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 With the continuous upgrading of industrial technology and information technology, consumers 
can deeply participate in the whole life cycle of products and realize customized production. These 
unprecedented changes have brought consumers and manufacturers closer together, resulting in the 
intelligent business model of "Internet + Customized Production" and "Customer to Manufacturer 
(C2M)". C2M has been adopted by more and more companies. However, the transition from 
traditional business models to C2M is a problem that every company must face and solve. 
Personalized orders of many varieties and small lots put enormous pressure on the production of 
mainly labor-intensive electronic assembly companies. The theoretical findings of Industry 4.0 and 
Lean Manufacturing show that people play a central role in assembly operations. As an important 
element of the production system, worker scheduling has a direct impact on delivery time and cost. 
Worker scheduling requires not only matching people to jobs, but also considering flexible 
employment. According to the "Learning Curve" theory, workers with learning potential can 
continuously enrich their skills and work efficiency will show dynamic changes. Therefore, under 
the condition of shortest order delivery time and lowest cost, worker scheduling considering the 
learning effect becomes a challenge for enterprise decision makers. Firstly, the production method 
of manufacturing industry in C2M environment is studied. Then, based on single-skill task and 
multi-skill task, respectively, a learning curve-based model of dynamic change in worker skill level 
is constructed. And this model is used as the input of the assembly line worker scheduling model. 
Secondly, an Elite Non-dominant Sorting Whale Optimization Algorithm (ENS-WOA) is designed 
for this multi-objective optimization problem. The correctness and feasibility of the proposed 
algorithm are verified by selecting classical arithmetic cases for experimental comparison with 
other algorithms. Finally, the established worker efficiency change model, worker scheduling 
model and the proposed algorithm are applied to optimize the assembly line of water pump products 
of Company B, which is being transformed to C2M, and solved by MATLAB software. The results 
show that the model proposed in this paper is effective, stable and practical compared with the 
worker costs and delivery period required to complete the order in the original assembly line. 
Worker costs were reduced by 29.02% and orders were completed approximately 10 days earlier. 

© 2024 by the authors; licensee Growing Science, Canada 
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1. Introduction 

Customer to Manufacturer (C2M), is a model developed from the mass customization of Alvin Toffler's Future Shock in 1970. 
It is characterized by the consumer facing the manufacturer and the manufacturer providing personalization to the consumer, 
removing the intermediate link. In the C2M model, factories need the deep integration of flexible manufacturing technology, 
digital technology, and industrial information technology to realize customized production. Previously, research on flexible 
production systems has mostly focused on control theories and methods such as machine and equipment, production planning 
and decision optimization, ignoring workers as an important factor. As the core element in enterprise production organization, 
workers' learning ability, memory and flexibility enable production systems to effectively cope with complex and changing 
environments, but at the same time bring new challenges to optimally control production. In recent years, China's labor market 
has become increasingly complex, with rising labor costs and increasing mobility of personnel. This is especially true in the 



  

 

388

C2M business model, where a large number of workers need to be employed to enable rapid reconfiguration of production 
lines, customized production and increased production flexibility, making worker scheduling an even more important issue. 

The rest of this paper is organized as follows: Section2 shortly analyzes the literature on the manufacturing industry under the 
C2M model, the worker scheduling problem under the flexible employment strategy considering the learning effect and the 
improved whale optimization algorithm; Section 3 proposes a dynamic change model of the operational efficiency of single-
skilled workers and multi-skilled workers based on the learning curve, and uses it as the input of the assembly line worker 
scheduling model; Section 4 improves the whale optimization algorithm and designs the Elite Non-dominant Sorting Whale 
Optimization Algorithm (ENS-WOA) for solving the mathematical model, introducing non-dominant sorting, congestion 
distance, elite selection strategy ,crossover and variation in the original whale algorithm to improve the overall performance 
of the algorithm; Section 5 demonstrates the practicality of the proposed model and algorithm through cases; Section 6 
summarizes the contributions made in this paper and the sustainable research directions for the future. 

2. Literature review 

2.1 The C2M model in manufacturing 

Temu has adopted a C2M strategy that allows consumers to communicate directly with manufacturers through digital media 
to customize personalized products. In 2020, the first Suning C2M industry belt was established, followed by cooperation 
agreements with more than 20 companies in a row. Manufacturers can design and manufacture products with guaranteed 
demand as well as to attract consumers and meet their individual needs at low prices. Companies such as SAIC Volkswagen 
and SAIC Datsun have invested heavily in market research for this business to explore the individual needs of customers in 
the C2M model. Nissan Motor has proposed the “Any volume, Anytime, Anybody, Anywhere, Anything” plan to help 
customers realize customized production. Home furnishing enterprises such as Sofia have successfully completed the 
transformation and upgrading of C2M by relying on the trinity development of “Big data + Internet e-commerce platform + 
Intelligent factory”. The above research shows that the C2M model is in the development stage in China. Domestic and 
international research on practical solutions for production systems in the C2M model is scarce, especially for assembly lines 
in the manufacturing sector. 

2.2 Worker scheduling problems considering learning effect 

In 1936, Wright (1936) proposed the "log-linear model", also known as Wright's model. However, Wright's model did not 
provide the best fit in all cases, and various types of learning curves, such as Stanford-B model, DeJong model, Plateau model, 
and S-curve model, were developed for different applications. In recent years, there have been many studies on theoretical 
research and applications of learning effect, focusing on task repetition-based scheduling in manufacturing workshops  
(Azzouz et al., 2018; Y. Li et al., 2019), construction  (Lee et al., 2015; Tai et al., 2021) and healthcare  (Prasad et al., 2022; 
Tang et al., 2022; Valsamis et al., 2018), but there are fewer studies on worker scheduling based on learning effect theory. 
However, the learning effect has a non-negligible impact on the production system of enterprises and is an effective way to 
reduce production costs. Especially in the production system with mainly manual work, it is important to consider the learning 
effect of workers. Cohen and Ezey Dar-El (1998) studied the equilibrium problem of determining the optimal number of 
workstations for an assembly line considering the learning effect, pursuing cost minimization and profit maximization. 
Anzanello and Fogliatto (2011) did a systematic review of learning curve models and applications, and concluded that by 
modeling the learning curve can better assign tasks to workers, plan production more efficiently, and reduce production costs. 
Karaoz and Albeni (2005) and others integrated learning curves and indices describing technical aspects to assess worker 
performance under long production runs. Lohmann et al. (2019a) integrated learning curve modeling and cluster analysis 
methods to propose a homogeneous group formation based on workers' learning situations framework that helps managers to 
better organize production in mass customization scenarios. To fully utilize the potential of the workforce, Cavagnini et al. 
(2020) established exponential learning curves as a basis for quantifying worker allocation decisions. Neidigh and Harrison 
(2010) optimized the learning rate for order scheduling. Liu et al. (2016) performs dynamic staff allocation for a fiber optic 
connector manufacturing firm based on worker learning and forgetting effect to minimize the sum of inventory holding cost 
and the out-of-stock cost. Lohmann et al. (2019b) grouped workers with similar learning profiles by integrating learning curve 
modeling and cluster analysis. Fichera et al. (2017) investigated the problem of job scheduling, machine scheduling, and man-
machine assignment in Flow shop considering the learning ability of workers. 

Most of the above studies homogenize employees' learning and work to simplify the learning curve model, but there are few 
visual demonstrations of workers' learning effect. Meanwhile, papers devoted to learning curve models seldom consider 
worker scheduling assignments. 

