In this work, we use
artificial bee colony (ABC) and present a method to solve a single-mode RCPSP. The proposed
method tries to minimize the makespan of a single-mode RCPSP using meta-heuristics inspired from
collective behavior of honey bees. It starts by a set of initial schedules and tries to improve them
cycle by cycle until the termination condition is met. Each cycle represents an asynchronous process
that involves four steps. These steps are used to transform the old schedules into the new schedules

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

47

with shorter makespans. This paper is organized as follows. Section 2 presents the foundations of the
bee algorithms by describing self-organizing and collective behaviors of honey bees in nature.
Section 3 explains the formulation of the RCPSP. In Section 4, we explain the steps of artificial bee
colony and its application for solving single-mode RCPSP. Section 5 illustrates the numerical
examples and reports the comparison results. Finally, Section 6 concludes this work and represents
some future research directions.

2. Bees in the Nature

The collective behaviors of honey bees provide them with the ability to perform complex tasks as
reported by Teodorovic and Dell Orco (2007), Teodorovic et al. (2006), Pham et al. (2008), and
Akbari et al. (2010), using relatively simple rules of individual bees’ behaviors. Collecting, processing,
and advertising of nectars are examples of intelligent behaviors of honey bees (Teodorovic et al.,
2006). These behaviors help a colony in finding the flower patches in the environment. Information
about flower patches provided by the employed bees is shared among other bees when they return to
the hive. The employed bees share their information using waggle dance on the dance floor. The
provided information by employed foragers is shared with a probability proportional to the
profitability of the food source. So, the onlooker bees which are waiting in the hive can employ a
probabilistic approach to choose an employed bee among numerous dancers and adjust their search
trajectories toward the most profitable sources. The onlooker bees choose more profitable food sources
with greater probabilities. Hence, more profitable food sources attract more onlooker bees. After
choosing the food source by the onlooker bee, she flies to find the food source. When she finds the
food source, the onlooker bee switches its type to the employed bee. The employed bee memorizes the
location of food source and then starts exploiting it. Then she takes a part of nectar from the food
source, it returns to the hive and saves the nectar in a food area in the hive. After saving the food, the
bee enters to the decision making process and selects one of the following three options. A bee may
select one of these options to switch its type based on different information such as quality of food
source, its distance from the hive, its direction, and ease of extracting the food source. 1) If the nectar
amount is decreased to a low level or it is exhausted, she abandons the food source and switches its
type as scout. Scout bees fly spontaneously around the hive and search for new food sources without
any knowledge about the environment. 2) If there are still sufficient amount of nectar in the food
source, it can continue to forage without recruiting the nestmates. 3) She can perform waggle dance to
inform the nestmates about the same food source. After that she recruits the nestmates before returning
to the food source. The waggle dance mechanism and the search behavior of honey bees were used by
Karaboga and Bastruk (2007) to design an optimization algorithm called artificial Bee colony (ABC).
It seems that ABC has competitive performance compared to other meta-heuristics such as ACO, PSO,
GA, etc as reported by Karaboga and Bastruk (2007), Karaboga and Akay (2009), Alatas B. (2010)
and Pan et al. (2010). Hence, this work aims at adapting ABC algorithm as a newly developed meta-
heuristic to resolve the resource constrained project scheduling problem.

3. Formulation of the RCPSP

Considering the limited capacity of the resources, the main concern in the resource constrained
project scheduling problem is to assign jobs or activities to a set of resources in order to meet some
predefined objectives. Although, many different objectives are possible, but minimizing the
makespan is commonly considered in most of the RCPSPs. This work aims at designing an approach
for minimizing the makespan in a single mode scheduling problem. In a single mode RCPSP, each
project has a single execution mode in which both the activity duration and its requirements for a set
of resources are assumed to be fixed. The single-mode resource constrained project scheduling is
defined as follows: assume that we have a project that involves 1+n activities where each activity
has to be processed in order to complete the project. The project can be modeled as a directed graph

()CAG , (see Fig. 1 (a)) where the nodes in the graph correspond to activities and the arcs specify
precedence relationships. The graph represents a set { }110 ,....,, += naaaA of dummy and non-dummy

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

48

activities with the associated durations { }110 ,....,, += ndddD . The dummy activities 0 and 1+n (with
durations 010 == +ndd) represent the ‘project start’ and the ‘project end’, respectively. As mentioned
earlier the arcs in the graph specify the precedence constraint. If an arc ()ji, appears in the graph, it
means that the activity j cannot be started before its immediate predecessor activity i has been
finished. Besides, an activity requires resources with limited capacities to be performed. An activity
may be scheduled if both of the constraints (i.e. precedence constraint and resource limitation
constraint) are satisfied.

Fig. 1. An example for resource constrained project scheduling problem. The project comprising 6
activities that needs to be scheduled subject to 1=K renewable resource type with a capacity of 4
units. (a) presents the precedence graph of the activities, and (b) presents the corresponding optimal
schedule of the activities

We have a set of resource types { }KRRRR ,....,, 21= where each resource type k has a limited capacity
of kR at any point of the time. During running of the project, each activity ja requires kjr , units of
resource type k during every time instant of its non-preemptable duration jd . For the ‘project start’
and ‘project end’ activities we have { } { }Kknjr kj ,...,2,1,1,...,1,00, ∈∀+∈∀= . The objective of the
RCPSP is to find an ordering of the activities (see Fig. 1 (b)) that minimizes the makespan of the
schedule 1+nF subject to the following constraints:

jjjh PhnjdFF ∈+=−≤ ;1,...,1, , (1)

()
{ } 0;,...,2,1, ≥∈≤∑

∈
tKkRr k

tAj
jk , (2)

where jF is the finishing time of activity ja , jP is a set of preceding activities (or predecessors of
activity ja), () jjj FtdFVjtA <≤−∈= | and 1,...,1,0 +=≥ nJFj describe the constraints of decision
variables. The equation (1) enforces the precedence constraints between activities, and equation (2)
enforces the resource limitation constraint.

