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 In automated high-bay warehouses, the results of storage location allocation significantly impact 
the operational efficiency of subsequent warehouse operations. Considering that cargo loss within 
the warehouse is often caused by contact with equipment, this paper proposes an innovative dual-
objective optimization model aimed at minimizing unit cargo loss and the average travel time of 
stacker cranes through rational storage allocation. The study’s findings indicate that different cargo 
sizes, shelf sizes, and operational modes have varying degrees of impact on stacker crane 
operational efficiency and cargo loss. A reasonable match between equipment and product sizes 
helps enterprises minimize space waste, expedite response to customer demands, and reduce 
operational costs. This study optimizes storage location allocation using the SPEA-II algorithm and 
performs a comprehensive comparison with the results from CPLEX and NSGA-II. The results 
demonstrate that the SPEA-II algorithm performs excellently across various problem scales, 
indicating that it is an effective method for solving storage location allocation issues.  
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1. Introduction 

 
As an important node of logistics activities, the warehouse plays the function of goods storage and circulation (Frazelle, 2002). 
The evolution of the Internet has created conducive conditions for the facilitation of online shopping, leading to a paradigm 
shift in customer orders characterized by small batches and a diverse range of products (Liu et al., 2016; 2021; Liu and Kim, 
2023; Jiao et al., 2024). In addition, as consumers and the market for warehouse demand response speed continues to increase, 
it is particularly vital to improve the efficiency of outbound picking of goods (Chiu et al., 2019; Samira, 2022). In order to 
expeditiously address consumer demands, warehouses necessitate the efficient and accurate execution of order picking 
processes (Zhong et al., 2022).  

Previous warehouses relied on manual work, causing errors, slow operations, and poor space use. The researchers conducted 
a comparative analysis of warehouses with different layout types and found that a rational layout can effectively reduce the 
picking path lengths (Ozden et al., 2020; Esmer et al., 2013). The advent of automated three-dimensional warehouses powered 
by AS/RSs revolutionized logistics. These warehouses offer efficiency and optimization, overcoming manual limitations (Liu 
et al., 2018; Bartholdi and Hackman, 2015). Automated systems ensure rapid, accurate responses to customers and precise 
internal operations (Sari et al., 2007; Rose et al., 2021). Fig. 1 shows the warehouse’s layout and key components. 
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(a) Automated warehouse (b) Crane (c) Conveyor 

Fig. 1. AS/RS system 

When the order arrives at the warehouse, the stacker crane needs to shuttle through the roadway according to the order 
information for goods picking. During the goods retrieval and outbound phase, the goods are retrieved by a stacker crane, 
placed on a conveyor belt, and then moved to the picking station (Hoshimov et al., 2022).The phase of order picking, being 
the most labor-intensive segment, approximately constitutes 50% of the total order fulfillment duration, and the processing 
costs associated with this specific task significantly contribute to the overall operational costs of the warehouse, ranging 
prominently between 50% and 75% (Tompkins et al., 2010; Frazelle, 2000; Grosse et al., 2015). For business operators, 
effective warehouse management should feature rapid demand response, high operational accuracy and low costs (Womack 
et al., 1990; Abdirad & Krishna, 2021). Thus, enterprises must consider strategies to boost warehouse proficiency. 

Storage location allocation is crucial for order picking efficiency and cost-effectiveness (Franzke et al., 2017). A smart 
allocation improves space utilization and reduces inventory checking time (Tokat et al., 2022). And it also minimizes crane 
travel and operational costs (Mirzaei et al., 2021). Factors like goods turnover and variety impact allocation outcomes (Lam 
et al., 2010). With increasing consumer and market demands, the aim of the warehouse is to maximize operational efficiency 
or minimize costs (Accorsi et al., 2012, 2014). 

In complex automated three-dimensional warehouses, the outcomes of storage location allocation significantly impact 
subsequent process efficiency and overall operational costs. Beyond focusing on the critical metric of stacker crane operational 
time, this paper also incorporates the cost of merchandise loss due to crane operations. By employing the SPEA-II and NSGA-
II algorithms to solve and compare the dual-objective problem, the study better captures the conflicts between different 
objectives. The results indicate that considering both cost and efficiency from a holistic perspective enhances overall 
warehouse performance, improves customer satisfaction, and strengthens warehouse competitiveness. The methods used in 
this paper underscore the strategic importance of optimizing storage location allocation in modern warehousing systems. 

2 Literature review  
 

2.1 Automated three-dimensional warehouses and space allocation strategies  
 

Automated three-dimensional warehouses use AS/RSs, internet tech, stacker cranes and conveying systems to process online 
orders (Lagorio et al., 2022). Common storage strategies include positioning, classified, random, and joint (Francis et al., 
1992). Positioning assigns items to fixed locations. Classified organizes by characteristics, random lacks order, and joint 
combines for spatial efficiency. The strategy chosen affects retrieval, utilization, and efficiency, vital in automated warehouses. 

Given the increased storage capacity of these warehouses compared to non-automated counterparts, employing a random 
storage assignment policy may necessitate pickers or stackers reaching multiple storage locations for tasks (Manzini, 2012). 
Moon and Kim (2001) and Liao et al. (2022) compared the utilization rates of warehouse storage space and replenishment 
efficiency under different storage strategies respectively. The studies revealed that while random storage improves the 
utilization rate of free storage space, it can lead to the inefficient occupation of optimal storage space. Bozer and Aldarondo 
(2018) compared the expected retrieval time using two different order picking systems for the same set of customer orders. 
Pawar et al. (2022) noted that storage location assignment strategies, coupled with changes in warehouse shelf layout, result 
in significant variations in operational time for both warehouse equipment and employees. 

