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  In this paper, we consider a multi-period integrated supplier selection and order lot 
sizing problem where a single buyer plans to purchase a single product in multiple 
periods from several qualified suppliers who are able to provide the required product 
with the needed quality in a timely manner. Product price and order cost differs 
among different suppliers. Buyer’s demand for the product is deterministic and varies 
for different time periods. The problem is to determine how much product from which 
supplier must be ordered in each period such that buyer’s demand is satisfied without 
violating some side constraints. We have developed a mathematical programming 
model to deal with this problem, and proposed a forward dynamic programming 
approach to obtain optimal solutions in reasonable amount of time even for large scale 
problems. Finally, a numerical example is conducted in which solutions obtained from 
the proposed dynamic programming algorithm is compared with solutions from the 
branch-and-bound algorithm. Through the numerical example we have shown the 
efficiency of our algorithm.  

 © 2011 Growing Science Ltd.  All rights reserved.
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1. Introduction 
 

In today’s highly competitive business environment, companies need to operate in an efficient and 
effective manner in order to survive. Therefore, “purchasing management” and “inventory 
management” have become two important decision making areas for senior managers which directly 
affect the overall performance of the company and its operating costs.  In the case of multiple 
suppliers, each with a different product price and ordering cost and also with incorporating inventory 
holding costs at the buyer’s warehouse, making the best possible decision renders as a difficult 
managerial task. Therefore, companies need some systematic decision support tools to make good 
decisions; and, in this regard, mathematical programming methods are important tools to find 
favorable decisions. Supplier selection and order lot sizing problem (SSOLSP) has attracted 
attentions of many researchers for many years. In a typical SSOLSP fixed ordering cost and proposed 
product price from each supplier are considered in making purchasing decisions. On the other hand, 
applications of “inventory control and management” have been extensively studied in the related 
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literature. Order lot-sizing is among the most important problems in this domain. In these types of 
problems inventory holding costs and fixed ordering costs are included in the mathematical model. 
The smaller the batch size is, due to increase in number of yearly orders, the greater the ordering cost 
will be. There have been little works in the SSOLSP domain to simultaneously consider the supplier 
selection and inventory control. Therefore, the problem is to consider the most appropriate suppliers, 
and to determine the optimal lot-size for each product in each planning period to minimize the total 
inventory holding costs.  

 

Fig. 1 General scheme of the problem under consideration 
 

Brahimi et al. (2006) presented a comprehensive review of the lot sizing problem in the case that 
demand of the product varies over different time periods. These types of problems were first 
proposed in Wagner and Whitin (1958) and was solved using dynamic programming in O(n2). Later, 
Evans (1985), Heady and Zhu (1994) and others improved the solution procedure proposed by 
Wagner and Whitin (1958). Due to applicability of the problem, many other researchers such as 
Aryanezhad(1992), Wolsey(1995), and Cattrysse et al.(1990) worked on the other aspects of this 
problem. The supplier selection problem without inventory consideration was also studied in the 
literature (Current and Weber (1994)). However, there are limited efforts for the case of multiple 
suppliers where inventory is also considered. Aissaoui et al. (2007) dedicated a review paper for this 
problem for different cases. Dai and Qi (2007), and Rosenblatt et al. (1998) examined this problem 
where the demand of the product was constant and developed the well known economic order 
quantity method for this problem. Tempelmeier (2002) considered a lot-sizing problem with single 
product and proposed a new model formulation with discount rate along with a heuristic solution 
method for this problem where demand of the product varies over different periods. Their proposed 
solution procedure yielded near optimal solutions. Ustun and Demirtas (2008a and 2008b) tackled the 
problem using multiple criteria decision making techniques. Rezaei and Davoodi (2006 and 2008) 
considered a multi-product problem under fuzzy environment and with the undesirable product 
quality, respectively, and solved the developed problem using genetic algorithm (GA) method. 
Hassini (2008) also considered the limited capacity of suppliers and proposed a linear programming 
model for the problem when discount rate and due date were part of the modeling formulation. In this 
problem, decisions regarding mode of transporting the product can also be considered simultaneously 
and it requires a more sophisticated model (Liao and Rittscher(2007)). Basnet and Leung (2005) 
considered the supplier selection and order lot sizing problem in the case where there were multiple 
products each with different deterministic demand. They developed an integer linear programming 
(ILP) formulation for the problem and proposed a heuristic algorithm to solve the model. The 
proposed method of this paper is based on the approach which was originally developed by Basnet 
and Leung (2005) for a single product. Sadjadi et al. (2009) developed the Wagner Within algorithm 
for economic lot sizing problems based on the planning horizon theorem and the economic part 
period concept. This problem was investigated both when backlogging, inventory holding and setup 
costs were fixed and unfixed. 