4. Artificial Bee Colony and Its Application for RCPSP

This section presents the detailed description of the artificial bee colony algorithm to solve RCPSP.
Fig. 2 presents the ABC algorithm in pseudocode. ABC algorithm uses the priority-based
representation (Zhang et al., 2006) for its individuals. Each bee represents a position in the search
space. If the project has n activities, the bees will fly in the search space with n dimensions. A
position is a candidate for a priority list where each of its elements fixedly represents an activity and

astart aend

a2 a4 a6

a1

a3

a5

2/4

4

4/23/4

2/3

3/2 1/3

R1

4
2

 6
3

5

1

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

t
K=1

R1=4

dj/rj(a)

(b)
aj

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

49

its corresponding value shows the priority of that activity. Hence, the position vector ixr of each bee i
is used to represent the priority values of a schedule i with n activities. Each element d of the position
vector ixr is located between 0 and 1 (i.e. 10 ≤≤ idx). Hence, each element with a value larger than 1
or smaller than 0 is set to 1 or 0, respectively.

Algorithm ABC (Population size, Scouts, Max_Trial, Prj)

Initialization
 Define FoodNumber = Population size/2
 For i = 1 to FoodNumber
 Initialize food source i randomly
 Triali = 0
 End For
Repeat
 For i = 1 to FoodNumber
 Evaluate food source i using serial-SGS
 End For
 (Send Employed Bees)
 For i = 1 to FoodNumber
 Select a parameter d randomly

 Select Neighbor k randomly
 Calculate ()kdidididid xxrxv −+= 1ω

 Evaluate new food source using serial-SGS
 If the new food source presents a schedule with smaller makespan
 Update the position
 If the food source has not been improved
 Increment its Trial by 1

 End For
 (Send Onlooker Bees)
 Calculate probabilities for each food source using equation (5)
 For i = 1 to FoodNumber
 Select a parameter d randomly
 Select Neighbor k from food sources based on equation (5)

 Calculate ()kdidididid xxrxv −+= 2ω
 Evaluate new food source using serial-SGS
 If the new food source presents a schedule with smaller makespan
 Update the position
 If the food source has not been improved
 Increment its Trial by 1

 End For
 (Send Scout Bees)
 Define i as the food source with the maximum Trial
 Initialize food source i randomly
 Triali = 0
Until termination condition is met

Return best schedule

Fig. 2. Pseducode of the ABC algorithm for RCPSP

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

50

The ABC employs a population of different types of bees to find the schedule with minimum
makespan. The type of a bee is defined based on the behavior she uses to find the food sources. A bee
waiting on the dance area for making decision to choose a food source is called onlooker bee; the bee
which goes to the food source already visited by herself just before is named as employed bee, and
the bee which flies spontaneously in the search space is called scout bee. The ABC uses the following
steps to find a schedule with minimum makespan:

Step 1 (Initialization): ABC receives a set of parameters as inputs: population size (Population
size), number of scouts (Scouts), Max_Trial, and project (Prj). Max_Trial is the parameter used to
identify the food sources that should be abandoned. At initialization step, the number of food sources
(FoodNumber) will be set to half of Population size, and the population is equally subdivided as
employed bees and onlookers. Next food sources will be initialized randomly. Trial is the parameter
used to be incremented when a food source is not optimized in two consecutive cycles, and Prj is the
project to be scheduled.

Step 2 (Bee evaluation): At the start of each cycle, all the food sources need to be evaluated. To
evaluate the fitness of a food source, we need to generate the schedule from the priority list. Hence, we
need to use a schedule generation scheme (SGS). We use serial-SGS that constructs active schedules
(Kolisch & Hartmann, 1999). The serial-SGS is an activity oriented scheme that generates a schedule
in n stages from the priority list. Serial SGS uses two disjoint activity sets at each stage { }ns ,...,2,1∈ :
the set of scheduled activities and the set sE of eligible activities (i.e. all activities for which all
predecessors are scheduled). In each stage, serial-SGS select one eligible activity sEj ∈ and schedules
it at the earliest precedence and resources feasible time. Next, the set of eligible activities and the
resource profiles of partial schedule are updated.