2.2 Storage space optimization 
 

By analyzing a certain number of orders in a certain period of time, it is found that the probability of certain types of goods 
appearing in the same order at the same time is high, which means that the demand for these goods shows a certain correlation 
(Xiang et al., 2018). In addition, the frequency of different types of goods in and out of the warehouse is not exactly the same, 
and the goods with high frequency of entry and exit have a greater impact on the running distance of the stacker crane (Mirzaei 
et al., 2021; Guan and Li, 2018; Xiao and Zheng, 2012). Lee et al. (2020) built a mathematical model and solved it for the 
purpose of minimizing warehouse working time.  The need for warehouse outbound operation is increasing and the operation 
is more complex, so it is necessary to sort or batch the order and access tasks (Li et al., 2017a). Many scholars studied the 
integrated optimization of storage space allocation, order batching and picking path (Yang et al., 2020; Zhang et al., 2019). 
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Some relevant studies arranged the cargo storage location or picking order on the basis of optimizing the picking path of 
goods in the warehouse (Xiang et al., 2018; Li et al., 2017b). Van et al. (2019) proposed a mixed integer programming model 
considering picking time and solved the model by local search. Yang and Thi (2016) employed a storage allocation strategy 
based on constraints associated with item-item and item-location relationships. 

Table 1 
Overview of papers using the storage allocation strategy 

Authors Order batching Cargo loss Objectives 
Xiang et al. (2018) yes no order association 

Xiao and Zheng (2012) no no number of picks 
Mirzaei et al. (2021) no no travel efficiency 
Guan and Li (2018) no no number of picks 

Li et al. (2017a) yes no travel distance 
Yang et al. (2020) yes no travel distance 
Xiang et al. (2018) yes no number of picks 

Li et al. (2017b) no no travel efficiency 
Van et al. (2019) yes no travel efficiency 

Yang and Thi (2016) no no travel efficiency 
Lee et al. (2020) no no travel efficiency and traffic flow balance 

Zhang et al. (2019, 2020) no no travel efficiency and delivery cost 
 

2.3 Cost of cargo damage in warehouses 
 

Goods, especially perishable items, naturally experience quality attenuation during storage (Maxim et al., 2016). This decay 
influences buyers’ willingness to purchase and reduces the likelihood of goods leaving the warehouse (Rong et al., 2011). 
Consequently, optimization objectives for subsequent product scheduling, as proposed by Lütke et al. (2005) and Myers 
(1997), include considerations for product decay and incorporate product shelf life as a constraint. Beyond cargo damage due 
to inherent quality decay, the loading and unloading process of the stacker crane involves direct contact with goods, resulting 
in some degree of loss. Events such as goods dumping during transportation further contribute to losses, elevating warehouse 
costs (Silve et al., 2020). Recognizing the correlation between actual cargo damage costs and the distance traveled by stacker 
cranes, Guerriero et al. (2015) incorporated operating costs associated with moving goods into cargo storage arrangements. 
Prior studies overlooked costs related to equipment operations and goods losses. Cargo damage costs, especially for high-
value goods, can significantly impact overall efficiency. This paper proposes a storage optimization model to enhance 
operational efficiency and consider cargo loss costs. It aims to improve storage allocation, reduce costs, and enhance 
warehouse competitiveness. 

3. Description of the problem 
 

In the automated three-dimensional warehouse, each shelf aisle is equipped with a stacker crane. These stacker cranes operate 
individually, handling either inbound or outbound storage for a specific type of goods. Each stacker crane is responsible for 
warehousing operations on both sides of the same aisle. The warehouse configuration, depicted in Fig. 2, reveals a global top 
view and a side view of selected shelves.  
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Fig. 2. Automated three-dimensional warehouse layout 
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The warehouse comprises M rows of shelves, each with B columns and L layers, resulting in a total available storage space of 
J. Each storage location is identified by a unique three-dimensional coordinate, where each of the three values denotes the 
row, column, and layer of the storage location. Notably, coordinates where each ordinate is equal to 0 and the altitude 
coordinate is equal to 1 represent the starting point for stackers in different aisles. The storage facility accommodates I kinds 
of goods, each with a quantity Qi. This study incorporates factors such as the risk of goods damage and entry/exit frequency. 
Subsequently, a multi-objective storage location allocation optimization model is developed to enhance warehouse operational 
efficiency. 
 
4. Model establishment  
 
4.1 Model conditions assumptions  
 
(1) The dimensions of each cargo space are the same, and the length, width and height of the cargo space are known; 
(2) The stackers are located at the same end of the shelves;  
(3) The stacker simultaneously moves along the horizontal and vertical direction with constant velocity v and v is known; 
(4) The time for the stacker to access the goods is ignored;  
(5) The stacking height of each type of goods on the pallet does not exceed the storage location height;  
(6) The center of gravity of every type of cargo is located at the geometric center of the storage location; 
(7) The unit value of each type of goods in each cycle remains unchanged; 
(8) All storage slots in the warehouse are empty and available. 

4.2 Parameters and variable settings 
 
The following notations are used in this paper: 
 

Indices 
i  index of item, { }1,...,i I∈   
j  auxiliary index, { }1,...,j I∈  

Parameters 
l  length of the storage space (unit: meter) 
h  height of the storage space (unit: meter) 
w  width of the storage space (unit: meter) 
M  number of rows of shelves 
B  number of columns of shelves 
L  number of layers of shelves 
J  total number of storage location in warehouse 
I  total number of goods categories 
t  a work cycle of the warehouse (unit: day) 

ip  times of item i in and out of the warehouse in a day (unit: times) 
v  the speed of the stacker (unit: meter/second) 

ic  unit value of item i (unit: RMB cents) 
iα  cargo damage rate per unit distance of item i (unit: damage rate/meter) 
iD  total quantity of cargo loss of item i  

itT  the total number of times item i is shelved or retrieved within time period t (unit: times) 
iQ  the quantity of item i before each time it is put on the shelf 
id  the total moving distance of the item I (unit: meter) 

oid  the distance from the position of storage location of item i to the I/O point 
(unit: meter) 

oit  the travel time required from the storage location of item i to the I/O point 
(unit: second) 

it  the travel time required for a single movement of item i (unit: second) 
Decision variables 

ix  the shelf row number of storage location i 
iy  the shelf column number of storage location i 
iz  the shelf layer number of storage location i 

