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  Assembly line balancing problem is an approach of assigning a set of tasks to an ordered 
sequence of workstations. This assignment needs to be made in such a way that the 
underlying precedence constraints are not violated and efficiency measures are optimized 
subject to the restriction of the cycle time constraint. Research works, reported so far, mainly 
deal with the minimization of balancing loss, subject to precedence constraints. Lack of 
uniqueness in those optimum solutions and pressing demand to include system loss in the 
objective function have led to the present work of minimization of both balancing and system 
loss. As there is no standard measure for system loss, the current work proposes a measure 
for system loss and offers solution to this bi-objective problem. 
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1. Introduction 
 

1.1 Literature review 

Traditional production methods have been gradually replaced by assembly line method because high 
volume and low cost production have been the need of the day. Balancing of assembly line to ensure 
a high rate of output is a difficult optimization problem. This optimization problem is further 
restricted by precedence constraints and the problems of divisibility of work elements. Bringing down 
this level of complexity to a solvable state is the simplest approach followed in operations research to 
solve a line balancing problem, which in reality is very complex in nature. Given a set of tasks of 
various durations, a set of precedence constraints among the tasks, and a set of workstations, one has 
to assign each task to exactly one workstation in such a way that no precedence constraint is violated 
and the assignment is optimal in some sense (Becker and Scholl 2006). There are basically two types 
of problems addressed so far in assembly line balancing. First, for a given cycle time, the number of 
workstations is to be minimized such that the cycle time cannot be exceeded by the total task time of 
work elements assigned to any of the workstations. Second, with a given number of workstations, the 
cycle time is to be minimized where the cycle time is equal to the largest total task time of the work 
elements, assigned to a workstation. Attempts to solve the optimization of these two variants of line 
balancing problems started during 1950s. That time, the focus of attention was on the core problem of 
configuration, which is the assignment of tasks to workstations. Bowman (1960) was the first to work 
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on that. He considered the linear programming approach to arrive at an optimum solution to the line 
balancing problem. After that, different optimization techniques were proposed to solve the problem 
of line balancing. To present a clear formulation of the problem for arriving at the solution, Hoffman 
(1963), Mansoor and Yadin (1971) and Geoffrion (1976) used mathematical programming approach. 
Baxey (1974) emphasized on the configuration of multiple workstations. Vrat and Virani (1976) 
presented a cost model for optimal mix of balanced stochastic assembly line and the modular 
assembly system for a customer oriented production system. Van Assche and Herroelen (1979) 
proposed an optimal procedure for the single-model deterministic assembly line balancing problem. 
Later, Graves and Lamer (1983) used Integer programming procedure for designing an assembly 
system. Talbot and Patterson (1984) used a similar technique to solve the assembly line balancing 
problems. Sarin and Erel (1990) developed a cost model for the single-model stochastic assembly line 
balancing problem for the objective of minimizing the total labor cost and the expected incompletion 
cost arising from tasks not completed within the prescribed cycle time. For the multi-product 
assembly line balancing problem, Berger et al (1992) adopted Branch-and-bound algorithms and 
Suresh and Sahu (1994) addressed the problem of balancing assembly lines with stochastic task 
processing times using simulated annealing. The study of Nkasu and Leung (1995) adopted the 
methodology of stochastic modeling, whereby various probability distributions are integrated within a 
modified COMSOAL algorithm, as a means of addressing the uncertainties associated with key 
assembly line balancing variables, such as cycle time and task times. Pinnoi and Wilhelm (1998) used 
the branch and cut approach for system design. Nicosia et al. (2002) introduced the concept of cost 
and studied the problem of assigning operations to an ordered sequence of non-identical workstations, 
which also took into consideration the precedence relationships and cycle time restrictions. Their 
purpose was to minimize the cost of the assignment by using a dynamic programming algorithm. Erel 
et al. (2005) presented a beam search-based method for the stochastic assembly line balancing 
problem in U-lines. Zhao et al. (2006) dealt with sequence-to-customer goal with stochastic demands 
for a mixed-model assembly line to minimize the number of stations and task duplication costs in the 
mixed-model assembly line balancing problem and Bukchin and Rabinowitch (2006) proposed a 
branch-and-bound based solution. Agarwal and Tiwari (2008) proposed a collaborative ant colony 
algorithm to stochastic mixed-model U-shaped disassembly line balancing and sequencing problem. 
Gamberini et al. (2009) presented a multiple single-pass heuristic algorithm to solve the stochastic 
assembly line rebalancing problem developed to find the most complete set of dominant solutions 
representing the Pareto front of the problem. 
  