2.3 Worker scheduling under flexible employment strategy 

Flexible employment was born in the 1920s during the Great Depression in the U.S. The common strategy was to recruit 
temporary workers, including fixed-term contract workers, temporary helpers, on-call workers and seasonal workers. IBM 
replaced its all-hire model with a flexible hiring model. General Motors Company hired about 200 temporary workers to 
replace absent workers on the assembly line. The Honda plant in Marysville, Ohio, called on office employees to complete 
assembly line tasks in response to worker shortages. Foote and Folta (2002) used temporary workers as an option for 
workforce expansion decisions. Kim et al. (2018) increased productivity by introducing unskilled temporary workers to 
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minimize total workstation costs, total costs of skilled and unskilled temporary workers, the minimizing the cycle time and 
work load as the objective to develop a mathematical model and verify the validity of this idea with examples. Corominas et 
al. (2008) also proposed the use of temporary workers to enhance the flexibility of workers to respond to seasonal demand 
orders. Similarly, due to the diversity of seasonal demand, Erdem (2011)opened new production lines, shift changes, and hired 
seasonal workers to increase production capacity. The key scheduling issue in a temporary labor environment is the hiring 
and allocation of permanent and temporary workers. Pinker and Larson (2003) developed a model to size permanent and 
temporary workers to minimize expected labor and backlog costs in an uncertain demand environment. Liu et al. (2022) found 
that a limited temporary and mobile worker configuration can solve the risk aversion problem in assembly line balancing. 
Emmons and Fuh (1997) studied the worker scheduling problem considering leave in the presence of both temporary and 
permanent workers. Stratman et al. (2004) analyzed the effect of worker skill dynamics using an analytic experimental design 
to compare the effect of using temporary and permanent workers on manufacturing cost performance. Mathur and Süer (2013) 
studied the practical problems of textile companies and proposed overtime as a useful strategy to adjust production capacity 
to reduce the amount of delayed work. To curb the slowdown of large assembly lines due to absenteeism and absenteeism,  
(Pilati et al., 2021)split the assembly line into several sections. 

2.4 The improved whale optimization algorithm 

In 2016, Mirjalili and Lewis (2016) proposed a new metaheuristic optimization algorithm, Whale Optimization Algorithm 
(WOA) for short, by studying the unique hunting foraging behavior of humpback whales. The algorithm is conceptually 
simple, with few parameters and easy to program, and has been applied in many fields, such as feature selection, data 
clustering, medical image diagnosis, neural network training, optimal resource allocation, economic scheduling, and unit 
combination. In order to solve the respective problems better with the help of algorithms, numerous scholars have proposed 
improved whale optimization algorithms. Paul et al. (2023) proposed a quasi-oppositional-based whale optimization algorithm 
(QOWOA) for solving the economic scheduling problem of cogeneration and compared it with some state-of-the-art 
algorithms to judge the effectiveness and stability of QOWOA. Chakraborty et al. (2022) proposed ImWOA for the image 
segmentation problem, and modified the selection process of random solutions in the search prey phase to prevent falling into 
local optimum. Ruihan (2021) proposed an improved whale optimization algorithm (AWOA) by introducing adaptive step 
factor function and adaptive difference variation factor to solve the problems of slow convergence and weak search ability in 
the late iteration. Singh and Singh (2023) combined WOA with NSGA-II algorithm to propose a bio-inspired re-initialization 
and decomposition whale optimization algorithm (R&D WOA). To address the drawbacks of WOA in large-scale 
optimization problems such as slow convergence and jumping out from the extremum, (Sun et al., 2022)proposed an improved 
whale optimization algorithm and cross-optimization algorithm (MWOA-CS) by using a new nonlinear convergence factor 
and nonlinear inertia weights to adjust the exploitation and exploration capabilities. El-Dabah et al. (2022) proposed a non-
dominated ranked whale optimization algorithm (NSWOA) to solve single and multi-objective optimal power flow (OPF) 
problems.  

Table 1  
Literature Analysis 

Literature Research 
Background 

Type Solving method Learning 
effect 

Objective 1 Objective 2 

(Zhi & Xu, 2019) Apparel 
manufacturing  

Flexible Flow Shop 
Scheduling (FFS) 

NSGA-II, εbound  √ Factory profit Worker 
satisfaction 

(Q. Li et al., 2019) Construction 
Project 
Management 

Multi-skilled project 
scheduling issues 

εbound  √ Project Validity Skill level 

(Azizi et al., 2010) Manufacturing cell Worker Job Rotation 
Issues 

SAMED-JR, SA, GA √ Total Delay / 

(F. Liu et al., 2021) Seru production Cross-trained worker 
assignment issues 

NSGA-II based modal 
algorithm, NSGA-II 
algorithm based on K-
means 

√ Minimal 
completion time 

Minimal 
workload 
imbalance 

(R. Liu et al., 2021) Manufacturing Allocation of multi-skilled 
workers considering 
energy consumption 

PT-ECSFR, NSGA-II, 
MOSA 

 Total worker 
cost 

Energy  

(Shi et al., 2023) Manufacturing Consider delay-free shop 
scheduling for overtime 

GASA  Minimal total 
inventory 

Minimal 
overtime costs 

(Tian et al., 2023) Aerospace industry Dynamic energy-saving 
scheduling for multi-
variety, low-volume 
flexible job shop 

BDABC  Energy   Processing 
cost 

This paper Automotive 
Industry 

Scheduling of assembly 
line workers considering 
learning effect and flexible 
labor  

ENS-WOA √ Order delivery 
time 

Total Cost 

 

This paper analyzes the relevant literature as shown in Table 1. Given the research perspectives of the above literature, it aims 
to provide solutions to the worker scheduling problem in the implementation of C2M transformation and upgrading in the 
assembly plant of enterprise B. The goal is to improve the overall performance of the production system by considering the 
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learning effect of workers and rationally allocating permanent and temporary workers according to the skill levels of 
heterogeneous workers. The main contributions of this paper are as follows (1) a learning curve-based model for the dynamic 
change of operation efficiency of single-skilled workers and multi-skilled workers is proposed; (2) a mathematical model 
based on the multi-objective optimization problem of worker scheduling is established with the optimization objectives of 
minimizing worker cost and minimizing order completion time to solve the order-assembly unit-operation-worker series 
problem; (3) an elite non-dominant sorting whale optimization algorithm (ENS-WOA) is designed to solve the mathematical 
model, and introduce non-dominant sorting, congestion distance, elite selection strategy and crossover variation in the original 
whale algorithm to improve the overall performance of the algorithm. 

3. Modeling of assembly line worker scheduling considering learning effect and flexible labor  

3.1 Modeling of operational efficiency changes 

In the De Jong learning curve model, the time required to complete the task decreases gradually as the worker repeats the task 
and the skills acquired by the worker improve gradually. At the same time, the De Jong model limits the extent to which the 
task completion time decreases, and the completion time decreases at a slower rate as experience is accumulated (De Jong, 
1957). However, regardless of the accumulated experience, the completion time is≥0. This is consistent with the situation of 
workers on assembly lines in manufacturing. In this paper, the variation of workers' operational efficiency based on the De 
Jong learning curve model of Eq. (1) is modeled. 

s 1
1( )MT T M

sβ
−= +  (1) 

1T represents the time required for the worker to complete the task in the first round; sT represents the time required for the sth 
round; 𝑀 represents the incompressibility factor, which is related to the task type, 0≤𝑀≤1. In the infinite successive task 
cycles 1T T M∞ = ;β represents the learning ability of the worker (0≤β≤1). In order to describe the relationship between skill 
level change and task time in detail, two aspects of single-skill tasks and multi-skill tasks were studied separately. 