Auxiliary variable 
ijδ  if the coordinates of goods i and j are the same it is 0, otherwise it is 1 
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4.3 Establish a multi-objective storage location optimization model 

(1) Minimize the cost of unit cargo damage in a cycle 
 

Operational costs of the warehouse include crane operations and cargo loss. Cargo loss increases with goods quantity and price, 
often due to crane contact. Strategic storage positioning reduces cargo loss by optimizing crane operations. This paper measures 
cargo loss using the unit distance per unit cargo loss rate in crane operations. Subsequently, the cost of unit cargo loss is calculated 
based on this metric. The established objective function is outlined as follows: 

1

1
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ii i iD d Qα= × ×  (2) 
The coordinates of item i are represented as (xi, yi, zi), while the corresponding starting point coordinates of the stacker are (xi, 
0, 1). Consequently, the distance from the position of item i to the starting point of its respective stacker can be calculated as: 

2 2( ) (( 1) )oj i id y l z h= × + − ×  (3) 

i it oj ijd T d x= × ×  (4) 
it iT p t= ×  (5) 

(2) Minimize the stacker operation time for unit cargo  
 

Stacker crane operational duration is key to warehouse efficiency, reflecting storage allocation. This study improves the metric 
by considering crane time per unit goods, reflecting allocation effectiveness.  
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The stacker crane moves horizontally and vertically simultaneously. Additionally, its “single access” operational mode doubles 
the distance and time for storing or retrieving goods. 

oi
oi

dt
v

=  (7) 

From Eq. (1) to Eq. (7), the storage location optimization model can be obtained as follows: 
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subject to 

1 ix M≤ ≤ ，and xi is a positive integer (8) 

1 iy B≤ ≤ ，and yi is a positive integer (9) 

1 iz L≤ ≤ ，and zi is a positive integer (10) 
1i j ijx x M δ− + × ≥  (11) 
1i j ijy y M δ− + × ≥  (12) 
1i j ijz z M δ− + × ≥  (13) 
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{ }0,1ijδ ∈  (14) 

Eq. (8), Eq. (9) and Eq. (10) represent the range of the decision variables, meaning that the storage location of each type of 
goods cannot exceed the number of rows, columns, and layers of the warehouse shelves. Eq. (11), Eq. (12), and Eq. (13) 
indicate that goods i and j cannot be assigned to the same storage location. In these equations, M is an extremely large value. 
Eq. (14) indicates that δij is a binary variable. When it equals 0, it indicates that the coordinates of goods i and j are exactly 
the same, meaning they are assigned to the same storage location. When it equals 1, it indicates that the coordinates of goods 
i and j are different, meaning they are assigned to different storage locations. 

5. SPEA-II Algorithm description 
 

The study explores how cargo storage allocation impacts warehouse operations, considering stacker crane operation time and 
total cargo loss cost. While converting multi-objective problems into single-objective ones via weighting simplifies solving, 
challenges arise in assigning weights. Single-objective solutions limit comprehensive evaluation and comparison, hindering 
full problem understanding. In contrast, multi-target optimization considers target interrelationships, offering a range of 
optimal solutions representing various trade-offs, aiding decision-making (Hohmann et al., 2022; Zhang & Shi, 2024). 

5.1 SPEA-II algorithm introduction and implementation steps 
 

5.1.1 Algorithm introduction 
 

The SPEA-II algorithm is a multi-objective optimization algorithm based on Pareto dominance relation, which aims to solve 
the optimization problem with multiple conflicting targets. It combines strategies such as Pareto dominance relations, external 
populations, and density estimation to find a set of equilibrium solutions between multiple objective functions. 

5.1.2 Implementation steps 
 
The pseudocode of the SPEA-II algorithm is shown in Table 2. 
 
Table 2 
Pseudocode for the SPEA-II algorithm 

1: Input: 
2: N̄ - Population size 
3: S - Maximum number of iterations 
4: convergence_threshold - Convergence threshold 
5: P₀ - Initial population 
6: Output: 
7: A-archive  
8: Initialize population 
9: P = P₀ 
10: A₀ = empty_archive() 
11: iteration = 0 
12: A = A₀ 
13: while not convergence_criteria_met(iteration, S, convergence_threshold) do: 
14: evaluate_population(problem, P) 
15: A = update_external_archive(A₀, P) 
16: N = environmental_selection(P∪A) 
17: selected_parents = mating_selection(N) 
18: offspring = crossover_and_mutation(selected_parents) 
19: P = replace_population(P, offspring) 
20: iteration = iteration + 1 
21: return archive 

 
5.2 Algorithm initialization preparation 

 
5.2.1 Chromosomal encoding 
 

According to the characteristics of the warehouse storage optimization model, the real number coding method is selected in 
SPEA-II algorithm. The chromosome is constructed by the storage location code where the goods are located, that is, each 
storage location code is a gene. The three-digit number of the number from left to right represents the value of xi, yi and zi in 
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turn, each chromosome includes 3×I genes, where I represents the number of types of goods to be stored. And the specific 
coding form of chromosomes is shown in Fig. 3. 

 
Fig. 3. Chromosomal coding form  

 
5.2.2 Initialize the population 
 

Initializing the population is to randomly generate a three-dimensional matrix of 3×I columns in N̄ rows, where N̄ is the 
population size. Each chromosome represents a storage site allocation scheme in the population. To ensure uniqueness, 
chromosomes are examined individually, and if duplicate cargo locations are found, their coordinates are randomly 
regenerated until all cargo locations are distinct. 