1.2 Problem description 
Minimization of balancing loss or cost of assignment was the only important consideration in all the 
above mentioned methods. These methods can be best used in the case of transfer lines because in a 
transfer line, elements are preferably performed by machines. Assembly lines involving human 
elements have another pressing problem. “The losses resulting from workers’ variable operation 
times” is known as System loss (see Ray Wild, 2004) and this loss is perhaps more important than the 
losses resulting from uneven allocation of work elements to workstations. Consequently, the problem 
of line design is not only the equal division of work among the stations or the adaptation of tasks to 
the speed of the workers but also to provide some amount of slackness in each workstation to take 
care of the variability of the elemental times. Our objective in this current work is to design an 
assembly line where dual objectives of minimization of balancing loss and system loss can be met by 
switching over from the domain of deterministic set-up to the domain of stochastic set-up. We 
propose an optimization method based on stochastic programming approach for that purpose.  
 
2.  Notation and Methodology 
 2.1.     Notation: 
E(.)    statistical expectation operator 
K number of jobs 
N number of workstations 
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N(µ,2ߪ) normal distribution with mean µ and variance 2ߪ 
         expected task time of ith jobߤ
ߪ

ଶ          variance task time of ith job 
߬ఈೕ        the upper ߙ point of N(0,1) 
 ti random task time or assembly time of ith job 
Wj  jth workstation 
a(i,j) binary measure taking value 1 for assignment of task i to workstation j 
Lj variable idle time of jth work station 
Nmin minimum number of workstation for a given cycle time 
C cycle time 
Ct trial cycle time 
Cmin    minimum cycle time for a given K 
St slackness for trial cycle time Ct, i.e., St = C - Ct 
B balancing loss 
V variance of idle times, L1, L2,.., LN.  
 
 2.2.    Methodology: 
The main cause of balancing loss, as pointed out earlier, is the uneven allocation of work to different 
workstations. Generally, to examine the efficiency of an assembly line one uses the concept of 
balancing loss, B. The proposed work of this paper is a multi-objective with two objectives of system 
and balancing loss. The system loss arises out of workers’ variable operation time (Ray Wild 2004). 
But no standard measure has been proposed so far to examine the extent of system loss. We propose 
to consider a measure for system loss. As we know, system loss arises out of workers’ variable 
operation time, so any configuration where one workstation has high idle time and another 
workstation has no idle time will create high disruption. In the deterministic model, set up leads us to 
consider the variance of the idle times (V) as a measure for system loss for the system. The stability 
of the total system is on maximum level when this variance is on minimum level (Roy and Khan 
2010). Under stochastic task times, the objective of our proposed method is to minimize the expected 
values of B and V, subject to precedence constraints and chance constraints in terms of cycle time.  
 
3.    Mathematical Formulation 
Consider the binary variable ),( jia such that 

⎩
⎨
⎧

=
0
1

),( jia  
 if    i ∈  Wj ith task is assigned to Wj,  i = 1, 2, ….., K 
 if    i ∉ Wj ith task is not assigned to Wj  j = 1, 2, ….., N. 

Then, under the condition that the ith task can be assigned to only one workstation, the following 
condition must hold for all i = 1, 2, ….., K. 

∑
=

=
N

j
jia

1
1),( . 

 
(1)

Further according to precedence constraints if task i′  is to be assigned before assigning task i, that is  
  

ii p′ , then  ܽሺ݅, ݆ሻ ≤  ∑ ܽሺ݅ᇱ, ሻݎ
ୀଵ       ∀   ii p′ (2)

 
Human beings are involved in completion of tasks involved in assembly line. So, depending upon 
variations in human skills and behavior, the task time of each job becomes a random variable. 
Therefore, we need to consider both expected time for completion of each job and the extent of 
variability. Let μ   be the expected time for completing ith job. Then, the expected balancing loss of 
the system is as follows,  
 

ሻܤሺܧ ൌ ܧ ቀேି ∑௧
ே

ቁ 100% ,  or ܧሺܤሻ ൌ
ሺܰܥ െ ሻߤ∑

ܥܰ כ 100%. 
 