Assume that worker i masters skill s, skill level is i
kl .The execution time required for single-skill task j at that skill level is 

k

i
lT

, then the completion time of single-skill task j is: 

0
1- i

i

k

i
l lT T M M t

ββϕ
−

= + ⋅ ⋅（ （ ） ） 2)( 

Here, (0 1)i iβ β≤ ≤  is the learning ability of worker i. iβ is heterogeneous and is related to the worker's work experience and 
education level. The larger iβ is, the faster the worker learns, and the faster the skill level increases. ϕ is the coefficient in the 
worker skill level change model. 𝑀 is the incompressible factor, which is related to the task type, and the maximum value of 
task completion time at an infinite cumulative task time is 

0l
T M .

0l
T  is the operating time at the initial skill level 0l . The time 

required for worker i to master skill s at a level from 0l to level kl is shown in Eq. (3). 

0

1log ( )
k

i i
l

l

Mt
T

M
T

ϕ β −=
−

 
(3) 

The time required to upgrade worker i's skill s from skill level kl to the next skill 1kl + is calculated by Eq. (4) as: 

0

0 0 0

1 1
1 1

1 1log ( ) log ( ) log ( )

k

i i i
k k k

k k k

i
l

l
i i ii i il l l

l l l

l l l

T
M

TM Mt t
T T T

M M M
T T T

ϕ β ϕ β ϕ β
+ +

+ +

−
− −Δ = − = − =

− − −

 (4) 

Assume that a single-skill task j requires a skill type and the minimum skill level required for task j is jsNS , and the actual 

completion time real
ijT allocated to worker i at that level is calculated as shown in Eq. (5): 
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k

js

i
lreal

ij j
NS

T
T T

T
=  (5) 

where, 
jsNST  is the completion time of task j at skill level jsNS . 

After a worker completes task j, the worker's skill is updated by introducing a decision variable isW . It indicates whether the 
cumulative completion time of worker i at skill s of level condition meets the time requirement for promotion to the next level. 
If it is met, 1isW = , otherwise, 0isW = . Update the skill level of the worker by Eq. (6). 

( ) (1 )i real i
s ij s isA T A W= + ⋅ −  （6） 

is

i i
k k Wl l +=  （7） 

If a task j requires more than two types of skills, it is called a multi-skilled task. Assume that the types of skills required for 
task j are }{ 1 2, ,......s s sSj j j , and that the requirements for different skills for task j will vary. The minimum level of skill 

required to complete task j is{ }1 2
, ,......

s s sSj j jNS NS NS . If worker i has all the skills needed to complete task j }{ 1 2, ,......s s sSj j j , 

the skill level under each skill is { }, 1, 2, ......i
ksl s S= , and the time taken to complete task j at each skill level is 

{ }1 2, ,......
k k kl l SlT T T .{ }0 0 01 2, ,......l l SlT T T is the operating time under both initial skill of 0l . Since the completion of multi-skilled 

task j requires the participation of 2 and more skills, considering the effect of multiple skills on the worker's completion time, 

the operation time of task j at the initial skill level 0l is { }1 2
, ,......

s s sSj j j jNS Max NS NS NS= .The minimum level of skill required 

to complete a multi-skilled task𝑗 is { }1 2
, ,......

s s sSj j j jNS Max NS NS NS= .And the time to complete the task 
k

i
lT under a multi-

skilled task varies as a function of time t as: 

0
1- i

i

k

i
l lT T M M t

ββϕ
−

= + ⋅ ⋅（ （ ） ） (8) 

The minimum time required for worker i to master skill s from " 0l "level to " kl " level is: 

01

1log ( )
k

i i
l

l

Mt
T

M
T

ϕ β −=
−

 
(9) 

The completion time at the minimum skill level required to perform the task is jT ,and the actual completion time real
ijT  assigned 

to worker i is calculated as shown in Eq. (10): 

k

j

i
lreal

ij j
l

T
T T

T
=  (10) 

where,
jlT is the execution time of task j at the skill level of jNS . 

The model quantifies the effect of learning effect of heterogeneous workers on operational efficiency by improving the De 
Jong learning curve, and updates workers' skill levels in real time through the learning curve based on the amount of work 
they complete at each stage. 

3.2 Problem Description 

The production tasks of a C2M model manufacturing company are based on personalized orders. Before building a 
mathematical model, the problem needs to be described, as shown schematically in Fig. 1. 
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Fig. 1. Personnel assignment chart 

The flow of an assembly line consists of j tasks. These tasks form a serial assembly line, where the previous tasks are 
completed before the later ones can be started and the process cannot be interrupted. Each task requires some specific skills 
to complete successfully. The workforce consists of N permanent workers and M temporary workers. There are p types of 
products, o orders, s types of skills, c assembly cells and k batches per assembly cell. Prior to worker allocation, there will be 
differences in the level of proficiency of workers, considering their prior work experience and level of education. As a result, 
their learning rates are different, but workers are trained accordingly before they start work. For all the skills required for the 
job processes in product manufacturing, the worker's initial skill matrix Pis  and the task-skill correlation matrix Qjs are 
constructed. The dynamic skill level of workers can be obtained from Eq. (7). 

 

Fig. 2. Worker-task assignment chart under flexible employment strategy 

As shown in Fig. 2, permanent workers can maximize their individual capabilities and can be given assignments as long as 
their skill level meets the requirements of the task. For casual workers, they can only perform job-specific tasks based on the 
job requirements of the production line and their limited skill level and can experience higher product defect rates. This paper 
will additionally consider the product quality and cost differences between permanent and temporary workers. Workers are 
paid a basic base salary and performance pay, with monthly performance pay related to the number of hours a worker operates 
the line each month; basic pay is related to the type and level of worker and not to the specific task to which they are assigned. 

3.3 Establishment of hypothetical conditions 

In order to bring the research process closer to the way companies produce in the C2M e-commerce model and. At the same 
time, to facilitate the solution of the mathematical model, the following assumptions were made to simplify the model: 

（1）Assume that the entire manufacturing system is predominantly manual, that the number of workers and their learning 
capacity are known, and that permanent workers have the potential to operate multiple operations; 

（2）Assume that workers maintain a stable operational capability after completing skill acquisition, disregarding the effect 
of the forgetting curve; 

（3）Assume that an order can only be assigned to one order batch sequence in an assembly cell; 

（4）Assume that workers are heterogeneous and differ in terms of learning rates; 

（5）Assume that the maximum number of tasks that can be performed simultaneously by each multi-skilled worker is 3; 

（6）Assume that the ability of a worker to complete a task and the time spent on it depends on the level of skill and the 
number of skills acquired by the worker; 
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（7）Assume all casual workers have the same cost of quality loss per unit of time; 

（8）Assume that the number of skills required for each task does not exceed3 and that the maximum number of skills 
acquired by a permanent worker at the same time is 3, with skill levels l1-l4; 

（9）Assume no blocking stoppages or other time between tasks; 

（10）Assume that an order has only one product type. 