5.3 Fitness assignment 
 

In order to avoid the occurrence of individuals who are governed by the same external profile members with the same fitness 
values, in the SPEA-II algorithm, the solution dominated by each individual and the solution that governs it are taken into 
account. Both population P and individual f in the external profile are given a strength S(f), which indicates the number of 
solutions that are governed by that individual. On the basis of S(f), the original fitness value R(f) of all individuals in the 
population and external archives is calculated, where R(f) is equal to the sum of the intensity values of all individuals who 
dominate the individual. The smaller the original fitness value, the less the solution that dominates the individual, and the 
better the solution. For individuals with the same original fitness values, as shown in equation (15), the individual density 
value D(f) was calculated by employing the k-immediate proximity method to distinguish between individuals. In this equation, 

k
fσ represents the Euclidean distance between the individual f and the k-th neighbor in Pt+1. Equation (16) illustrates how k is 

calculated. 

1( )
2k

f

fD
σ

=
+

 
(15) 

k N N= +  (16) 

Finally, as shown in Eq. (17), the individual’s fitness value F(f) is the sum of the original fitness value and the density value. 
 

( ) ( ) ( )f f fF D R= +  (17) 
 
5.4 External archive maintenance 
 

Since the size of the external archive is always N, the file maintenance can retain the high-quality solution and improve the 
global search ability of the algorithm. The steps to perform external archive maintenance are as follows: 

Step1: Copy all non-inferior decompositions from population Pt and external archive At into /At+1/, accepted if /At+1/=N; 
Step2: If /At+1/<N, then N- /At+1/ is selected from the dominated solution of Pt and At and put into At+1;  
Step3: If/ At+1/>N, then find the smallest crowding distance individual from At+1 and remove it until /At+1/=N, if the minimum 
distance between the two individuals and the other individuals is equal, then the proximal distance is considered, i.e., k=2. 

The robust parameter configurations of SPEA-II make it suitable for diverse multi-objective optimization challenges. 

6. Empirical Analysis 
 

In order to verify the validity of the model and algorithm, this paper uses the commercial software IBM ILOG CPLEX 12.8.0 
and Python 3.10 to design the algorithm program and sets the maximum running time of CPLEX to 5 hours. When designing 
the SPEA-II algorithm using Python 3.10. 
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6.1 Case Description 
 

The Joyi Supply Chain Management Limited Company is a large-scale comprehensive enterprise focusing on modern logistics 
and supply chain services. The company is customer-oriented, providing warehousing products, transportation and distribution 
products, integrated supply chain solutions, and various value-added services. After receiving the customer’s order, the stacker 
cranes in the automated three-dimensional warehouse start to run, they will pick accordingly according to the commodity 
material number and the quantity demanded, and then place the picked goods on the conveyor belt, which will be packaged 
by the specialized staff, and then transported out of the warehouse and safely delivered to the consumers. The shelving size 
and operating parameters of the equipment in the warehouse are listed in Table 3. The basic information of multiple types of 
products is extracted from the real data of the warehouse, including quantity, inbound and outbound frequency, unit price and 
unit distance loss rate of goods, as shown in Table 4. The unit distance cargo loss rate for each product is obtained by averaging 
the data over three random operating cycles. 

Table 3 
Basic parameters for warehouse operation 

Parameters Numeric value 
M 5 
B 15 
L 15 
l 1 
h 1 
w 1 
v 1 

 
Table 4 
Cargo information 

Cargo code ci qi αi pi 
1 50 230 0.05 7 
2 200 100 0.03 9 
3 30 150 0.017 12 
4 65 300 0.023 5 
5 30 230 0.05 10 
6 200 100 0.03 12 
7 50 60 0.02 8 
8 60 200 0.009 15 
9 100 140 0.007 13 

10 80 200 0.02 10 
 
6.2 Feasibility Analysis  
 

The solution obtained by using the solver CPLEX is an exact solution, while the solutions of heuristic algorithms are 
approximate. To compare the advantages and disadvantages of the solutions, the solver and the heuristic algorithms are used 
to solve the solution at the same scale (I=10) respectively. Table 5 shows the solution results of CPLEX 12.8.0, SPEA-II and 
NSGA-II algorithms. The Pareto frontiers obtained through the three methods are illustrated in Fig. 4.  

Spread and hypervolume are commonly used multi-objective optimization evaluation metrics. The spacing method involves 
sorting the first objective function values of a set of solutions in ascending order and calculating the uniformity of the 
differences between adjacent sorted solutions. This metric reflects the uniformity of the distribution of solutions in the 
objective space. The specific calculation of this metric is shown in Equation (18), where N is the number of non-dominated 
solutions in the solution set, di is the Euclidean distance between two adjacent individuals in the non-dominated solution set, 
and df and dl are the Euclidean distances between the extreme solutions and boundary solutions in the non-dominated solution 
set. A value of 0 for this metric indicates that all members of the Pareto optimal solutions are evenly distributed. The smaller 
the value, the better the distribution and diversity of the non-dominated solutions, and vice versa. The hypervolume method 
evaluates the quality of the solution set by calculating the volume of the objective space covered by the solution set. It 
measures the covered area in the objective space, with a larger hypervolume value indicating a greater coverage area and thus 
better quality of the solution set. 
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Table 5 
CPLEX and NSGA-II solution results 

Methods Optimal solutions Solve time Hypervolume Spread 

CPLEX (571, 4.3) (582, 4.2)  
(588, 4.2) (594, 4.0)  11580 23.3 0.64 

SPEA-II (616, 4.6) (635, 4.5) 
(656, 4.4) (672, 4.3) 75 47.3 0.54 

NSGA-II (673, 4.9) (698, 4.8) 40 12.9 0.5 

Average value of cargo damage / (CNY)
560    580    600    620    640    660    680    700
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Fig. 4. The Pareto frontiers of CPLEX，SPEA-II and NSGA-II algorithms at the scale of I=10 (bidirectional motion mode)  