The remainder of this paper is organized as follows. In Section 2, the problem is discussed with more 
details and a mixed integer linear programming (MILP) formulation is proposed. In Section 3, we 



M. M. Moqri et al./ International Journal of Industrial Engineering Computations 2 (2011) 
 

321

propose a new mathematical relation using dynamic programming to find the optimal solution. The 
solution procedure for the proposed algorithm is presented both in a step-by-step manner and tabular 
computations. Computational results along with comparisons with the branch-and-bound solution 
procedure for a hypothetical numerical example are summarized in Section 4. Finally, in Section 5 
conclusions are given. 

2. Problem description and the mathematical formulation 
 

Consider Fig. 1 where a producer (buyer) can purchase its required item (product) from different 
suppliers. Each supplier has a different unit price for the product; and, in addition, each has a 
different fixed ordering cost. Buyer’s demand in each period is deterministic and is known in 
advance. If the lot size for a period exceeds buyer’s demand for that period, excessive products are 
held in inventory to use in subsequent periods. However, no backlog is permitted. The buyer needs to 
make decisions on how much product must be ordered from each supplier in each period. 

We assume that: 

• Products are shipped directly from suppliers to the buyer (i.e., there is no intermediate distributer); 
• Only one product is considered; 
• Suppliers’ capacity is unlimited; 
• Buyer’s demand for the product is deterministic and is known in advance; 
• The planning horizon is finite (1,2,…,T); 
• Product price does not depend on the amount of product ordered (i.e., there is no discount 

rate); 
• Inventory holding cost is linearly proportional to the amount of product stocked in inventory; 
• Order lead-time is deterministic and is the same for each period (here, we assume it to be 

zero); 
• Initial inventory of the first period and the inventory at the end of the last period are assumed 

to be zero; 
• No product shortage is permitted (i.e., the buyer’s demand for the product in each period 

should be satisfied). 
Sets, parameters and decision variables are defined as follows: 

U Index of suppliers, u=1,2,…,U, 

T Index of time periods, t=1,2,…,T, 

dt Buyer’s demand for the product in period t,  

ht Unit inventory holding cost in period t, 

sut Fixed ordering cost from supplier u in period t, 

put Unit product price of supplier u in period t, 

It Inventory at the end of period t, 

Xut Amount of product ordered (lot size) from supplier u in period t, 

Yut Equals 1 if the buyer orders from supplier u in period t, and 0 otherwise. 
 

The mathematical model of the problem can be formulated as follows, 
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The objective function (1) minimizes total costs, composed of fixed ordering cost, variable 
purchasing cost and inventory holding cost. Constraint set (2) is the flow conservation equation in 
each period t. Constraint set (3) correlates the amount of product ordered from supplier u in period t 
to the binary variable Yut. This constraint causes Yut to be 1 in those periods that Xut is positive which 
means ordering is performed.  Finally, constraints (4) and (5) are binary and non-negativity 
constraint, respectively. Before presenting the solution procedure, we first describe some 
characteristics of the optimal solution. 

Lemma 1. Given suppliers have unlimited capacity, purchasing from different suppliers in each 
single period cannot be optimal. In other words: 

Xut Xkt = 0     t, u ≠ k 

Lemma 2. For every u and t in the optimal solution we have XutIt-1=0. This means that in each period 
either an order is placed or we have inventory from the preceding period. 

Proof. Proofs of the two above lemmas, for multi-product problems, are given in Basnet and Leung 
(2005). 

Theorem 1. In the optimal solution if Xut >0, then Xut =∑ ݀௧ା௞
௜ୀ௧ ௜for a k>0, which means in every period 

t the lot size must be equal to the sum of buyer’s demand in k+1 consecutive periods beginning from 
period t. 

Proof. The proof is obtained directly from lemma 1 (Basnet and Leung, 2005). 

Theorem 2. Assume in the optimal solution we have It = 0 for some t, then we can plan for periods 1 
through t-1, and t through T, independently. 

Proof. Wagner and Whitin(1958) proposed this theorem for a single supplier case, and using theorem 
1 showed that this theorem also holds for a multiple supplier case. 