3.4 Parameter and variable setting 

（1）Parameter Setting 

i: {1,2,3……I} Worker set 

N: Number of permanent workers 

M: Number of temporary workers 

O: {1,2,3……O} Order set 

p: {1,2,3……P} Product set 

j: {1,2,3……J} Task set 

s: {1,2,3……S} Skill set 

lk: { }1 2, ,...... kl l l Skill level set 

c: {1,2,3……C} Assembly cell set 

k: {1,2,3……K} Batch set 

Cd: Quality loss cost per hour 

sp: Lead time for product p 

T: Worker hours per shift 

Qo: Demand for order O 

Do: Delivery period for order O 

Hi: Number of skills possessed by worker i 

0
isl : Initial skill level of worker i mastery skill s 

i
ksl : Skill level of worker i mastery skill s 

jsz =
1,if task   requires  the skill 
0,otherwise

j s



 

isx =
1,if worker acquires th

,
 e skill 

0 otherwise
i s




 

ockH =
1,if the order  is assigned to batch  of assembly cell 
0,otherwise

o k c



 

=
1, if worker  is a single-skilled worker
0, otherwise

i


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iy =
1, if worker  is a multi-skilled worker
0, otherwise

i



 

iz =
1, if worker  is a temporary worker
0, otherwise

i



 

min
cI : Minimum number of workers that can be assigned to assembly cell c 

max
cI : Maximum number of workers that can be assigned to assembly cell c 

jsNS : Minimum skill level for completion of task j worker mastery skill s 

ksl : Level of skill s, 1 2 3 41, 2, 3, 4sl sl sl sl= = = =  

opz =
1,  if the product type of the order  is 
0,  otherwise

o p



 

ipy =
1,  if worker  can assemble product 
0, otherwise

i p



 

iβ : The worker i’s learning rate 

ϕ : Coefficient 

real
ijT : The actual time for worker i to complete task j 

oT : Lead time for order O 

oT =
,-1 1

0,if 1, 1 or ,

,otherwise
ock ock opo c k o c k o p

P

H k H H H z z

s
+

= = = =



， ，（ ） （ ）
=

  

skC : Cost of man-hours with skill s and level kl  

aC : Daily base salary for single -skilled permanent workers 

bC : Daily base salary for multi-skilled permanent workers 

tC : Daily base salary for temporary workers 

ijsu =
1, if worker  has the minimum skill required for task 
0, otherwise

i j



 

Number of workers in assembly cell c who can execute order O：
i 1

I

oc op ipf z y
=
  

11 12 1

1 2

  ...  
 ...  ...  ...  ...

   ...  

s

is

i i is

P P P
P

P P P

 
 =  
  

 
11 12 1

1 2

   ...  
 ...   ...   ...   ...

   ...  

s

js

j j js

Q Q Q
Q

Q Q Q

 
 =  
  

 

（2）Decision Variables 
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ijy :
1,  if worker  is assigned to complete task 
0, otherwise

i j



 ocf =
1,  if order  is assigned to assembly cell 
0,  otherwise

o c



 

icx =
1,  if worker  is assigned to assembly cell 
0,  otherwise

i c



 ox =
1,  if order  can be picked up
0,  otherwise

o



 

3.5 Determination of the objective function 

1 1 1 1 o 1 1 1 1 1

ymin( )( ) )
3600 3600 3600

realS I I J O O O J I
ij i d orealsk i a i b i t

ij ij o o
s i i j o o j i

T z C QC x C C z C
y T Q T

T= = = = = = = = =

+ +
+ + +      (11) 

1 1 1 1
min  ( )

I O J O
real

ij ij o o
i o j o

y T Q T
= = = =

+   （12) 

subject to   

1
1,

N M

ij
i

y i I
+

=

= ∀ ∈  （13) 

1
1,

J

ij
j

y i M
=

= ∀ ∈  （14) 

1
1 3,

J

ij
j

y i N
=

≤ ≤ ∀ ∈  （15) 

1
1 3,

S

is
s

x i I
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The objective function (11) minimizes the sum of the total costs of permanent and temporary workers in the case of fulfilling 
orders. Three components are included: hourly pay, basic base pay, and quality loss pay. The objective function (2) ensures 
that all orders have the shortest completion time. Constraint (13) ensures that there are workers to complete each task and 
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each task can only be assigned to one worker. Constraint (14) ensures that each temporary worker can only be assigned one 
task. Constraint (15) indicates that the number of permanent workers can be assigned tasks is 1-3. Constraint (16) requires 
workers to master at least one skill and at most 3 skills; Constraints (17), (18), (19) ensure the corresponding 0-1 variables. 
Constraint (20) ensures that the skill level of workers is l1-l4. Constraint (21) ensures that only workers whose skill level meets 
the minimum requirements needed for the operation can be assigned to that operation process. Constraint (22) indicates that 
accepted orders can only be assigned to one order batch sequence in the assembly cell, and rejected or changed orders will 
not be scheduled to any order batch sequence. In order to balance the workload among workers, constraint (23) ensures that 
the number of workers in each assembly unit is within a certain interval. Constraint (24) indicates that each worker can be 
assigned to only one assembly cell. Constraint (25) indicates that an order contains only one product type. Constraint (26) 
indicates a logical constraint. 

4. Design of ENS-WOA 

4.1 Flow of the original whale optimization algorithm 
 

The original whale optimization algorithm consists of 3 operational steps: encircling the prey, bubble net attack and random 
prey search, and the pseudocode is shown in Table2. The whale population represents multiple potential solutions to the 
optimization problem, each of which is also referred to as a “search agent”. The ultimate goal is to find the optimal search 
agent location for the objective function. Since the original whale optimization algorithm is proven feasible on the benchmark 
function, there is much room for research in solving the practical problem of this paper. In this chapter, a unique whale 
optimization algorithm will be designed based on the assembly line worker scheduling problem. 

Table 2  
The WOA pseudocode 

WOA 
Input Population size N, Parameter a, A, l, C, p, Crossover probability cp ,Mutation probability mp , Maximum 

number of iterations Maxt  
Output Optimal solution x*, Fitness value ( ( ))Fit f x  
1 Initialize the population 1 2( , ,..... ) 1, 2,. n

i i i i i NX X X X == ……， . Set the maximum number of iterations Maxt  
2 Coding of whale populations iX ,Calculate the fitness value ( ( ))Fit f x  
3 Find the best search agent location x* 
4 While t< Maxt  
5 for i=1,2,……n 
6    Update a, A, l, C, p 
7 if p<0.5 
8 if 1A <  
9 Update the current search agent location by shrink-wrapping mechanism 
10 else 
11 Select a random search agent Xrand 
12 Update the location of the current search agent via the search method 
13 end if 
14 else 
15 Update search agent location via spiral update method 
16 end if 
17 Calculate the fitness value for each search agent 
18 t=t+1 
19 end while 
20 Output the best search agent location x* 

 

4.1.1 Surrounding the prey 

The humpback whale leader determines the prey position by continuously iterating updates, and the rest of the whales follow 
to update to the best position. Since the best position in the search space cannot be predicted in advance, the algorithm sets 
the current best whale position as the position closest to the target prey. After specifying the best search agent position, other 
search agents try to approach the best search agent and keep moving to update its position to gradually surround the prey. 
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( 1) -x t x t A D
→→

∗+ = ⋅
 

（）  （27) 

( ) ( )D C x t x t
→→ → →

∗= ⋅ −  （28) 

where, t denotes the current number of iterations; A
→

and D
→

 are the coefficient vector; ( )x t
→

∗ is the best position of the humpback 

whale so far; ( )x t
→

is the current position of the individual whale; ( 1)x t
→

+ is the position of the individual whale in the t+1th 
iteration; D denotes the distance; and the dot operator denotes element-by-element multiplication. 

12A a r a
→ → → →

= ⋅ −  （29) 

22C r
→ →

=  （30) 

where,  is the convergence factor. As t increases,  decreases linearly from 2 to 0. The expression is 2 (2 / )Maxa t t= −


,where

Maxt is the maximum number of iterations; 1r
→

, 2r
→

are the random vector uniformly distributed in the range of [0,1] , and C
→

is 
the swing factor. 

4.1.2 Bubble net attack 

During predation, humpback whales swim around their prey in a gradually shrinking circle. According to the value of the 
probability factor p (0≤p≤1), the whale has two ways of movement. Assuming that the probability of an individual whale 
randomly choosing one way to complete position updating is 0.5. When 0.5p < , it enters the contracting encirclement phase; 
when 0.5p ≥ , it enters the spiral updating position phase. 