 

The table results show minimal differences among the three solution methods for a limited scale of goods (I=10). However, 
CPLEX exhibits longer solving times compared to heuristic algorithms, NSGA-II and SPEA-II, which offer faster solutions 
despite being approximate. Among the three solutions, SPEA-II has the largest solution coverage, and its distribution is 
relatively uniform. Fig. 5(a), 5(b), and 5(c) depict commodity storage location distribution maps, randomly selected from 
solutions obtained by each algorithm. Due to the more types of goods, and each kind of goods only occupy a storage space, 
so this paper in the drawing of goods warehouse storage distribution map, each type of goods with and only with a color to 
indicate, but the same color may indicate different goods, so the storage distribution map only indicates the storage of goods 
but does not indicate the relationship between the types of goods. 

  

(a) result of CPLEX (b) result of SPEA-II 

            
                              

 
   (c) result of NSGA-II  

Fig. 5. The storage location distribution map at the scale of I=10  
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The storage distribution map offers valuable insights into the comparative results of CPLEX, SPEA-II, and NSGA-II. 
Obviously, there are notable differences in specific storage assignments for different commodities. These discrepancies 
contribute to variations in objective function values within the mathematical model. 

5.3 Parameter Settings 
 
For heuristic algorithms, performance is often sensitive to parameter settings, as different combinations directly affect both 
the efficiency and effectiveness of the algorithm’s solution. To identify the most suitable parameter combinations for the 
current problem, this study employed orthogonal experimental design to systematically analyze the optimal values of key 
parameters in an improved genetic algorithm. This ensures that the algorithm can achieve optimal performance in practical 
applications. The performance of the genetic algorithm is mainly influenced by four parameters: population size, external 
archive size, crossover probability and mutation probability.  
Therefore, 4 parameters and 4 levels are selected in this paper, so there are 16 groups of parameter combinations, as shown 
in Table 6 and 7. 
 
Table 6 
Parameter Levels 

Parameters Level 1 Level 2 Level 3 Level 4 
1 2 3 4 

Population sizes 40 50 80 100 
External archive sizes 10 20 30 40 

Crossover probabilities 0.5 0.6 0.7 0.9 
Genetic probabilities 0.05 0.1 0.2 0.3 

 
Table 7 
SPEA-II Algorithm Parameter Settings 

Groups Population sizes External archive sizes Crossover probabilities Genetic probabilities 
1 40 10 0.5 0.05 
2 40 20 0.6 0.1 
3 40 30 0.7 0.2 
4 40 40 0.9 0.3 
5 50 10 0.6 0.2 
6 50 20 0.5 0.3 
7 50 30 0.7 0.05 
8 50 40 0.9 0.1 
9 80 10 0.7 0.3 

10 80 20 0.9 0.2 
11 80 30 0.5 0.1 
12 80 40 0.6 0.05 
13 100 10 0.7 0.1 
14 100 20 0.9 0.05 
15 100 30 0.6 0.3 
16 100 40 0.5 0.2 

 
Run the code at each parameter level separately, and the solution results are shown in Table 8. 
 
Table 8 
Solution results for different groups of parameters 

Groups Solutions 
1 (950,8.1) 
2 （675,7.1),(680,6.2） 
3 (720,6.3), (770,4.8) 
4 (885,7.6), (1115,6.2), (1005,7.3), (1095,6.3) 
5 (715,6.9), (780,6.6) 
6 (800,6.3) 
7 (775,5.2), (680,5.4) 
8 (616,4.6), (635,4.6), (656,4.4), (672,4.3) 
9 (760,6.3), (700,6.5) 

10 (710,5.4) 
11 (900,6.6), (825,6.8) 
12 (755,5.9), (760,5.8), (805,5.6) 
13 (735, 6.4) 
14 (1180, 6.5), (825,10.4), (820,11.1) 
15 (1085,6.0), (890, 6.5), (1060, 6.1) 
16 (645, 5.1) (615, 5.6) 

 
The set coverage method is a metric used to evaluate the performance of multi-objective optimization algorithms by measuring 
the extent to which one solution set covers another. The formula for its calculation is: 
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This formula represents the coverage ratio of set A over set B, which is the number of solutions in set B that are dominated 
by at least one solution in set A, divided by the total number of solutions in set B. By calculating the proportion of solutions 
in set B that are covered by in set A, the set coverage method provides an intuitive and easy-to-calculate way to compare the 
effectiveness of different algorithms in solving multi-objective optimization problems. Table 9 shows the set coverage values 
obtained by comparing the two sets of data, the larger the total set coverage value corresponding to the solution result of each 
set of parameters, the fewer solutions that govern the set of solutions, and the better the set of solutions. 
 
Table 9 
Set coverage matrix of different parameter groups  

Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total 
1 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 — 0.5 1 1 1 0 0 1 0 1 0 1 1 0.3 0 8.8 
3 1 0 — 0 0 0 0 0 0 0 0 0 0 0.3 0 0 1.3 
4 1 0 0 — 0 0 0 0 0 0 0 0 0 0.3 0 0 1.3 
5 1 0 0 0.5 — 0 0 0 0 0 0 0 0 0.7 0 0 2.2 
6 1 0 0 0.8 0 — 0 0 0 0 1 0 0 1 0.3 0 4.1 
7 1 0.5 0.5 1 1 1 — 0 1 1 1 1 1 1 1 0 12 
8 1 1 1 1 1 1 1 — 1 1 1 1 1 1 1 0.5 14.5 
9 1 0 0 0.8 1 1 0 0 — 0 1 0 0 1 0.3 0 6.1 

10 1 0 0.5 1 1 1 0 0 0.5 — 1 1 1 1 1 0 10 
11 1 0 0 0.5 0 0 0 0 0 0 — 0 0 0.3 0 0 1.8 
12 1 0 0 1 0.5 1 0 0 0.5 0 1 — 0 1 1 0 7 
13 1 0 0 0.5 0.5 0 0 0 0 0 1 0 — 1 0.3 0 4.3 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 
15 1 0 0 0.8 0 0 0 0 0 0 0.5 0 0 0.3 — 0 2.6 
16 1 1 0.5 1 1 1 1 0 1 1 1 1 1 1 0 — 12.5 

 
As can be seen from Fig. 6, group 8 corresponds to the largest value, so the final parameter selection of the SPEA-II algorithm 
is shown in Table 10. 