Step 3 (Position updating): After all the bees are evaluated, each employed bee i selects another
employed bee as its own neighbor. After that, a parameter { }nd ,...,2,1∈ will be selected randomly. Each
food source will be optimized through following equation,

()kdidididid xxrxv −+= 1ω , (3)

where i represents the food sources which is going to be optimized, { }FoodNumberk ,...,2,1∈ and

{ }nd ,...,2,1∈ is a randomly chosen index. Although k is determined randomly, it has to be different
from i. The random number idr is selected in range of [-1, 1]. Parameter 1ω controls the production of
neighbor food sources around xid and represents the comparison of two food positions visually by a
bee. As can be seen from equation (3), as the difference between the parameters of the xid and xkd
decreases, the perturbation on the position xid is decreased, too. Thus, as the search process approaches
the optimum solution in the search space, the step length is adaptively reduced. If a parameter value
produced by this operation exceeds its predetermined limit, the parameter can be set to an acceptable
value. After the employed bees explore the new areas of the food sources, they come into the hive and
share the nectar information of the sources with the onlooker bees waiting on the dance area. Sharing
the information in the hive, an onlooker bee only needed to employ a decision making process to select
one of the food sources advertised by the employed bees. For this purpose, the probability for each
food source k advertised by the corresponding employed bee will be calculated as follows,

()
() ,

1∑
=

=
FoodNumber
m m

k
k xfit

xfitp r

r

(4)

where ()mxfit r is the probability of the food source proposed by the employed bee k which is
proportional to the quality of the food source. The quality depends on the makespan of the schedule
proposed by the food source k and calculated using following equation,

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

51

() ,1

m
m makespan

xfit =
r (5)

where mmakespan is the value of the makespan proposed by the food source m. After calculating the
probabilities, each onlooker bee employs the roulette wheel to choose a food source advertised by the
employed bee k based on its probability. By selecting a food source, the onlooker bee updates its
position using the following equation if the newly discovered food source proposes a schedule with
smaller makespan than the old one,

()kdidididid xxrxv −+= 2ω , (6)

where parameter 2ω controls the importance of the social knowledge provided by the employed bees.
Under this probabilistic approach, the food sources with better schedules attract more onlooker bees.
At each cycle of the algorithm, the positions are evaluated and if a food source cannot be improved
after a predetermined number of iterations (called Max_Trial), then the corresponding food source is
abandoned. The Max_Trial parameter is determined manually. In this work, the value of Max_Trial is
set to 5. The abandoned food source is replaced with the new one founded by the scouts. A scout
produces a new position randomly and replaces the abandoned food source if the new food source has
better nectar. Assume that the abandoned source is ix and { }nj ,...,2,1∈ , then the scout discovers a new
food source to be replaced with ix . This operation can be defined as follows,

idid rv = , (7)

where idr is selected in the range of [0,1] randomly. After each candidate source position ijv is
produced and evaluated by the artificial bee, its performance is compared with that of its old one. If the
new food source proposes a schedule with smaller makespan than the old one, it is replaced with the
new one in the memory. Otherwise, the old one is retained in the memory.

Step 4 (Termination): By termination of the ABC algorithm, the schedule with minimum makespan
obtained by the population is returned as the output.

5. Computational Experiments

This section presents the experiments conducted to investigate the performance of ABC and the other
algorithms on RCPSP datasets in PSPLIB. We have used several problem instances which are
successfully solved by an algorithm as a measure for performance comparison. This measure differs
from the other measure so-called average deviation from the optimal solution used in literature for
performance comparison. Hence, we need to implement the investigated meta-heuristic approaches.
To investigate the performance of our ABC-based algorithm1, we implement some of the most
representative meta-heuristics for solving RCPSP problems in java: ant colony optimization (ACO)
(Chen et al., (2006)), genetic algorithm (GA) (Hartmann, 1998), standard particle swarm optimization
(PSO) (Zhang et al., 2005), PSO+ (Chen et al., 2010), OOP-GA (Montoya-Torres et al., 2010), GAPS
(Mendes et al., 2009), ANGEL (Tseng & Chen, 2006), and ACOSS (Chen et al., 2010), Neurogenetic
(Agrawal et al., 2010). The experiments were executed on a Core 2 Duo 1.66 GH Pentium. We have
used well-known scheduling case studies from PSPLIB to evaluate performance of the algorithms.
PSPLIB involves three case studies j30, j60, and j90 that consist of 480 problem instances with four
resource types and 30, 60, and 90 activities, respectively. Also PSPLIB involve j120 case study that

1 The source code of ABC-based algorithm may be obtained by e-mailing to rakbari@cse.shirazu.ac.ir

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

52

consists of 600 problem instances with four resource types and 120 activities. We have tested ten
approaches under the following configurations.

5.1. Experimental Settings

In our experiments, each algorithm is configured under parameters values which result the best
performance. In this section we specify these suitable parameter values. For the proposed ABC-based
algorithm, parameters such as coefficients 1ω and 2ω , population size, number of iterations, and
Max_Trial influence the performance of this algorithm. To determine the suitable parameter values,
we conduct two experiments to study the effects of the ABC parameters while solving problem
instances of the j30, j60, j90, and j120 case studies. Our empirical studies have shown that Max_Trial
has not significant effect on the performance of our algorithm. Hence, we exclude it from our
analysis. In the first experiment, the performance of the proposed algorithm is studied under different
values of the coefficients 1ω and 2ω . These parameters vary from 0.6 to 1.4 with the step size of 0.2.
The population size and the iteration number are set to 100 and 50, respectively. Fig. 3 shows the
effect of coefficients 1ω and 2ω on the performance of our algorithm. The vertical axis shows the
number of problem instances which are successfully solved by our algorithm, and the horizontal axis
shows the coefficient 2ω . The results show that these two parameters have the positive effect on the
performance of the algorithm. The best results are obtained for 8.01 =ω and 2.12 =ω . Our empirical
study have shown that the quality of the algorithm decreases when both the parameters are set to
values larger than 1.4. Also, the quality of the algorithm decreases when 1ω has a small value and 2ω
has a large vale. Hence, we recommend using the proposed algorithm under following configuration:

9.07.0 1 ≤≤ ω and 3.11.1 2 ≤≤ ω .