（1）Shrink to surround the prey 

The shrink-wrapped prey is similar to the global search prey. However, the difference is that A takes values in the range
[ 1,1]− . Shrinking the enclosed prey is mainly achieved by reducing the  in Eq. (29). When choosing the best whale position, 

the optimal solution in the previous iteration is considered as the reference solution to promote the remaining whales to be 
close to the best candidate whale position. As shown in Fig. 3, ( , )X Y is the original position of the whale, and * *( , )X Y
represents the current best position of the whale. 

 

Fig. 3. Two-dimensional diagram of the shrink-wrapping mechanism 

（2）Spiral Position Update 

It refers to the process of constructing 1 logarithmic spiral curve based on the current whale position and the best whale 
candidate position, and the individual whale slowly approaches the best whale position and exhales bubbles to catch prey. Eq. 
(31) describes the position transformation of the whale spiral movement.  
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'( 1) cos(2 ) ( )blx t D e l x tπ
→ →→

∗+ = ⋅ ⋅  (31) 

' ( ) ( )D x t x t
→ → →

∗= −  (32) 

where, 'D
→

is the distance between the whale individual and the current best whale individual at the t th iteration. ( 1)x t
→

+ is the 
position of the individual whale at the t+1th iteration. l  is a random number with controlled values and b  is the logarithmic 
spiral shape constant. 

In summary, the mathematical model of a humpback whale attacking its prey with a bubble net is as follows: 

*

' *

( ) , 0.5
( 1)

cos(2 ) ( ), 0.5bl

x t A D p
x t

D e l x t pπ

→ → →
→

→ →

 − ⋅ <+ = 
 ⋅ ⋅ ≥

 (33) 

P is the random number generated by uniform distribution between [0,1]. 

4.1.3 Random prey search 

In addition to using the bubble net attack method to find prey, humpback whales also use a random search feeding method, 
as shown in Fig. 4. Random search is achieved by controlling the change of A value. When 1A ≥ , the whale swims outside 
the constricted envelope and keeps moving in the direction of the random whale individual thus expanding the search range 
away from the current target prey and moving to other better prey. The mathematical model is as follows: 

( 1) ( )randx t x t A D
→ → → →

+ = − ⋅  (34) 

( ) ( )randD x t C x t
→ → →

= ⋅ −  (35) 

where, ( )randx t
→

 is a random selection of whales from the current population. 

 

Fig. 4. Two-dimensional diagram of random prey search mechanism 

4.2 Design of ENS-WOA 

Similar to other population intelligence optimization algorithms such as particle swarm optimization algorithms and difference 
optimization algorithms, whale optimization algorithms must also maintain a balance between global and local search. 
However, the whale optimization algorithm currently has problems, such as: when the dimensionality of the optimization 
problem increases, the WOA will lose diversity and mature prematurely at a later stage of evolution. To address the above 
problems, an improved whale optimization algorithm is designed from the following aspects: 

1. Combine the advantages of the original WOA with the non-dominated sorting technique to make full use of the advantages 
of both. The fast convergence property of WOA and the effectiveness of non-dominated sorting for solving multi-objective 
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optimization problems are very useful for solving complex and large iterative computations and can significantly increase the 
performance of WOA. 

2. The crowding distance mechanism is incorporated into the original WOA. The more crowded individuals are able to enter 
the next generation population in preference, and the rest are eliminated to maintain diversity. Meanwhile, the elite selection 
strategy is incorporated to improve the quality of the solution set. 

3. The introduction of crossover operator and variational operator can both global random search capability and prevent 
premature convergence. 

4.2.1 Coding of whale locations 

A three-level chromosome real number coding method was developed in order to make chromosomes contain the association 
information between orders, cells, workers and tasks at the same time, as shown in Fig. 5. 

 

 

 

Fig. 5. Three-level chromosome real number coding Fig. 6. Worker coding mechanism 

First, determine how many assembly cells to build and to which assembly cell each worker is assigned. The first level of the 
chromosome gene value contains 2 × I numbers, where I is the number of workers. The first segment indicates the worker-
assembly cell assignment: 2 × I numbers are arranged in random combinations in order to determine the number of assembly 
cells. Where, "1,2,......I" denotes the worker number and the number greater than I denotes the assembly cell interval to obtain 
the worker-assembly cell assignment. Take O=5, C=2 and I=10 as an example, as shown in Fig. 6. The first layer of the 
chromosome contains 20 genes, and the 10 workers are finally assigned to 2 assembly cells according to the coding method.

1 2 4 6 7 9{ , , , , }C I I I I I= , 2 1 3 5 8 10{ , , , , }C I I I I I=   

Next, determine which assembly cell each order is assigned to and the order's batch order within the assembly cell. The second 
layer is coded in a sequential manner, with M orders and I workers as an example. The second layer of chromosomal gene 
values has a total of M+I-1 genes, dividing the orders into G groups. The number 1,2,...,M represents the order number, and 
the number M+I-1 represents the redundancy code, which is used to split the cell. According to the coding result, if G≤C, 
group g and assembly cell c can achieve one-to-one correspondence; if G>C, the excess group g is then assigned to each 
assembly cell c in turn. In the following, two examples are explained, as shown in Fig. 7 and Fig. 8. 

  

Fig. 7. Example of coding for 5 orders, 10 workers, G≤C Fig. 8. Example of coding for 5 orders, 10 workers, G>C 

M=5, I=10, the number of genes on the chromosome was 14, and the 5 orders were divided into 2 groups. 1 1 4{ , }g O O= ,

2 5 2 3{ , , }g O O O= .Since C = 2 and G = C, it follows from the encoding that 1 1 4{ , }C O O= , 2 5 2 3{ , , }C O O O= .  

M=5, I=10, the number of genes on the chromosome was 14, and the 5 orders were divided into 4 groups. 1 2{ }g O= ,

2 3{ }g O= , 3 5 1{ , }g O O= , 4 4{ }g O= .Since C = 2 and G > C, it follows from the encoding that 1 2 5 1{ , , }C O O O= ,

2 3 4{ , }C O O= . 

Finally, the allocation relationship between workers and tasks in the cell is determined. Based on the results of the order-
assembly cell allocation, the products to be completed in each cell and their tasks can be derived. The number of genes in the 
third tier is equal to the number of tasks in each cell. As shown in Fig. 9, the assembly cell 1 2 4 6 7 9{ , , , , }C I I I I I= , then the 
numbers 2, 4, 6, 7, 9 are randomly coded. 
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Fig. 9. Task code of C1 

4.2.2 Whale population initialization 

After finishing encoding and decoding, the initial solutions of whale populations are generated based on the encoding rules. 
In this paper, we use a random generation method to generate two initial populations PA and PB of size N. The current 
evolutionary generation Gen=1 is set, and the position of each individual whale represents one solution of the objective 
function, i.e., an allocation scheme. 

In the whale population, each individual consists of an n-dimensional random vector with the following equation: 

min max min(1, )( )iX x rand D x x= + −  (36) 

where, 1 2( , ,...... ,) 1 2,,n
i i i i i NX X X X == …… .N is the population size and D is the dimensionality of the objective function. 

maxx and minx are the upper and lower bounds. (1, )rand D is a random number within [0,1]  

4.2.3 Fitness function 

Both objective functions in this paper are minimized, and the following conversion method can be used, as shown in Eq. (37). 

when the objective function is 
( ),

to find the maximum value
( ( ))

when the objective function is 1 ,
to find the minimum value( )

f x
Fit f x

f x



= 



 (37) 

4.2.4 Non-dominant sorting 

The non-dominated ranking is based on the domination level to rank the Pareto optimal solutions. The multi-objective WOA 
based on Pareto ranking has one main point: the algorithm seeks the set of Pareto solutions instead of one Pareto solution. 
Therefore, the crowding degree operator needs to be added to ensure the diversity of the population. The flow is shown in 
Fig. 10. 