 
Fig. 6. The total coverage value of different parameter groups 

Table 10 
Algorithm optimal parameter settings 

Parameters Numeric value 
Number of iterations 400 

Population size 50 
External archive size 40 
Crossover probability 0.9 
Genetic probability 0.1 

 
6.4 Sensitivity analysis 

 
6.4.1 Comparison of solution results at different scales 
 

To assess the performance of the SPEA-II algorithm, a range of studies were randomly generated. Given the CPLEX solver’s 
limitations for scales beyond 10, SPEA-II’s results were benchmarked against random solutions and the NSGA-II algorithm. 
Information on goods of small, medium and large sizes is shown in the first 20, 50 and 100 rows of Table 11, respectively. 
The results of the solution are recorded in Table 12 and 13. Fig. 7, 8, 9 and 10 visually analyze the Pareto frontiers across 
scales, providing a comprehensive overview. Representative solutions from both algorithms’ Pareto sets are selected, with 
cargo layout diagrams depicted in Fig. 8, 9, and 10 (subfigures (a) and (b)), facilitating the evaluation of algorithm 
effectiveness across different cargo scales. 
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Table 11 
Cargo information 

Cargo code ci qi αi pi 
1 50 230 0.05 7 
2 200 100 0.03 9 
3 30 150 0.017 12 
4 65 300 0.023 5 
5 30 230 0.05 10 
6 200 100 0.03 12 
7 50 60 0.02 8 
8 60 200 0.009 15 
9 100 140 0.007 13 

10 80 200 0.02 10 
11 65 100 0.04 12 
12 70 120 0.01 5 
13 30 40 0.02 7 
14 50 70 0.01 4 
15 25 150 0.03 5 
16 80 55 0.027 8 
17 180 60 0.023 10 
18 200 85 0.005 6 
19 140 40 0.06 6 
20 50 200 0.04 3 
21 119 370 0.004 2 
22 246 372 0.04 23 
23 78 228 0.003 22 
24 94 69 0.009 13 
25 245 374 0.003 10 
26 171 236 0.001 7 
27 129 213 0.008 23 
28 200 78 0.005 12 
29 287 357 0.007 11 
30 281 384 0.001 7 
31 163 235 0.002 2 
32 110 347 0.006 11 
33 94 314 0.003 6 
34 298 127 0.007 10 
35 235 201 0.007 25 
36 132 121 0.007 6 
37 230 259 0.009 18 
38 142 293 0.009 7 
39 261 289 0.005 12 
40 73 296 0.003 21 
41 104 389 0.01 15 
42 90 377 0.003 23 
43 238 192 0.002 12 
44 163 233 0.004 24 
45 178 94 0.006 24 
46 48 253 0.006 14 
47 35 59 0.001 5 
48 250 99 0.005 18 
49 146 156 0.03 4 
50 171 391 0.009 6 
51 119 339 0.005 6 
52 49 117 0.004 11 
53 247 60 0.009 21 
54 169 131 0.007 9 
55 243 60 0.008 11 
56 61 372 0.008 15 
57 116 194 0.008 11 
58 191 181 0.01 8 
59 114 126 0.006 16 
60 274 60 0.002 9 
61 71 347 0.005 8 
62 45 287 0.005 11 
63 186 375 0.010 7 
64 291 309 0.004 15 
65 222 395 0.004 18 
66 114 162 0.005 16 
67 223 340 0.01 15 
68 240 129 0.006 8 
69 294 273 0.003 23 
70 214 361 0.03 25 
71 207 343 0.007 11 
72 210 208 0.009 16 
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Table 11 
Cargo information (Continued) 

Cargo code ci qi αi pi 
73 211 144 0.006 16 
74 220 206 0.004 12 
75 269 301 0.005 3 
76 22 195 0.004 14 
77 43 264 0.007 8 
78 198 261 0.006 6 
79 30 146 0.009 21 
80 198 134 0.002 22 
81 262 391 0.002 22 
82 268 359 0.009 24 
83 195 323 0.005 16 
84 43 111 0.002 4 
85 70 313 0.005 19 
86 50 233 0.008 15 
87 278 272 0.05 5 
88 167 131 0.002 4 
89 234 245 0.004 21 
90 60 86 0.002 5 
91 103 258 0.002 15 
92 26 334 0.005 20 
93 150 75 0.002 16 
94 174 150 0.005 16 
95 241 80 0.004 17 
96 113 206 0.02 21 
97 191 104 0.004 13 
98 285 350 0.008 9 
99 69 143 0.006 20 

100 268 176 0.006 8 
 
 
Table 12 
Results of solutions at different scales 

Scales Solution results Optimal solutions Solve time Hypervolume Spread 

small-scale 
(I=20) 

Random （4933, 32.7） 77 19.4 1 

SPEA-II  
（944, 8.1） 
（985, 7.9） 
（1006, 7.9） 

35 214.3 0.66 

NSGA -II  
（1062, 9.4） 
（1157, 9.2） 
（1172, 8.1） 

130 122.2 0.86 

medium-scale 
(I=50) 