Using the above theorems, Wagner and Whitin (1958) proposed the following relation (in the single-
sourcing case) for planning with minimum cost: 

( ) min min ( ) , ( )
t 1 t

j l k t1 j t
l j k n 1

F t s h d F j 1 s F t 1
−

≤ ≤
= = +

⎧ ⎛ ⎞ ⎫⎪ ⎜ ⎟= + + − + −⎨ ⎬⎜ ⎟ ⎭⎪ ⎝ ⎠⎩
∑ ∑ (6)
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where F(0)=0 and F(1) =s1. Using this relation, by having minimum costs of previous periods in 
hand, we can calculate the minimum cost in the beginning of period t. 

Assume that in all periods the product price is the same. Therefore, using Eq. (6) and theorems (1) 
and (2) we can define a new relation for the multi-sourcing case. 

( )( ) min min min ( ) , min ( )
t 1 t

uj n k ut1 j t 1 u U 1 u U
n j k n 1

F t s h d F j 1 s F t 1
−

≤ ≤ ≤ ≤ ≤ ≤
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∑ ∑  
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where F(0)=0 and F(1)= min ሾݏ௨ଵሿ
ଵஸ௨ஸ௎

. In general, where the product price varies in different periods, we 

have: 

( )( ) min min min ( ) , min ( )
t 1 t t

uj n k uj l ut1 j t 1 u U 1 u U
n j k n 1 l j

F t s h d p d F j 1 s F t 1
−

≤ ≤ ≤ ≤ ≤ ≤
= = + =

⎧ ⎫⎤⎡ ⎞⎛ ⎛ ⎞⎪ ⎪⎥⎟⎢ ⎜ ⎜ ⎟= + + + − + −⎨ ⎬⎥⎟⎜ ⎜ ⎟⎢⎪ ⎪⎝ ⎝ ⎠⎣ ⎠⎦⎩ ⎭
∑ ∑ ∑ . 

 

(8) 
 

Note that Eq. (8) calculates the minimum total cost for the first t periods. If in the optimal policy the 
last order takes place in the last period, we have, 
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Eq. (9), determines the minimum ordering cost from different suppliers in period t. In Eq. (10) we 
consider different cases for the last order period. Assume that the last period in which an order is 
placed is j, then the least cost associated with this policy is as follows, 
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(11)

Eq. (11) is composed of two parts; the first part determines which supplier satisfies sum of demands 
from period j through period t with the least cost, and ܨሺ݆ െ 1ሻ is the least cost for meeting the 
demands of the first j-1 periods. Therefore, if the last period in which an order is placed becomes j, 
Eq. (11) yields the minimum cost for the entire planning horizon. Since the Eq. (8) is recursive we 
can use the dynamic programming technique to solve the problem. 

3. Dynamic programming algorithm 
 

For every period t* (t*=1,2,…,T), the following algorithm gives the least cost for meeting the demand 
of the product up to the period t*. 

1. For every period t** (t**=1, 2, …, t*), and for every u (u=1, 2, …, U), consider a case in 
which the last order is placed in period t** on supplier u, and demands of periods preceding 
period t** are satisfied with the least cost (this minimum cost is obtained in previous stages). 
Calculate the total cost for t*×u different policies. 
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2. Among t*×u different policies, select that policy which has the least cost. This is the optimal 
policy to satisfy demands from period 1 through t*. 

3. If t*=T, then the algorithm is terminated, or else, repeat steps 1 and 2 for t*+1. 
One important advantage of the proposed algorithm is that the search space is reduced from UT to 
T(T+1)/2*U in order to obtain the optimal solution. Wagner and Whitin (1958) presented the 
following tabular calculations for their algorithm (with a single supplier): 

Table 1 
Tabular calculations for Wagner-Whitin algorithm 
 1 2 3 4  N 

1 1 (1)2 (1,2)3 (1,2,3)4 … (1,2,..., N- 1)N 

2  12 (1)23 (1,2)34 … (1,2,..., N-2)N- 1,N 

3   123 (1)234 … (1,2,...,N-3)N-2,N- 1,N 

4    1234 …  

       ڭ

Min (1) (1,2) (1,2,3) (1,2,3,4)  (1,2,…,N) 

 

In Table 1, columns represent different planning periods, and the last row in each column is the least 
cost in the optimal solution up to the current period. The expression (1, 2, …, t**) t**+1, t**+2, …, 
t*  is the planning for first t* periods and shows the policy in which the last order is placed in period 
t**+1 and the first t** periods are planned optimally. In this table, calculations are started with the 
first column then the second column, and so forth (forward planning). When calculations of the tth 
column are completed we have the optimal ordering plan to meet all the demands up to period t. 
Finally, in column N, we can obtain the optimal plan of the entire planning period in which the last 
row shows the optimal total cost. An example of tabular calculations for the proposed algorithm with 
two suppliers is depicted in Fig 2.    