  

Fig. 10. Workflow of Non-dominant sorting Fig. 11. Congestion diagram 

 

Select individuals to be retained by ranking Frank and crowding distance dn . When the ranks of two individuals are different, 
the higher ranked individual is selected; when the ranks of two individuals are the same, the individual with the higher dn is 
selected. It is shown in Fig. 11. 

1 1

1
( )

m
n n

d j j
n

n f f+ −

=

= −  (38) 
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where, dn denotes the congestion at point n, 1n
jf + denotes the jth objective function value at point n+1, and 1n

jf − denotes the jth 
objective function value at point n-1. The elite selection strategy can make the algorithm run faster. It can also expand the 
search space and prevent the satisfactory solutions already found from being discarded, thus improving the quality of the 
population. 

4.2.5 Crossover and variation 

The traditional crossover operator is a fixed probability with a small search space. In this paper, we introduce the arithmetic 
crossover operator, which takes two matched waiting crossover individuals in the population and obtains two new individuals 
respectively by corresponding mathematical operations, as shown in Eq. (39): 

(1 )
(1 )

a b a

b a b

X X X
X X X

α α
α α

′ = + −
 ′ = + −

 (39) 

where, aX  and bX  are the two individuals in the population waiting to cross over. '
aX and '

bX  are two new individuals. α  is a 
uniform random number of [0,1]. 

Variation is used as an auxiliary way of crossover operations to prevent the generation of local optima. The common variation 
methods for real number coding include uniform variation, non-uniform variation, Gaussian variation, normal variation, 
adaptive variation and boundary variation. The uniform variation used in this paper is to replace the original gene with a 
random number f uniformly distributed in some range with a small probability. 

If ix is the value of the original gene location, 1, 2......i n= .The maximum value of ix  that can be taken is iU  and the minimum 

value is iL . The value of ix′after uniform variation is as follows: 

( ) 0.5
( ) 0.5

i i i
i

i i i

x U x f
x

x x L f
β
β

+ × − >′ =  − × − ≤
 (40) 

where, β  is a uniform random number between[0,1] . 

4.2.6 Process of ENS-WOA 

As shown in Fig. 12, ENS-WOA can be achieved by the following steps: 

Step 1: Initialize the system parameters a, A, l, C. Randomly generate 2 initial population of whales with Worker No., Order 
No. and Task No. attached to two chromosomes, both with population size N. The crossover probability is cp , the variation 

probability is mp , and the maximum number of iterations is Maxt . Define the number of iterations t=0. 

Step 2: Input the parameters of the worker scheduling model, specify the fitness function, and calculate the fitness value for 
each search agent (whale). 

Step 3: The operations of non-dominated sorting, arithmetic crossover, uniform variation, calculation of crowding distances 
and elite selection are performed on population AP . 

Step 4: In the initial population BP , the fitness value is calculated and the optimal agent position x* is determined. Use Eq. 
(27) and Eq. (34) to update the location of the search agents (whales) 

Step 5: If the conditions of Step 4 are not satisfied, then use Eq. (33) to spiral update the location of the search agent (whale) 
to find the global best agent x*. Record the fitness value of the search agent (whale) in population BP  at this time. 

Step 6: The optimized population AP  in Step 3 is merged with the WOA-optimized population BP  in Step 5 to form a new 

population CP  with a population size of 2N. 

Step 7: Take a fast non-dominant sort on the new population CP  and record the best for each generation. Increase the number 
of population generations by 1. Repeat Steps 4 - 7. 
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Step 8: The crowding distance of the new population CP  is calculated and an elite selection strategy is used to filter individuals 

into the new population DP  until the population DP  is full (the number of individuals reaches N) .The remaining solutions are 
eliminated. 

Step 9: Determine whether ENS-WOA runs to the Maxt . If “yes”, output the Pareto solution sets. Otherwise, skip to Step 3. 
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CheckP

Start
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Whale location
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Fig. 12. Flowchart of ENS-WOA algorithm 

4.3 Algorithm verification 
 
4.3.1 Evaluation Metrics for Algorithms 
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The performance of a multi-objective optimization algorithm is usually evaluated in terms of three aspects: running time, 
occupied memory and quality of the solution. The quality of the solution includes the convergence, diversity and distribution 
of the algorithm. 
 
（1）Convergence and diversity - Inverse Generation Distance (IGD) 
 

The IGD metric uses the real Pareto solution set as a reference to calculate the average of the distances between each reference 
point and the nearest non-dominant solution in a known Pareto front(Van Veldhuizen & Lamont, 2000). 

2

1

n

i
i

d
IGD

n
==


 
(41) 

1
min( )

m
i j

i m m
k

d f f
=

= −  (42) 

where, n is the number of solutions in the true pareto front, id  is the Euclidean distance between the ith solution in the pareto 
front and the closest solution in the solution set, and m is the number of objective functions. From Eq. (41), it can be seen 
that the smaller the value of id , the smaller the value of IGD, and the better the convergence and diversity of the algorithm. 

（2））Distribution—Spacing（Sp） 

Spacing (Sp) estimates whether the set of Pareto front solutions is uniformly distributed (Schott, 1995), and the formula is as 
follows: 

2

1

1 ( )
1

n

i
i

Sp d d
n =

= −
−   (43) 

where, , 1,......i j n= . id  is the Euclidean distance between the ith solution in the pareto front and the closest solution in the 

solution set, and m  is the number of objective functions. d  is the average of all id . The smaller the value of Sp, the better 
the uniformity of the algorithm. 
 
4.3.2 Classical arithmetic testing and comparative analysis 
 
To evaluate the performance of the proposed ENS-WOA to solve the personnel assignment problem, it was coded in 
MATLAB R2016b and run on a computer configured with an ) Intel(R) Core(TM i5-12500H (CPU)、 frequency of 
2.50 GHz , 16 GB RAM and Windows 11operating system. Tests were performed using ZDT1 and ZDT2 from the ZDT 
family of test functions as shown in Eq. (44) and Eq. (45) (Zitzler et al., 2000). Where, the leading edge of ZDT1 is concave 
and the leading edge of ZDT2 is convex. Also, the performance of the comparative ENS-WOA is evaluated using the WOA, 
NSGA-II algorithm as a control. 
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The comparison of algorithms requires setting uniform parameters. The population size is 200, the dimension of the test 
function dim is 50, the maximum number of iterations is 500, the crossover probability of the ENS-WOA and NSGA-II 
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algorithms is set to 0.8, and the variance probability is set to 0.05. [ 1,1]l = − , 1b = .15 sets of experiments are conducted for 
each function, for a total of 30 sets of experiments. 

Fig. 13 and Fig. 14 show the Pareto solution sets obtained by the three algorithms for the test functions ZDT1 and ZDT2 after 
30 sets of experiments, respectively. The running time and other evaluation metrics of ZDT1 and ZDT2 under different 
algorithms are shown in Table 3. 

 

                                             a） WOA                               （b） NSGA-Ⅱ                           （c）ENS-WOA 

Fig. 13. ZDT1 Pareto frontier of three algorithms 

 

                                        （a） WOA                                 （b） NSGA-Ⅱ                           （c） ENS-WOA 

Fig. 14. ZDT2 Pareto frontier of three algorithms 

Table 3  
Evaluation metrics of test functions ZDT1 and ZDT2 under three algorithms 

Evaluation Metrics WOA NSGA-Ⅱ ENS-WOA 
ZDT1 ZDT2 ZDT1 ZDT2 ZDT1 ZDT2 

Running time/s 10 11 7 8 4 8 
Number of solutions 94 95 85 93 92 89 
Sp 0.005 0.0031 0.00358 0.00195 0.00162 0.00093 
IGD 0.0034 0.0022 0.00244 0.00202 0.00183 0.0008 

 

The results of ZDT1 and ZDT2 show that the WOA and NSGA-II algorithms obtain larger values of Sp, IGD for the solution 
set, indicating that the combined performance of WOA and NSGA-II is worse than ENS-WOA. ENS-WOA has better 
convergence, distribution and uniformity. However, the benchmark case experiment does not clearly show the advantage of 
the operational efficiency of the ENS-WOA algorithm. 