Random （6796, 45.1） 120 3.28 1 

SPEA-II  （1053, 8.2） 
（1118, 8.2） 340  264 0.5 

NSGA-II  （2430, 15.9） 
（2752, 15.8） 270  41.8 0.5 

large-scale 
(I=100) 

Random （10032, 84.0） 225 65.96 1 

SPEA-II  
（2119, 15.3） 
（2255, 15.1） 
（3125, 14.9） 

1370 905.7 0.86 

NSGA-II 
（3195, 22.0） 
（3175, 20.7） 
（3328, 20.5） 

450 243 0.88 

 
Table 13 
Domination relationship between solution sets from different algorithms 

Scales Methods Random SPEA-II NSGA-II 

small-scale 
(I=20) 

Random  —— 0.00 0.00 
SPEA-II 1.00 —— 1.00 
NSGA-II 1.00 0.00 —— 

medium-scale 
(I=50) 

Random  —— 0.00 0.00 
SPEA-II 1.00 —— 1.00 
NSGA-II 1.00 0.00 —— 

large-scale 
(I=100) 

Random  —— 0.00 0.00 
SPEA-II 1.00 —— 1.00 
NSGA-II 1.00 0.00 —— 
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(a) I=20 (b) I=50 (c) I=100 
Fig. 7. The Pareto frontiers of the SPEA-II and NSGA-II algorithms under different cargo scales 

It can be seen that SPEA-II has always positioned its leading edge below NSGA-II, and its solution has better distribution 
uniformity while covering a larger space range, which highlights the superior performance of this algorithm in different 
problem scales. However, this increase in performance is accompanied by longer computation times, raising questions about 
algorithm efficiency and computational resource optimization at different scales. 

  
(a) result of SPEA-II (b) result of NSGA-II 

Fig. 8. The storage location distribution map at the scale of I=20  
 

  
(a) result of SPEA-II (b) result of NSGA-II 

             
Fig. 9. The storage location distribution map at the scale of I=50  

 

  
(a) result of SPEA-II (b) result of NSGA-II 

Fig. 10. The storage location distribution map at the scale of I=100 
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The SPEA-II algorithm corresponds to a storage location distribution map in which the goods are stored more centrally and 
closer to the starting point of the stacker. Table 12 and 13 further illustrates significant differences in objective function values 
between the two algorithms. 

6.4.2 Comparison of solution results at different shelf rows scales 
 

To assess the effect of shelf size on stacker operation time and damage cost, storage allocation is conducted with 5 and 10 
shelves. At M=10, CPLEX, SPEA-II, and NSGA-II yield the optimal solution (523, 3.5). Further comparison is made for I=20. 
Table 14 and 15 summarizes the results, and Fig. 11 depicts Pareto frontiers and storage layouts. Fig. 12 shows storage layouts 
obtained by all methods. Fig. 13(a) and 13(b) display storage allocation maps for SPEA-II and NSGA-II solutions with 20 
cargo types and 10 shelves. 

Table 14 
Results of solutions under different shelf scales 

Scales Methods Optimal solutions  
(M=5) 

Optimal solutions 
 (M=10) 

Hypervolume 
(M=5/ M=10) 

Spread  
(M=5/ M=10) 

super 
small-
scale 

(I=10) 

Random  （3240, 25.0） （2422, 19.8） 58.8/13.3 1/1 

CPLEX  

(571, 4.3) 
(582, 4.2) 
(588, 4.2) 
(594, 4.0) 

(523, 3.5) 43.3/35 0.64/1 

SPEA-II  

(616, 4.6) 
(635, 4.5) 
(656, 4.4) 
(672, 4.3) 

(523, 3.5) 33.3/35 0.54/1 

NSGA-II  (673, 4.9) 
(698, 4.8) (523, 3.5) 2.9/35 0.50/1 

small-
scale 

(I=20) 

Random  （4933, 32.7） （3422, 28.9） 19.43/80.34 1/1 
CPLEX  —— —— —— —— 

SPEA-II  
（944, 8.1） 
（985, 7.9） 
（1006, 7.9） 

（638, 5.8） 
（663, 5.7） 
（676, 5.7） 
（685, 5.5） 
（725, 5.5） 

37.4/44.1 0.66/0.75 

NSGA-II  
（1062, 9.4） 
（1157, 9.2） 
（1172, 8.1） 

（976, 8.3） 
（1047, 7.8） 
（1086, 7.7） 

122.2/468.7 0.86/0.64 

 
Table 15 
Set coverage of different algorithms under different scales 

  M=5 M=10 
Scales Methods Random CPLEX SPEA-II NSGA-II Random CPLEX SPEA-II NSGA-II 

super 
small-scale 

(I=10)  

Random  —— 0.00 0.00 0.00 —— 0.00 0.00 0.00 
CPLEX 1.00 —— 1.00 1.00 1.00 —— 1.00 1.00 
SPEA-II 1.00 0.00 —— 1.00 1.00 0.00 —— 1.00 
NSGA-II 1.00 0.00 0.00 —— 1.00 0.00 0.00 —— 

small-scale 
(I=20) 

Random  —— —— 0.00 0.00 —— —— 0.00 0.00 
CPLEX —— —— —— —— —— —— —— —— 
SPEA-II 1.00 —— —— 1.00 1.00 —— —— 1.00 
NSGA-II 1.00 —— 0.00 —— 1.00 —— 0.00 —— 
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Fig. 11. The Pareto frontiers of the SPEA-II and NSGA-II algorithms under different shelf row scales  
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As the number of shelves increases at the same cargo size, the objective function value decreases. Moreover, with 10 shelves, 
solutions from the SPEA-II algorithm significantly improve compared to the case with 5 shelves. Thus, constructing an 
appropriate number of shelves according to incoming goods scale can enhance warehouse operation efficiency. 