(a) j30 case study (b) j60 case study

(c) j90 case study (d) j120 case study

Fig. 3. The effect of coefficients 1ω and 2ω on the performance of the ABC algorithm

375

380

385

390

395

400

0.6 0.8 1 1.2 1.4

w2

qu
al

ity

w1=0.6 w1=0.8 w1=1.0 w1=1.2 w1=1.4

310
312
314
316
318
320
322
324
326
328
330

0.6 0.8 1 1.2 1.4

w2

qu
al

ity

w1=0.6 w1=0.8 w1=1.0 w1=1.2 w1=1.4

310
311
312
313
314
315
316
317
318
319
320

0.6 0.8 1 1.2 1.4

w2

qu
al

ity

w1=0.6 w1=0.8 w1=1.0 w1=1.2 w1=1.4

100

102

104

106

108

110

112

114

0.6 0.8 1 1.2 1.4

w2

qu
al

ity

w1=0.6 w1=0.8 w1=1.0 w1=1.2 w1=1.4

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

53

We have conducted the second experiment to observe if the performance of our algorithm under fixed
number of schedules is affected by the number of iterations or population size. Here, both the values
of the population size and the number of iterations are varied from 10 to 250 subject to the following
constraint: the number of produced schedules is fixed at 2500. The population size varies in steps of
10, and for each of them the corresponding number of iterations computed as ⎥⎥

⎤
⎢⎢
⎡

sizepop _
2500 . The

first experiment shows that the best results are obtained for 8.01 =ω and 2.12 =ω , hence we use these
values. Table 1 shows the effect of population size and the number of iterations on the performance
of our algorithm. The results show that the quality of our algorithm is relatively affected by these two
parameters. The percentage of problem instances successfully solved by our algorithm varies in range
of [78.13%, 78.75%], [66.20%, 67.29%], [64.80%, 65.42%], and [17.67%, 18.50%] for j30, j60, j90,
and j120 case studies, respectively. The success rate implies that although one can obtain better result
by fine tuning the number of iteration and size of the population, the rate of improvement is not
significant under fixed number of schedules. Hence we can say that the proposed algorithm provides
stability in solving RCPSP under fixed number of schedules. As a result, the parameters of the ABC
algorithm are set as follows:

For the ABC algorithm, the population is equally subdivided into the employed and onlooker bees
and one individual is selected as scout bee. The parameter 1ω and 2ω are respectively set to 0.8 and
1.2. The value of Max_Trial is set to 5 manually. The population size is set at 100, and each case
study was tested 15 trials. Other algorithms' parameters are set as follows:

The parameters of ACO algorithm are set as: 5.00 =τ , 9.00 =q , 9.01 =q , 1=α , 1=β , 10=c , 1.0=δ ,
and 1.0=ρ . For genetic algorithm, the mutation probability is set to 0.4, and two-point crossover is
used.

For particle swarm optimization, the maximum and minimum values of inertia weight (i.e. maxw and
minw) are set to 9.0 and 4.0 , respectively. The linear inertia weight is used here where the inertia

weight linearly decreases from maxw to minw throughout iterations. The particles are positioned
randomly in range of [0,1] at initial time, and the initial velocity of each particle is set to 0. The
acceleration coefficients 1c and 2c are set to 0.85.

Table 1
The effect of population size and number of iterations on the performance of the proposed ABC
algorithm
Population size 10 20 30 40 50 60 70 80 90 100

#iterations 250 125 83 63 50 42 36 31 28 25

Success rate

j30 78.54% 78.54% 78.33% 78.75% 78.75% 78.54% 78.54% 78.55% 78.13% 78.13%

j60 67.29% 67.09% 66.45% 66.25% 66.62% 66.25% 66.62% 66.58% 66.45% 66.25%

j90 65.42% 65.63% 65.42% 65.63% 65.21% 65.00% 65.21% 64.80% 65.21% 64.80%

j120 18.50% 17.67% 18.50% 18.33% 18.00% 17.83% 17.83% 18.17% 18.33% 17.67%

The PSO+ is tested under the following configuration: the inertia weight w and the learning factors

1c and 2c are set to 0.7, and the parameters 0q and 'q are set to 0.05 and 0.95, respectively. Two-
point crossover is used for OOP-GA, and the crossover and the mutation probabilities are set to 0.7,
and 0.1, respectively. For the GAPS, the following parameters are considered: the crossover
probability is set to 0.7, the top 15% from the previous population chromosomes are copied to the

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

54

next generation, and the bottom 20% of the population chromosomes are replaced with randomly
generated chromosomes. The ACOSS method is tested based on the following control parameters:
decay factor ρ is set to 0.02, the control parameters α , β are set to 1 and 2.5, respectively, and the
pheromone trail limits are selected as the way reported by Chen et al. (2010). For the Neurogenetic
method, the learning rate is set to 0.05, the weights are initialized at 1, two-point crossover is used for
its GA part and mutation probability is set to 0.5. The number of interleaving is set to 5, the
proportion of GA is taken as 90%, and the number of GA solutions to feed NN is used as four.For the
ANGEL method, the parameters Loop_limit and Generation_limit are set to 3 and 5, respectively.
Other parameters are set as: 9.0=α , 1.0=ρ , 00001.0=Δ ini , 75.0=croP , and .05.0=mutlP We have
used two stopping criteria in our experiments. An algorithm stops if the founded solution is equal to
the lower bound which the critical path calculated without resource constraints or if a predetermined
number of maximum of iterations are reached. In our experiments, the results are obtained for 10, 50,
and 500 iterations.