 

Fig. 2: Tabular calculations of the proposed algorithm 

For the sake of simplicity, in Fig. 2 we have just considered two suppliers. In table 2, different layers 
of u represent different suppliers. In each layer, u is calculated the same as in Wagner-Whitin tabular 
calculations in case of one supplier (supplier u). The main difference between our method and the 
Wanger-Whitin method is in calcualtions of the last row (the “Min” row). As it can be seen from Fig 
2, for all different layers (suppliers), we have only one common last row. The value of the t*th 
element of this row is the minimum value of the t*th column of all layers. In each cell of the table we 
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write the minimum value of that cell over all layers. For example, mu[(1)23] is the minimum value of 
(1)23 over all layers. 

Table  2 
 Development of Table 1 in the case of multiple supplires. 
{u} 1 2 3 4  N 
1 mu[1] mu[(1)2] mu[(1,2)3] mu[(1,2,3)4] … mu[(1,2,..., n- 1)n] 
2  mu[12] mu[(1)23] mu[(1,2)34] … mu[(1,2,..., n-2)n- 1,n] 
3   mu[123] mu[(1)234] … mu[(1,2,...,n-3)n-2,n-1,n] 
4    mu[1234] …  
       ڭ
min (1) (1,2) (1,2,3) (1,2,3,4)  mu[(1,2,…,n)] 
 
Calcualtions in this table are also started with the first column and they continue column-by-column. 
Initially, claculations of the first column for every layer is executed and then the least cost of the 
column is written in the last row (common between all layers) of the table. Similarly, for the tth 
column, using the common last row, we perform calculations for each layer, and then the least cost of 
this column over all layers is written in the last row of the tth column.  

4. Computational Results 
A hypothetical example with four planning periods and two suppliers is considered in this section. 
Parameters of this numerical example are presented in Table 3. For the ease of calculations, we 
assume that inventory holding cost per unit per unit time is constant over all periods and is equal to 1. 

Table 3  
Parameters of the numerical example 

T dt It s1t p1t s2t p2t 

1 30 1 50 2 70 2.5 

2 35 1 45 2.5 75 2 

3 40 1 60 3 80 2.5 

4 20 1 60 3 80 2 

 

According to Wagner-Whitin method, and without taking into account the second supplier, tabular 
calculations are as follows. In the first column of Table 4, the order quantity must be equal to the 
demand of period 1, therefore, the value of the first and the last rows of column 1 will be 
50+2*30=110 which is the sum of ordering and purchasing cost to meet the demand of the product in 
period 1. The first row of the second column is a policy in which an order is placed in the second 
period; therefore, in both periods 1 and 2, an order is placed and the cost of this policy is 
110+(45+2.5*35)=242.5. The second row of the second column represents a policy in which an order 
equal to the demands of both periods 1 and 2 is placed in period 1. The cost of this policy is 
50+2*(30+35)+1*35=215 in which 1*35 is the holding cost of inventory which is carried from period 
1 to 2. Since the minimum between 242.5 and 215 is 215, the value of the last row in column 2 will 
be 215. For the column 3, there are three ordering options: 1. An order is palced in period 3 is equal 
to the demand in this period and demands of periods 1 and 2 are ordered optimally. The total cost of 
this policy is 215+60+3*40=395. 2. An order is placed in period 2 to satisfy demands of periods 2 
and 3, and demand of period 1 is ordered optimally. The total cost of this policy is 
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110+45+2.5*(35+40)+1*40=382.5. 3. An order is placed in period 1 to satisfy all the damands of 
periods 1 through 3 with the total cost of 50+2*(30+35+40)+(1*35)+(1+1)*40=375. The minimum of 
395, 382.5 and 375 is written in the last row. Similarly, for the column 4 the least cost is 472.5 which 
corresponds to the policy in which an order is placed to satisfy all the demands of periods 2 through 
4, and the demand of period 1 is ordered in the first period. This is the optimal ordering policy over 
four periods. 

 Table 4 
 Results of the numerical example addressed by Wagner and Whitin (1958) (supplier 1)      

 1 2 3 4 
1 110 242.5 395 495 
2  215 382.5 465 
3   375 472.5 
4    475 

Min 110 215 375 472.5 
 
Table 5 
Results of the numerical example for supplier 2. 