 
Fig. 12. The storage location distribution map at the scale of I=10 and M=10  

 

  
(a) result of SPEA-II (b) result of NSGA-II 

 
Fig. 13. The storage location distribution map at the scale of I=20 and M=10  

 

Fig. 13(a) shows a more concentrated distribution of cargo storage locations, strategically positioned closer to the stacker 
entrance and exit. This concentration indicates a potentially more efficient storage arrangement, crucial for warehouse logistics.  
 
6.4.3 Comparison of solution results in different stacker crane operating modes 
 

This paper examines the impact of unidirectional and bidirectional concurrent motion modes on stacker crane operation and 
warehouse efficiency using CPLEX in a super small-scale optimization (I=10). Table 16, 17 and Fig. 14 present the results. 
Fig. 15(a) and 15(b) depict storage location distribution maps for unidirectional motion mode using SPEA-II and NSGA-II 
algorithms at I=10 and M=5, respectively. Traversal time in stacker crane operation, disregarding acceleration and deceleration 
time, is the sum of horizontal and vertical temporal expenditures. Effective displacement is the combination of distances along 
both axes. Eq. (3) in Section 3 is revised to Eq. (20) under unchanged formulas and constraints. 
 

( 1)oi i id y l z h= × + − ×  (20) 
 

Table 16 
Results of solutions under different stacker crane operation modes 

Methods 
Optimal solutions 

(Bidirectional 
 motion mode) 

Optimal solutions 
(Unidirectional  
motion mode) 

Hypervolume 
(Bidirectional/ 
Unidirectional) 

Spread 
(Bidirectional/ 
Unidirectional) 

CPLEX (571, 4.3) (582, 4.2)  
(588, 4.2) (594, 4.0)  

(665, 5.2) (686, 5.1)  
(710, 5.1) (714, 5.0) 
(752, 4.9) (758, 4.9) 

(792, 4.9) 

23.3/65.3 0.65/0.76 

SPEA-II (616, 4.6) (635, 4.5) 
(656, 4.4) (672, 4.3) 

(935, 7.6) (1075, 6.8) 
(1188, 6.7) (1271, 6.4) 47.3/345.9 0.55/0.59 

NSGA-II (673, 4.9) (698, 4.8)  (995,7.4) (1104,7,3) (1143,7.0) 2.9/119.7 0.50/0.74 
 
Table 17 
Set coverage of different algorithms under from different motion mode 

 Bidirectional motion mode Unidirectional motion mode 
 CPLEX SPEA-II NSGA-II CPLEX SPEA-II NSGA-II 

CPLEX —— 1.00 1.00 —— 1.00 1.00 
SPEA-II 0.00 —— 1.00 0.00 —— 1.00 
NSGA-II 0.00 0.00 —— 0.00 0.00 —— 
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Fig. 14. The Pareto frontiers of the SPEA-II and NSGA-II algorithms at the scale of I=10 (unidirectional motion mode)  

The comparison between unidirectional (Fig. 4) and bidirectional (Fig. 14) movement patterns and the two tables above reveal 
a substantial difference in objective function values. Unidirectional motion enhances load stability. Conversely, bidirectional 
concurrent motion notably improves operational efficiency and reduces per-unit cargo damage costs. This underscores the 
intricate balance between load stability, operational efficiency, and cargo damage costs. 

  
(a) result of SPEA-II (b) result of NSGA-II 

              
Fig. 15. The storage location distribution map at the scale of I=20 and M=10 

(unidirectional motion mode) 

The findings from Fig. 15 and Table 16 and 17 confirm the superior solving efficacy of SPEA-II over NSGA-II. SPEA-II’s 
impact extends beyond Pareto frontier positioning to measurable performance metrics, consistently delivering higher solution 
quality and optimal cargo storage configuration.  

7. Conclusions and future works 
 

This study employs a novel approach, focusing on warehouse operations from the perspective of warehouse managers by 
analyzing key factors affecting efficiency: operational efficiency and cargo loss. The warehouse allocation model analyzes 
these two key indicators simultaneously to improve the overall performance of the warehouse. Additionally, it selectively 
extracts a subset from the Pareto solution set to generate a distribution layout diagram of storage locations. The study 
constructs Pareto frontiers to visually delineate the trade-offs between operational efficiency and goods loss. The research 
results of this paper show that whether the distribution of storage space in the warehouse is reasonable or not will have a 
significant impact on the operation efficiency of the warehouse and the loss caused by the movement of goods. Unreasonable 
storage space layout will make the enterprise respond to customer demand for a longer time, and at the same time, the 
warehouse operation cost will also increase. Therefore, enterprises should start from the overall perspective. Not only should 
we focus on operational efficiency, we should also consider the cost, so as to obtain more benefits and improve the overall 
competitiveness of the warehouse. In addition, through the comparison of different shelf size, stacker operation mode and 
cargo size, it is found that although the single direction of operation is more stable, the operation mode of two directions at 
the same time can effectively improve the operation efficiency and reduce cargo damage. And with the increase in the size of 
the goods, the appropriate expansion of the size of the shelf can make the storage allocation significantly optimized, but the 
inconsistency between the size of the warehouse and the size of the goods may also lead to the waste of storage space. The 
results of this paper also verify the effectiveness of SPEA-II algorithm in solving storage allocation problems from the aspects 
of objective function value, solution coverage size and distribution uniformity.  



 

 

194 

Future research could delve deeper into integrating a comprehensive framework that accounts for the intricate interplay 
between goods during both inbound and outbound processes. Additionally, exploring the dynamic nature of the storage 
lifecycle, with an emphasis on developing adaptive algorithms capable of accommodating evolving demands and optimizing 
warehouse performance, holds significant promise. Addressing these nuances will contribute to a more nuanced and holistic 
understanding of warehouse management systems, thereby facilitating enhanced operational efficiency and strategic decision-
making within the logistics domain.  
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