(3)
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At the same time, the measure of system is calculated taking the expectation of the variance of 
random idle times, i.e. E(V). By definition, ܸ ൌ  ଵ

ே
∑൫ܮ െ ത൯ଶܮ

. But Lj , the idle time in jth workstation, 
is ሼܥ െ ∑ ,ܽሺ݅ݐ ݆ሻே

ୀଵ ሽ. Thus, 
 

Vൌ ଵ
ேೕ

∑ ቂܥ െ ∑ ,ܽሺ݅ݐ ݆ሻ
ୀଵ െ ܥ  ଵ

ே
∑ ݐ


ୀଵ  ቃ

ଶ
 ൌ   ଵ

ே
ሺ ∑ ,ሺܽሺ݅ݐ ݆ሻ

ୀଵ െ ଵ
ே

ሻ ሻଶ.    

 
Hence the expectation of V can be simplified as 
ሺܸሻܧ    ൌ ଵ

ே
∑ ேܧ

ୀଵ ሺ ∑ ,ሺܽሺ݅ݐ ݆ሻ
ୀଵ െ ଵ

ே
ሻ ሻଶ  

=  ଵ
ே

∑ ∑ ∑ ሻݐݐሺܧ ቀܽሺ݅, ݆ሻ െ ଵ
ே

ቁ
ୀଵሺஷሻ


ୀଵ ቀܽሺ݄, ݆ሻ െ ଵ

ே
ቁ  ∑ ሺߪ

ଶ
ୀଵ  ߤ
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ଶ
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Thus, 

E(V)= ଵ
ே

 ∑ ቂ∑ ߤ

ୀଵ ቀܽሺ݅, ݆ሻ െ ଵ

ே
ቁቃே

ୀଵ
ଶ
 + ଵ

ே
∑ ∑ ݅ߪ

2 ቀܽሺ݅, ݆ሻ െ 1
ܰ

ቁ
2

ܭ
݅ൌ1

ܰ
݆ൌ1  .  

 

(4) 

 
Since the task times are random variables, the condition for completion of tasks in a workstation 
within the assigned cycle time can be best described in terms of chance constraints is as follows, 
 
.ݎܲ ൣ∑ ,ܽሺ݅ݐ ݆ሻ  ܥ

ୀଵ ൧   1 െ    ,      where 0ߙ ߙ  1,  j = 1,2,….,N. 
 
Equivalently it can be expressed as follows, 
 
.ݎܲ ܮൣ   0 ൧  1 െ    ߙ
 

.ݎܲ ೕିாሺೕሻ

ඥ௩ሺೕሻ
 െ ாሺೕሻ

ඥ௩ሺೕሻ
൨  1 - ߙ  

  
or,  1 െ Φ ൬െ ாሺೕሻ

ඥ௩ሺೕሻ
൰    Φ ቀ߬ఈೕቁ  

 

or, Φ ൬ ாሺೕሻ

ඥ௩ሺೕሻ
൰    Φ ቀ߬ఈೕቁ 

 
Therefore, 

൯ܮ൫ܧ    ߬ఈೕටܸܽݎ൫ܮ൯. 
 

(5)

 
Since we have,  

ሻܮሺܧ ൌ ܧ ܥ െ  ,ܽሺ݅ݐ ݆ሻ


ୀଵ

൩ ൌ  ܥ െ  ,ሻܽሺ݅ݐሺܧ ݆ሻ


ୀଵ

൩ ൌ ܥ െ  ,ܽሺ݅ߤ ݆ሻ


ୀଵ

൩ 

 

 

(6)
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and 
 
Var(ܮሻ ൌ ∑ሼܧ ,ܽሺ݅ݐ ݆ሻ െ ∑ ,ሻܽሺ݅ݐሺܧ ݆ሻሽଶ ൌ ݐሼ∑ሺܧ െ ,ሻሻܽሺ݅ݐሺܧ ݆ሻሽଶ 
                = ∑ܽଶሺ݅, ݆ሻݎܽݒሺݐሻ ൌ  ∑ܽଶሺ݅, ݆ሻ݅ߪ

2. 
(7)