 1 2 3 4 
1 140 255 395 495 
2  292.5 375 465 
3   395 455 
4    557.5 

Min 140 255 375 455 
 

Now consider a case where there are two suppliers. The value in cell (1,1) for supplier 1 is 
50+2*30=110 (Table 4), and for supplier 2 is 70+2.5*30=140 (Table 5). Thus, mu[1]=110; and, 
therefore, the value of the last row of column 1 of Table 6 will be 110 which means that an order 
must be placed on supplier 1 to satisfy the demand in period 1. According to Table 5, value of the 
first row of column 2 for supplier 2 is 110+75+2*35=255 in which 110 is the cost of optimal ordering 
policy in period 1 (ordering from supplier 1). Thus, in Table 6 we will have mu[(1)2]=242.5. The 
second row of the second column of Table 5 is 70+2.5*(30+35)+1*35=292.5 which corresponds to 
ordering from supplier 2 in period 1 to satisfy demands of periods 1 and 2; therefore, in Table 6 we 
will have mu[12]=215, and, consequently, min(mu[(1)2], mu[12])=215 will be the value of the last 
row of column 2 of Table 6. The third column of Table 5 consists of three ordering policies: 1. An 
order is placed on supplier 2 to satisfy the demand in period 3 while demands of the two first periods 
are satisfied optimally and independently from period 3 (first row of column 3). The cost of this 
policy is 215+80+2.5*40=395. 2. An order is placed on supplier 2 to satisfy demands in periods 2 and 
3, and demand of period 1 is ordered optimally (second row of column 3). The cost of this policy is 
110+75+2*(35+40)+1*40=375. 3. An order is placed on supplier 2 to satisfy demands of periods 1   
through 3 with the cost of   70+2*(30+35+40)+(1*35)+(1+1)*40=395.  Therefore, in Table 6, we 
have mu[(1,2)3]=395, mu[(1)23]=375, mu[123]=375.  

Table 6 
Results of our proposed numerical example in the case of multiple suppliers 

 1 2 3 4 
1 110 242.5 395 495 
2  215 375 465 
3   375 455 
4    475 

Min 110 215 375 455 
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The minimum of these three costs, i.e. 375, will be the value of the last row (“Min” row) of Table 6, 
which shows that the optimal ordering policy would be as follows: placing an order on supplier 2 to 
satisfy demands of periods 2 and 3, and placing an order on supplier 1 to satisfy demand of the first 
period. Similarly, for the fourth column, the minimum cost of 455 is the optimal ordering policy 
which suggests placing an order on supplier 1 in period 1 to satisfy the demand of this period, and 
placing an order on supplier 2 in period 2 to satisfy demands of periods 2 through 4. In Table 7, we 
have compared our proposed dynamic programming method with the branch and bound (B&B) 
method, which also yields the exact solution, in terms of CPU time (seconds). The first column of 
Table 7 is the problem size (no. of suppliers, no. of periods). Column 2 is the solution time of the 
B&B method, and column 3 is the solution time of proposed dynamic programming method. As it 
can be seen, for the small problem sizes, our method is considerably superior to the B&B method, 
and for larger problem sizes, while our method has reached the optimal solution in relatively small 
amount of time, the B&B method has failed to reach to any solution. 

Table 7 
Comparison between B&B method and the proposed method  
Problem size (# sup., # per.) 
 

B&B (seconds) 
 

DP (seconds) 
 

2,12 2 0.031 
2,15 7 0.039 
3,12 87 0.047 
3,15 836 0.056 
5,15 * 0.18 
10,20 * 0.29 
10,50 * 3.23 
20,50 * 17. 38 
30,50 * 25.87 
  

5. Conclusion and future research directions 
 

We have presented the supplier selection and lot-sizing problem in which a single product with 
deterministic demand is ordered from different suppliers for different time periods. Demand of the 
product is not constant and varies in different time periods. For the sake of simplicity, we ignored 
restrictions imposed on the warehouse storing space and production capacities of suppliers, and 
model the problem as a mixed integer linear program (MILP). The main contribution of this paper is 
the proposed solution method to obtain the optimal solution. Using a recursive relation, we have 
developed a dynamic programming solution methodology which reduces the search space to obtain 
the optimal solution from UT to T*(T+1)/2*U.  This way, by reducing the search space from 
polynomial time to linear time, efforts to obtain the optimal solution, especially for large scale and 
practical problems, have considerably been decreased, such that in some large-scale cases the optimal 
solution can be reached in a reasonable amount of time. Finally, we have illustrated the solution 
algorithm both in the step-by-step and tabular forms, and presented a numerical example to show the 
high efficiency of the proposed method. As a future research direction, the proposed relation and 
solution algorithm can further be developed to handle the multi-product cases.     
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