5.  Case Study 
 

Company B is always pursuing innovation and striving to achieve the transformation to C2M. The company's main products 
include wiper systems, airbags, water pumps, fans, and window crank motors that are suitable for different car models. In 
recent years, with the popularity of customized cars, the production of components has also faced a huge change. Multi-
species and small-lot custom orders have become mainstream, and single-piece personalized orders are increasing year by 
year. In addition, customers are demanding higher and higher delivery periods for their products. Therefore, companies need 
to make transformation and adjustment to achieve flexible production. Take pump products as an example, the assembly 
process of different models of pumps is basically the same, mainly including rotor assembly, stator assembly and shell 
assembly. The product is finished on 1 conveyor belt and other workbenches in Company B, as shown in Fig. 15. Due to 
company secrecy, only the code is shown. The operation method of the assembly line is "manual operation + semi-automatic 
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operation", except for ST4200, ST4300, ST4400, ST6500, ST6600 and ST6700 processes, which are semi-automatic 
operations, all other processes are manual operations. The operation flow is shown in Table 4. 

Table 4  
Information of the task of all models of water pumps 

Worker No. Task No. Task code Worker/equipment standard processing time (sec/piece) 

I1 
1 ST2000 20.9 
2 ST2100 8.0 

I2 
3 ST2200 11.4 
4 ST2300 18.1 
5 ST2400 9.8 

I3 
6 ST2550 15.3 
7 ST2700 15.1 

I4 
8 ST4100 17.0 
9 ST4200 22.1 

I5 
10 ST4300 12.0 
11 ST4400 12.2 

I6 12 ST6000 15.2 

I7 
13 ST6100 21.9 
14 ST6200 6.0 

I8 
15 ST6251 16.9 
16 ST6280 10.8 
17 ST6300 20.6 

I9 
18 ST6400 22.1 
19 ST6500 18.6 

I10 
20 ST6600 17.6 
21 ST6700 12.0 

I11 
22 ST6750 12.8 
23 ST6800 7.5 

I12 24 ST6900 20.9 
I13 25 ST7000 18.2 

I14 
26 ST7100 23.0 
27 ST7200 15.7 

I15 
28 ST7300 12.4 
29 ST7400 12.2 

 

 

Fig. 15. Company B pump assembly line 

At present, the pump assembly line has 15 Permanent workers per shift. The workers are trained to work in a unified way, 
and the production is organized in a single shift system. The workers work five days a week, and the working hours are 10h 
per shift. The workers' salary is composed of base salary and overtime pay. The cost per unit work hour is the same for all 
workers, which is ￥10/h. If overtime production is performed, the overtime pay per unit time is 1.5 times of the normal pay. 
However, the relationship between quality loss and workers' salary is not considered. 

5.1 Determination of workers' initial operating efficiency level 

First, the task-skill correlation matrix Qjs is delineated in detail based on standard work instructions. The technical experts and 
assembly line leaders are arranged to measure the skill mastery of workers in the production line. The learning rate of workers 𝛽i is set, and the matrix of workers' mastery of initial skills Qi  is developed. The judgment criteria relied upon in filling in the 
data are comprehensive, including education level, worker skill competition test results, work experience, and skill certificates. 
The status is "1" and "0". "1" means mastered and "0" means not mastered, and each element is marked with Qi, which 
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indicates the mastery of skill s by employee i. Table 5 describes the worker's mastery of the initial skill matrix . The task-

skill association matrix Qjs  is shown in Fig. 16. 

Table 5  
Worker Mastery Initial Skills Matrix  

 S1 S2 S3 S4 S5 S6 Total 
I1 1 0 1 0 1 0 3 
I2 0 0 1 1 0 1 3 
I3 1 0 1 0 0 1 3 
I4 0 1 1 0 0 0 2 
I5 0 0 1 0 1 0 2 
I6 1 1 0 0 0 1 3 
I7 0 0 0 0 1 1 2 
I8 0 0 1 0 1 1 3 
I9 1 1 0 0 0 1 3 
I10 1 1 0 1 0 0 3 
I11 0 0 1 0 0 1 2 
I12 0 1 1 0 0 0 2 
I13 0 0 0 1 1 1 3 
I14 1 0 1 0 1 0 3 
I15 1 1 1 0 0 0 3 
Total 7 6 10 3 6 8 — 

 

 

  
Fig. 16. Task-skill correlation matrix  Fig. 17. Minimum skill level required to complete task j, jNS  

The minimum skill level required for single-skill task j is jsNS , and the minimum skill level required for multi-skill task j is

jNS , as shown in Fig. 17. According to the types of skills acquired by workers, workers with a single skill are level I, workers 
with two skills are level II, and workers with three or more skills are level III. According to (Lev & Withers, 2002) 's literature 
study, the learning rates βi  for workers at different levels are 0.152, 0.312, and 0.515, respectively. The specific information 
of workers is counted in Table 6. Since the phase of skill level update is set to one month, the coefficient in the model of 
worker skill level change is 22. 

Table 6  
Information on worker levels, study rates, etc. 

Worker I1 I2 I3 I4 I5 I6 I7 I8 
Level III III III II II III II III 

 
0.515 0.515 0.515 0.312 0.312 0.515 0.312 0.515 

Worker I9 I10 I11 I12 I13 I14 I15  
Level III III II II III III III  

 
0.515 0.515 0.312 0.312 0.515 0.515 0.515  

The value of incompressibility factor M differs due to the different process contents of each job. The values of the 
incompressibility factor M for jobs {J1, J2, ……J29} are shown in Table 7. 
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Table 7  
The value of incompressibility factor M for each task 

Task J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 

 0 0 0 0 0 0 0 0 0.6 0.6 0.6 0 0 0 0 

Task J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29  

 0 0 0 0.6 0.6 0.6 0 0 0 0 0 0 0 0  

The workers' mastery levels of each skill were updated by Eq. (6) and Eq. (7) based on the measurement of the workers' hours 
of completing each task in the previous stage, as shown in Table 8.  

Table 8  
The level of mastery of each skill by permanent workers  

 S1 S2 S3 S4 S5 S6 
I1 l2  l2  l2  
I2   l2 l2  l2 
I3 l3  l2   l2 
I4  l2 l1    
I5   l1  l2  
I6 l2 l2    l2 
I7     l2 l2 
I8   l2  l2 l2 
I9 l3 l1    l3 
I10 l1 l2  l1   
I11   l2   l2 
I12  l3 l2    
I13    l3 l2 l3 
I14 l2  l2  l2  
I15 l3 l3 l3    

5.2 Development of worker scheduling program 

The skills acquired by workers are divided into 6 types. There are 29 assembly tasks for various types of pumps, and the 
number of permanent workers is 15. There is a batch of orders, the number of orders is 6, and the number of products is 6. 
This case considers the learning effect of workers and flexible employment strategy, and assumes that there are 10 alternative 
workers available in the temporary worker database, whose skill mastery is shown in Table 9. Table 10 describes the basic 
information of the case, and Table 11 shows the algorithm parameter settings. 