5.2. Comparative Study

The following experiments were conducted to see how many cases of PSPLIB library can be solved
by the proposed algorithm. We say that a case study is solved if the algorithm finds optimal solution
or lower bound solution for that case study. Tables 2-5 present the experimental results for the j30,
j60, j90, and j120 case studies. Each cell of a table indicates the percentage of the problem instances
which are successfully solved by an algorithm.

Table 2
The results of using GA, PSO, ACO, ANGEL, GAPS, OOP-GA, PSO+, ACOSS, Neurogenetic and
ABC for j30 cases study
 Number of iterations

Method 10 50 500

GA (Hartmann, 1998) 51.87% 53.75% 58.96%

PSO (Zhang et al., 2005) 53.54% 58.13% 61.26%

ACO (Chen et al., 2006) 57.50% 60.63% 63.55%

ANGEL(Tseng & Chen, 2006) 71.46% 78.70% 89.11%

GAPS (Mendes et al., 2009) 57.30% 63.29% 68.33%

OOP-GA (Montoya-Torres et al., 2010) 53.19% 57.48% 65.82%

PSO+ (Chen et al., 2010) 67.80% 75.05% 87.15%

ACOSS(Chen et al., 2010) 77.41% 85.04% 93.27%

Neurogenetic(Agrawal et al., 2010) 74.13% 81.33% 91.05%

ABC (This paper) 72.71% 80.84% 90.42%

Table 2 presents the results of our approach and the other meta-heuristics approaches for j30 case
study after predetermined number of iterations. For this case study, the results show that ACOSS has
better performance than other approaches. The ANGEL, Neurogentic, and ABC provide competitive

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

55

results to ACOSS approach. The ABC approach obtains the third rank on j30 case study after 10, 50,
and 500 iterations. Table 3 summarizes the results of our approach and the other meta-heuristics
approaches for j60 cases study after predetermined number of iterations. The best results for the
problem instances of this case study are found by ABC algorithm. From the results we can see that
the performance of the algorithms decreases as the number of activities increases. Table 4
demonstrates the experimental results of all 480 instances for j90 cases study with 90 activities after
10, 50, and 500 iterations. The PSO+ approach surpass other algorithms for 10 and 50 iterations. The
second rank was obtained by ABC approach for 10 and 50 iterations. However, similar to j60 case
study, ABC approach outperforms other algorithms after 500 iterations. The last case study with 120
activities is the most difficult case study to solve. Table 5 summarizes the results of our approach and
the other meta-heuristics approaches for this case study after predetermined number of iterations. The
results show that the approaches have the least performance on this case study compared to other
ones. The ABC approach provides schedules with better qualities for j120 case study.

Table 3
The results of using GA, PSO, ACO, ANGEL, GAPS, OOP-GA, PSO+, ACOSS, Neurogenetic, and
ABC for j60 cases study
 Number of iterations

Method 10 50 500

GA (Hartmann, 1998) 43.33% 52.30% 55.84%

PSO (Zhang et al., 2005) 45.21% 53.96% 58.55%

ACO (Chen et al., 2006) 56.88% 58.75% 61.46%

ANGEL(Tseng & Chen, 2006) 53.95% 61.33% 64.91%

GAPS(Mendes et al., 2009) 46.39% 52.40% 56.07%

OOP-GA (Montoya-Torres et al., 2010) 48.52% 54.04% 59.26%

PSO+ (Chen et al., 2010) 58.66% 62.05% 66.76%

ACOSS(Chen et al., 2010) 55.12% 60.94% 65.21%

Neurogenetic(Agrawal et al., 2010) 56.37% 63.86% 68.35%

ABC (This paper) 61.88% 67.09% 71.88%

In our experiments, we used 2040 problem instances from four categories of case studies. To view the
overall performance of the proposed algorithm, its ability in solving all the problem instances is
considered. Fig. 4 presents the average percentage of the problem instances which are successfully
solved by the algorithms after 10, 50, and 500 iterations. From the results, it can be seen that the
proposed algorithm surpasses the PSO+, ANGEL, ACOSS, and Neurogenetic algorithms and
successfully outperforms the other ones.

One property of the figure is that as the number of iterations increases the gap between performance
of the proposed algorithm and the other ones increases too. In general, we can see that ABC
algorithm provides an efficient way for solving RCPSP problems. The overall performance shows

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

56

that ABC outperforms other meta-heuristics investigated in this paper. This happens due to the ability
of ABC algorithm in providing better diversity throughout the execution of the algorithm. Providing
appropriate level of diversity helps the algorithm to alleviate the deficiencies of meta-heuristic
algorithm such as stagnation and premature convergence and consequently provide the ability to
explore further regions of the search space to find better solutions.