                                        
Using Eq. (6) and Eq. (7), Eq. (5) can be rewritten as, 

൯ܮ൫ܧ    ߬ఈೕටܸܽݎ൫ܮ൯  ,  
 

or,    ሾܥ െ ∑ ,ܽሺ݅ߤ ݆ሻ
ୀଵ ሿ   ߬ఈೕටܸܽݎ൫ܮ൯, 

or,     ܥ   ∑ ,ܽሺ݅ߤ ݆ሻ
ୀଵ   ߬ఈೕටܸܽݎ൫ܮ൯, 

 

 

or,     ܥ   ∑ ,ܽሺ݅ߤ ݆ሻ
ୀଵ   ߬ఈೕඥ∑ܽଶሺ݅, ݆ሻ݅ߪ

2. (8)

 
Thus, the chance constraints regarding cycle time can be reduced to the following deterministic 
constraints, 

 ,ܽሺ݅ߤ ݆ሻ


ୀଵ

 ߬ఈೕ
ට∑ܽଶሺ݅, ݆ሻ݅ߪ

2    .ܥ
 

(9)

 
Finally, combining Eq. (1) to Eq. (4) and Eq. (9), a deterministic problem for stochastic model 
formulation of the optimization problem can be written as follows, 
min  E(B)  ൌ  ሺܰܥെ ∑݅ߤሻ

ܥܰ   

min   E(V)  ൌ 1
ܰ

∑ ቂ∑ ߤ

ୀଵ ቀܽሺ݅, ݆ሻ െ ଵ

ே
ቁቃே

ୀଵ
ଶ
+ ଵ

ே
∑ ∑ ݅ߪ

2 ቀܽሺ݅, ݆ሻ െ 1
ܰ

ቁ
2

ܭ
݅ൌ1

ܰ
݆ൌ1   

subject to  
  
   ሺ݅ሻ ∑ ܽሺ݅, ݆ሻ ൌ 1ே

ୀଵ           ∀   i 
(10)

 
  ሺ݅݅ሻ ܽሺ݅, ݆ሻ  ∑ ܽሺ݅ᇱ, ሻݎ

ୀଵ          ∀   ii p′  
 

 

 ),()( jiaiii  = 0,1                        ∀   i,  j  

  ሺ݅ݒሻ ∑ ݅ߤ
 ܽሺ݅, ݆ሻ

ୀଵ  + ߬ఈೕට∑ ܽଶሺ݅, ݆ሻߪ
ଶ   ∀          . ܥ   j  

 
To assign equal importance to each workstation we consider ߙ = ߙ        ∀   j . 
Further  ߙ may be considered 0.05 for which ߬ఈೕ= 1.6449. One way of dealing with dual objective is 
to combine them with weights or priorities. In that case the reduced objective can be written as 
follows, 
 
 

min Z  ൌ ଵݓ כ ቀሺܰܥെ ∑݅ߤሻ
ܥܰ ቁ  ଶݓ כ 1

ܰ ൬∑ ቂ∑ ߤ

ୀଵ ቀܽሺ݅, ݆ሻ െ ଵ

ே
ቁቃே

ୀଵ
ଶ

 ∑ ∑ ߪ
ଶ ቀܽሺ݅, ݆ሻ െ ଵ

ே
ቁ

ଶ
ୀଵ

ே
ୀଵ ൰,  

 
where 0 ≤  ݓଵ, ଶݓ   1, ଵݓ  ݀݊ܽ  ଶݓ   ൌ 1.  However, we prefer to sequentially undertake the task of 
minimization by generating in the first instant feasible solutions under the objective of minimization 
of E(B) under ݓଵ ൌ ଶݓ   ݀݊ܽ 1   ൌ 0 and then obtaining the final solution by imposing the second 
objective of minimization of E(V) with ݓଵ ൌ ଶݓ   ݀݊ܽ 0   ൌ 1. To generate the set of feasible solutions 
we consider a sequential approach of assigning trial cycle time and resulting in slack time, to be 
assigned to each workstation meeting the optimality condition for the first objective of (10).       
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4. The Algorithm 
To numerically solve the proposed optimization problem we have adopted the following algorithm 
where the overall problem has been subdivided into sub problems based on trial cycle time. For each 
trial cycle time, simulation approach has been adopted to arrive at all possible feasible solutions.  
1. Calculate the theoretical minimum number of workstations, Nmin, using the following,        
        ∑ ஜ