Table 4
The results of using GA, PSO, ACO, ANGEL, GAPS, OOP-GA, PSO+, ACOSS, Neurogenetic, and
ABC for j90 cases study
 Number of iterations

Method 10 50 500

GA (Hartmann, 1998) 39.95% 44.30% 53.96%

PSO (Zhang et al., 2005) 42.63% 49.34% 55.27%

ACO (Chen et al., 2006) 54.25% 57.92% 59.80%

ANGEL(Tseng & Chen, 2006) 53.08% 58.23% 61.49%

GAPS (Mendes et al., 2009) 45.85% 48.72% 54.21%

OOP-GA (Montoya-Torres et al., 2010) 47.44% 50.58% 56.84%

PSO+ (Chen et al., 2010) 61.65% 65.24% 67.17%

ACOSS(Chen et al., 2010) 55.72% 58.10% 62.03%

Neurogenetic(Agrawal et al., 2010) 57.64% 60.53% 64.82%

ABC (This paper) 60.13% 65.21% 68.75%

#iterations = 10 #iterations = 50 #iterations = 500

Fig. 4. Overall performance of the ABC and the other algorithms investigated in this paper

0
0.1
0.2
0.3
0.4
0.5
0.6

G
A

PSO

AC
O

AN
G

EL

G
APS

O
O

P-G
A

AC
O

SS

N
eurogenetic

PSO
+

ABC

0
0.1
0.2
0.3
0.4
0.5
0.6

G
A

PSO

AC
O

AN
G

EL

G
APS

O
O

P-G
A

AC
O

SS

N
eurogenetic

PSO
+

ABC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

G
A

PSO

AC
O

AN
G

EL

G
APS

O
O

P-G
A

AC
O

SS

N
eurogenetic

PSO
+

ABC

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

57

Table 5
The results of using GA, PSO, ACO, ANGEL, GAPS, OOP-GA, PSO+, ACOSS, Neurogenetic, and
ABC for j120 cases study
 Number of iterations

Method 10 50 500

GA (Hartmann, 1998) 7.15% 9.18% 16.33%

PSO (Zhang et al., 2005) 9.44% 11.89% 20.42%

ACO (Chen et al., 2006) 14.67% 17.67% 21.17%

ANGEL(Tseng & Chen, 2006) 14.85% 15.36% 19.91%

GAPS (Mendes et al., 2009) 10.12% 12.83% 18.78%

OOP-GA (Montoya-Torres et al., 2010) 10.39% 13.51% 19.82%

PSO+ (Chen et al., 2010) 14.60% 16.48% 21.26%

ACOSS(Chen et al., 2010) 14.56% 17.72% 20.69%

Neurogenetic(Agrawal et al., 2010) 14.32% 16.85% 21.08%

ABC (This paper) 15.34% 18.97% 22.84%

6. Conclusions

In this paper we have considered the performance of the artificial bee colony meta-heuristic on
resolving the single-mode resource constrained project scheduling problem. The ABC-based meta-
heuristic starts with a set of initial schedules and tries to improve them cycle by cycle by applying
four-step strategy as described in the paper. We have evaluated the performance of ABC strategy on
PSPLIB case studies against other meta-heuristics. Our experimental results prove that ABC provides
an efficient way for solving RCPSP. Moreover, the better performance can be obtained using ABC
strategy for large-sized case studies. The competitive results obtained by the ABC-based meta-
heuristic on solving RCPSP may encourage one to study alternatives for improving the performance
of ABC-based approach as a newly emerged meta-heuristics.

Acknowledgment

The authors would like to gratefully thank the anonymous referees for their constructive comments
on earlier version of this work.

5

R

A

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

F

K

58

References

Abbasi, B.,
with ro
146–1

Agarwal, A
projec

Akbari, R.,
numer
Numer

Ashtiani, B
resour
Journa

Alatas B.(2
with A

Blazewicz
constr

Boctor, F.
schedu

Boctor, F.
constr
2335–

Bouleimen,
constr
Opera

Chen, R. M
schem
Applic

Chen, R. M
preced
297.

Chen, R. M
schem
Applic

Chen, W., S
resour

Damak, N.,
resour
– 2659

Debels, D.,
Constr

Debels, D.
/Electr
Resear

Fekete, S. P
Notes

Karaboga, D
optimi
471.

Shadrokh,
obustness a
52.

A., Colak, S.
ct scheduling

Mohamma
rical functi
rical Simula

B., Leus, R
rce-constrain
al of Schedu
010). Chao

Applications
J., Lenstra

raints: classi
F.(1990).

uling. Europ
F.(1996). A

rained proje
–2351.

K., & Leco
rained proje
ational Rese

M., Wu, C. L
me to solve
cations, 37,

M., Lo, S. T
dence and re

M., Wu, C. L
me to solve
cations, 37,
Shi, Y. J., T
rce-constrain

Jarboui, B.
rce-constrain
9.
, & Vanho
rained Proje
., De Rey
romagnetism
rch, 169, 63

P., & Schep
in Compute
D., & Bast
ization: arti

R. Akbari

 S., & Ark
and makesp

., & Erengu
g problem.
adi, M., &
on optimiz
ation, 15, 3
., & Aryan
ned project
uling, doi: 1

otic bee col
s, 37, 5682-

J. K., &
ification and
Some effi

pean Journa
An adaptat
ect scheduli

ocq, H.(199
ect scheduli
earch, 149, 2
L., Wang, C

resource-c
1899–1910

T., Wang, C
esources co

L., Wang, C
resource-c

1899–1910
Teng, H. F.
ned project
., Siarry, P.
ned project

oucke, M.(2
ect Schedul
yck, B., L
m meta–he
38-653.

pers, J.(1998
er Science,
turk, B.(20
ificial bee c

i et al./ International Jo

kat, J.(2006
an criteria.

uc, S.(2010)
Computers
Ziarati, K.(

zation. Jour
142-3155.
nezhad, M.
t schedulin
10.1007/s10
ony algorith
5687.
Rinnooy K

d complexit
cient multi
al of Opera
tion of the
ing problem

93). A new e
ing problem
268–281.

C. M., & Lo
constrained
0.
C. J., & Wu
nstraints by

C. M., & Lo
constrained
0.
, Lan, X. P
scheduling
, & Loukil,
scheduling

2004). An
ing Problem

Leus, R.,
uristic for

8). New cla
1412, 257–2

007). A pow
colony (ABC

ournal of Industrial Eng

6). Bi-objec
Journal of

). A Neurog
& Operatio

(2010). A n
rnal of Co

B.(2009).
ng problem
0951-009-01
hms for glo

Kan A. H.
ty. Discrete
i-heuristic

ational Rese
 simulated

ms. Interna

efficient sim
m and its m

o, S. T.(201
scheduling

u, C. L.(20
y ant colony

o, S. T.(201
scheduling

P., & Hu, L
g. Informatio
 T.(2009). D

g problems.

Electromag
m. Lecture N
& Vanhou
project sch

asses of low
270.
werful and
C) algorithm

gineering Computation

ctive resour
Applied Ma

genetic appr
ons Researc
novel bee s
ommunicati

New comp
m: exploring

143-7.
obal numer

G.(1983).
e Applied M
procedures

earch, 49, 3–
annealing

ational Jour

mulated ann
multiple mo

10). Using n
g problem i

006). Multip
y system. Pr

10). Using n
g problem i

. C.(2010).
on Sciences
Differential
Computers

gnetism M
Notes on Co
ucke M.(2
heduling. E

wer bounds f

d efficient a
m. Journal

s 2 (2011)

ce-constrain
athematics a

roach for th
ch, doi:10.1
swarm optim
ions on No

petitive res
g the benef

rical optimi

Scheduling
Mathematics,

for resou
–13.

algorithm
rnal of Pro

nealing algo
ode version

novel partic
in PSPLIB

processor sy
roceeding of

novel partic
in PSPLIB

An efficien
s, 180, 1031
l evolution f
& Operatio

eta-Heuristi
omputer Sci
006). A h

European Jo

for bin-pack

algorithm f
of Global O

ned project
and Compu

he resource-
016/j.cor.2
mization al
onlinear Sc

sults for the
fits of pre-

zation. Exp

g projects
, 5, 11–24.

urceconstrain

for solvin
oduction Re

orithm for th
. European

cle swarm o
. Expert Sy

ystem sche
of ICS Confe

cle swarm o
. Expert Sy

nt hybrid al
–1039.
for solving
ons Researc

ic For The
ience, 3871,
hybrid sca

Journal of O

king proble

for numeric
Optimizatio

t scheduling
utation, 180

-constrained
010.01.007
lgorithm for
ciences and

e stochastic
-processing

pert Systems

to resource

ned projec

ng resource
esearch, 34

he resource
n Journal of

optimization
ystems with

eduling with
erence, 292

optimization
ystems with

lgorithm for

multi-mode
ch, 36, 2653

e Resource
, 259-270.
atter search
Operationa

ms. Lecture

cal function
on, 39, 459–

g
0,

d
.
r
d

c
g.

s

e

ct

-
4,

-
of

n
h

h
-

n
h

r

e
3

-

h
al

e

n
–

K

K

K

K

H

H

M

M

M

M

M

M

N

P

P

R

R

Karaboga, D
Mathe

Kolisch, R.,
schedu
Schedu
147–1

Kolisch, R.
Journa

Krüger, D.,
projec
Opera

Hartmann, S
projec

Hartmann,
Naval

Mahdi Mob
an enh
Soft C

Mendes, J.
the res
92–10

Mendes, J.
the res
92–10

Mingozzi, A
schedu
Manag

Mobini, M.
schedu
doi:10

Montoya-To
with li
28, 61

Neumann,
scheduli
2, 325-3

Pan, Q. K.,
algorit
doi:10

Pham, D. T
manip
493–4

Rabbani, M
constr
Journa

Ranjbar, M.
approa

D., & Akay
ematics and
, & Hartma
uling probl
uling: Rece
78.
(1996). Eff
al of Opera
& Scholl,

ct schedulin
ational Rese
S., & Brisko
ct scheduling
S.(1998). A
Research L

bini, M. D.,
hanced scat

Computing, 1
J., Gonalve
source cons

09.
J., Gonalve
source cons

09.
A., Maniezz
uling with
gement Scie
., Mobini Z
uling pro
0.1016/j.aso
orres, J. R.,
imited resou
9–628.
K., Schwin
ing with no
343.

M. Tasgeti
thm for th

0.1016/j.ins.
T., Castellan
pulator using
498.