   ܰ    ∑ ஜ



ୀଵ  1

ୀଵ  
2. Calculate the minimum cycle time, Cmin, using the relation, ܥ ൌ ቂ∑ ஜ

ே


ୀଵ  1ቃ 

3. Set the cycle time at Cmin 
4. Make an attempt to get feasible solution following the algorithm of Roy and Khan (2010) with 

usual cycle time constraints replaced by (10)(iv) 
5. If no feasible solution is obtained then increase Nmin by 1 and go to step 3 
6. Within the generated set calculate E(V) for each set and save the E(V) value 
7. Compare the E(V) with the previous value of E(V), If the current E(V) is lower than the previous 

one, then save the current value of E(V) 
8. When all the feasible sets are over, the final solution to the optimization problem is achieved. 
In this sequential simulation method, if the set of feasible solutions is finite we can arrive at global 
solution. It is analytically difficult to claim global optimality in case solution set is not finite. 
However the Kuhn Tucker condition being both necessary and sufficient for the problem we may 
check for optimality. 
 
5.  Worked Out Example 
Consider an assembly line balancing problem from Ray Wild (2004) depicted in Fig 1. where the task 
number is represented by the figure within a circle. 

 
 

Fig. 1. Precedence diagram of workstations. 
 
This problem is summarized in a tabular form in terms of work elements, immediate predecessor(s), 
expected task durations and their variability are given in Table 1. For this particular problem, we first 
get the minimum number of workstations with cycle time C = 35 with Nmin=5. Therefore the 
minimum trial cycle is ܥ ൌ ቂ∑ ஜ

ே


ୀଵ  1ቃ, i.e. ܥ ൌ 29.   Since the cycle time C is 35, the trial 

cycle time starts with 29 and goes upto 35. But among the initial trial cycle times as 29, 30, 31, 32, 
33, 34, 35 we get the first feasible solution at Ct = 33.Thus, our trial cycle times are 33, 34 and 35. 
The final configuration has been obtained from trial cycle time as 34 with slackness ݏ௧ ൌ ܿ െ  ܿ௧ ൌ 1. 
This configuration is presented in Table 2. 
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Table 1 
Precedence relationships and task times of work elements  
Work element Immediate predecessor Expected activity Time Variance of activity time 

1 - 6 0.09 
2 - 5 0.0625 
3 - 8 0.16 
4 1 9 0.2025 
5 1,2 5 0.0625 
6 2 4 0.04 
7 3 5 0.0625 
8 3 6 0.09 
9 4 10 0.25 
10 5,6 5 0.0625 
11 8 6 0.09 
12 10,7 2 0.01 
13 12 5 0.0625 
14 13 4 0.04 
15 9,11,14 12 0.38 
16 15 10 0. 25 
17 16 5 0.0625 
18 16 15 0.5625 
19 16 10 0.25 
20 17 5 0.0625 
21 18, 19, 20 6 0.09 

 
Table 2 
Final optimum configuration    
 Work stations  
C 1 2 3 4 5 E(V) 
34 2,3,6,7,8 1,4,5,11 9,10,12,13,14 15,16,19 17,18,20,21 6.707 
 
The optimal configuration consists of 5 workstations with work elements 2, 3, 6, 7, 8 assigned to 
workstation 1, work elements 1, 4, 5, 11 assigned to workstation 2, work elements 9, 10, 12, 13, 14 
assigned to workstation 3, in workstation 4 work elements 15, 16, 19 are assigned and work elements 
17, 18, 20, 21 assigned to workstation 5 for trial cycle time 34. Finally, the corresponding value of 
E(V) comes out as 6.707. 
 
6.    Conclusion      
A mathematical programming approach is presented for balancing an assembly line with twin 
objectives of minimization of balancing loss and system loss. As system loss arises out of variations 
in human behavioral, stochastic setup is needed for describing the situation, representing of the 
problem and arriving at the final solution of the same. Reduction of the stochastic setup into 
deterministic constraints has been implemented under normality assumption. A sequential approach 
has been installed to arrive at the final solution. We believe the approach is generic and it can be used 
to solve different line assembly problems in reasonable computation time. Final choice can be made 
based on minimum number of workstations and minimum value of expected variance of the idle 
times, proposed herein as a measure of system loss.  
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