M., Fatemi G
rained proje
al of Opera
.(2008). Sol
ach. Journa

R. Akbari

y, B.(2009).
d Computati

nn, S.(1999
lem: classi
ent Models,

ficient prior
tions Mana
A.(2009). A

ng problem
earch, 197, 4
orn, D.(201
g problem.
A competiti
Logistics, 45
Rabbani, M
tter search
13, 597–610
es, J. F., & R
strained pro

es, J. F., Re
strained pro

zo, V., Ric
resource co

ence, 44, 71
Z., & Rabb
oblem un
c.2010.06.0
, Gutierrez-
urces using

ndt, C., &
nregular ob

iren F., Sug
he lot-strea
.2009.12.02
ni, M., & F
g the bees a

Ghomi, S.M
ect scheduli
tional Rese
lving the re

al of Applied

i et al./ International Jo

. A compar
on, 214, 10

9). Heuristic
fication an
algorithms

rity rules fo
agement, 14
A heuristic

m with sequ
492–508.
0). A surve
European J
ive genetic
5, 733– 750

M., Amalnik
algorithm

0.
Resende M
oject schedu

esende, M. G
oject schedu

cciardelli, S
onstraints b
4–729.
bani M.(20

nder resou
013.
-Franco, E.,
a genetic a

Zimmerma
bjective func

ganthan, P.
aming flow
25.
Fahmy, A.
algorithm. I

M.T., Jolai,
ing in stoch
arch, 176, 7

esource-con
d Mathemat

ournal of Industrial Eng

ative study
8-132.
c algorithm
nd computa
 and Applic

or the resou
, 179–192.
solution fr

uence-depen

ey of varian
Journal of O
 algorithm

0.
k, M. S., Raz
for a resou

M.G.C.(2009
uling probl

G. C.(2009)
uling probl

S., & Bianc
based on a

010). An A
urce con

, & Pirachi
algorithm. In

ann, J.(200
ctions. Euro

N., & Chua
w shop sch

A.(2008).
IEEE intern

F., & Lahij
hastic netw
794–808.

nstrained pro
tics and Com

gineering Computation

of Artificia

s for solvin
ational ana
cations, Klu

urce-constra

amework fo
ndent trans

nts and exten
Operational

for resour

zmi, J., & R
urce-constra

9). A random
em. Compu

). A random
em. Compu

co, L.(1998)
new math

Artificial Im
nstraints.

ca N-Mayo
nternationa

03). Order-b
opean Journ

a, T. J.(201
heduling p

Learning th
national con

ji, N.S.(200
works using

oject schedu
mputation, 2

s 2 (2011)

al Bee Colo

ng the resou
lysis. J. W

uwer Acade

ained projec

or the resou
sfer times.

nsions of th
l Research,
ceconstrain

Rahimi-Vah
ained projec

m key based
uters & Op

m key based
uters & Op

). An exact
hematical fo

mmune Algo
Applied

orga, C.(201
al Journal of

based neig
nal of Oper

0) A discre
problem, In

he inverse
nference on

07). A new
critical cha

uling proble
201, 313–3

ony algorith

urce-constra
Weglarz (Ed

mic Publish

ct schedulin

urce constra
European

he resource-
207, 1-14.

ned project

hed, A. R.(2
ct schedulin

d genetic al
erations Re

d genetic al
erations Re

t algorithm
ormulation.

orithm for
Soft Com

10). Project
of Project M

ghborhoods
rational Res

ete artificial
nformation

kinematics
industrial

heuristic fo
ain concept

em using fi
18.

5

hm. Applied

ained projec
d.), Projec
hers, Berlin

ng problem

ained multi
Journal of

-constrained

scheduling

2009). Using
ng problem

lgorithm for
esearch, 36

lgorithm for
esearch, 36

m for projec
Journal of

the projec
mputing,

t scheduling
Management

for projec
search, 149

l bee colony
Sciences.

of a Robo
informatics

or resource
t. European

ilter-and-fan

59

d

ct
ct
n,

m.

-
of

d

g.

g
m.

r
6,

r
6,

ct
of

ct

g
t,

ct
9,

y

ot
s,

-
n

n

R. Akbari et al./ International Journal of Industrial Engineering Computations 2 (2011)

60

Sprecher, A.(2000). Scheduling resource-constrained projects competitively at modest memory
requirements. Management Science, 46, 710–723.

Stork, F., & Uetz, M.(2005). On the generation of circuits and minimal forbidden sets. Mathematical
Programming, 102, 185–203.

Teodorovic, D., & Dell Orco, M.(2007). Bee colony optimization–a cooperative learning approach to
complex transportation problems. Advanced OR and AI Methods in Transportation, 51–60.

Teodorovic, D., Panta, L., Goran M., & Dell, O. M.(2006). Bee colony optimization: principles and
applications. Proceeding of eighth seminar on neural network applications in electrical
engineering, Neurel, 151–156.

Thomas, P., R., & Salhi S.(1998). A tabu search approach for the resource constrained project
scheduling problem. Journal of Heuristics, 4, 123–139.

Tormos, P., & Lova, A.(2001). A competitive heuristic solution technique for resource-constrained
project scheduling. Annals of Operations Research, 102, 65–81.

Tseng, L.Y., & Chen, S. C.(2006). A hybrid metaheuristic for the resource-constrained project
scheduling problem, European Journal of Operational Research, 175, 707–721.

Valls V., Ballestın F., & Quintanilla, S.(2008). A hybrid genetic algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research, 185, 495–
508.

Zhang, H., Li, X., Li, H., & Huang, F.(2005). Particle swarm optimization-based schemes for
resource-constrained project scheduling. Journal of Automation in Construction, 14, 393– 404.

Zhang, H., Li, H., & Tam, C. M.(2006). Particle swarm optimization for resource-constrained project
scheduling, International Journal of Project Management, 24, 83–92.

	Artificial Bee colony for resource constrained project scheduling problem
	1. Introduction
	2. Bees in the Nature
	3. Formulation of the RCPSP
	4. Artificial Bee Colony and Its Application for RCPSP
	5. Computational Experiments
	6. Conclusions
	References