Table 9  
Skill mastery of temporary workers  

 S1 S2 S3 S4 S5 S6 
M1 l1      
M2       
M3      l2 
M4  l2     
M5 l2      
M6 l2      
M7      l2 
M8 l2      
M9 l1      
M10  l2     
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Table 10  
Basic information of the case 

Parameters Parameter Value 
Number of orders 6 
Number of tasks 29 
Number of permanent workers 15 
Number of temporary workers 10 
Number of skills 6 
Skill Level l1-l4 
Skill set size 3 
Maximum number of multi-skilled workers working in the same cell 3 
Product Category 6 

Daily base salary for single-skilled workers aC (yuan) 110 

Daily base salary for multi-skilled workers bC (yuan) 130 

Daily base salary for temporary workers tC (yuan) 80 

Mass loss cost per unit hour dC (yuan) 0.5 

Maximum number of workers assigned to cell C  25 

Minimum number of workers assigned to cell C  5 

 

Table 11  
Algorithm parameter setting 

Parameters Value 

Population size N 200 

Maximum number of iterations Maxt  100/200/500 

Crossover probability cp  0.8 

Mutation probability mp  0.05 
a [0,2] 

1r , 2r  [0,1] 

l [-1,1] 
p [0,1] 
b 1 

 

Table 12 shows the order information, including the order quantity demanded, the product type, and the delivery period. Table 
13 shows the lead time for different types of products, and Table 14 shows the tasks for different types of products. Where 
"1" means that the task is included in the product and "-" means that the task is not included in the product. Table 15 describes 
the values for different skill levels. 

Table 12  
Order Information 

Order 1 2 3 4 5 6 
Product Type A A B C C D 
Demand 1000 1500 500 450 510 440 
Delivery Time 12 15 14 13 13 14 

 

Table 13  
Lead times for different types of products（minutes） 

Product Type A B C D E F 

Lead time 10 12 22 13 10 24 
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Table 14  
Tasks for different types of products 

Product Type A B C D E F 
Task1 1 1 1 1 1 1 
Task 2 - 1 1 1 1 - 
Task 3 1 - - 1 1 - 
Task 4 1 - - 1 - - 
Task 5 - - 1 - - 1 
Task 6 - 1 - 1 1 1 
Task 7 - 1 - 1 1 - 
Task 8 - 1 - - 1 1 
Task 9 - 1 - - 1 - 
Task 10 - 1 - - 1 1 
Task 11 1 - - - - - 
Task 12 - - 1 - - - 
Task 13 - - - - - - 
Task 14 1 1 - - - 1 
Task 15 - - 1 - - 1 
Task 16 1 1 1 1 - 1 
Task 17 - - - 1 - 1 
Task 18 - - 1 - 1 1 
Task 19 - - 1 - - 1 
Task 20 - - 1 - 1 1 
Task 21 - - - - 1 - 
Task 22 - - - 1 1 - 
Task 23 1 - - - 1 - 
Task 24 1 1 - - 1 - 
Task 25 - 1 - - - - 
Task 26 - - 1 - - - 
Task 27 - - - - 1 - 
Task 28 - - - - 1 - 
Task 29 1 1 1 1 1 1 

 

Table 15  
The skC value at different skill levels（Yuan） 

Level skC  skC  skC  skC  skC  skC  

1kl l=  11C  21C  31C  41C  51C  61C  

 1 1 1 1 1 1 

2kl l=  12C  2 2C  32C  4 2C  52C  62C  

 2 2 2 2 2 2 

Level skC  skC  skC  skC  skC  skC  

3kl l=  13C  23C  33C  43C  53C  63C  

 3 3 3 3 3 3 

4kl l=  14C  2 4C  34C  4 4C  54C  64C  

 5 5 5 5 5 5 

Before optimizing worker scheduling, all six orders were completed in the assembly line, and the products took longer to 
prepare for processing. If overtime is not considered, all orders are required to be completed within the specified working 
hours. The specific orders were completed as shown in Table 16, and the delivery rate of the orders was 66.67%. The base 
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salary of all permanent workers is ￥100/day. According to 15 permanent workers with 10h working hours a day, it takes 
650736s to complete 6 orders cumulatively, which is about 18 days. The cost of workers needed is ￥27,000. 

Table 16  
Delivery of orders under assembly line production 

Order No. Order sequence Number of workers Order completion time Order delivery time Order Delivery 
1 5 15 33.3h 146.36h Delay 
2 6 15 34.4h 180.76h Delay 
3 4 15 33h 113.06 On time 
4 1 15 21.89h 21.89h On time 
5 2 15 24.8h 46.69h On time 
6 3 15 33.37h 80.06h On time 

Since the performance of the algorithm is greatly affected by the evolution time, the number of iterations is taken as 100, 200 
and 500 for testing respectively. The experimental results are taken as the average results of 10 runs of the algorithm, and the 
results are all retained to two decimal places, as shown in Table 17. 

Table 17  
Analysis of optimization results 

Algorithm Iteration Running time 
(s) 

F1 F2 
Optimum 

value Average value Optimum 
value Average value 

WOA 
100 351 19825.63 22976.23 351056.90 418766.11 
200 489 18979.40 19205.33 322000.20 330982.69 
500 590 18720.00 18844.27 285200.42 298203.05 

NSGA-II 
100 406 18910.34 21410.37 350098.02 403821.84 
200 672 18344.92 18460.66 341064.85 345038.47 
500 821 17962.70 18164.92 285944.71 296233.56 

ENS-WOA 
100 399 18797.70 20618.18 370057.89 418531.04 
200 482 18266.60 18582.32 346000.70 333662.99 
500 565 17857.40 17968.43 284873.00 288726.85 

The evolution process of the optimal solution for each objective function is shown in Fig. 18. The convergence curves show 
that the average convergence ability of ENS-WOA is stronger than that of NSGA-II algorithm and WOA, and it finds the 
Pareto solution faster than these two algorithms. 
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Fig. 18. Evolutionary process of optimal solutions of functions F1 and F2 

Finally, to determine the quality of the algorithms, the diversity, uniformity index IGD and Sp values of the solutions of the 
objective function under the three algorithms are calculated, as shown in Table 18. The results show that the results of Sp for 
functions F1 and F2 under both NSGA-II and ENS-WOA algorithms are found to be close, and both Sp values are smaller 
than the results under WOA. This indicates that both algorithms have comparable performance in terms of solution uniformity 
and both are better than WOA. However, the IGD values of F1 and F2 solved by ENS-WOA are smaller than those of the other 
two algorithms, indicating that ENS-WOA has the strongest convergence. 
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Table 18  
Comparison of the three algorithms in two functions 

Function Evaluation Metrics WOA NSGA-II ENS-WOA 

F1 
IGD 3.081 2.569 0.132 
Sp 2.809 1.035 1.3 

F2 
IGD 1.73 1.470 0.328 
Sp 10.370 7.192 7.01 

 

In order to observe more intuitively the differences in the metrics of the three algorithms, Fig. 19 shows the box line plot of 
the function solution for a number of iterations of 500. The results of ENS-WOA solution are more stable, and the values of 
F1 and F2 are better. Therefore, ENS-WOA shows the best performance in solving the multi-objective optimization problem 
presented in this paper. 
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Fig. 19. Box line diagram of three algorithms 

5.3 Comparative analysis of different solutions 

When the number of iterations is 500 and the ENS-WOA is run 10 times, the algorithm generates 22 solutions, as shown in 
Fig. 20. The final Pareto frontier contains 10 solutions that do not directly provide a unique optimal solution for the decision 
maker, as shown in Table 19. 
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Fig. 20. Pareto solution set for 500 iterations of ENS-WOA 

 
 
Table 19  
Pareto Frontier Solutions 

Solutions Worker cost 
( )

Delivery time of the order (s) 
1 18067.30 289774.96 
2 18082.64 289540.75 
3 18392.66 289000.67 
4 18117.31 289423.22 
5 19164.91 288011.09 
6 18894.64 288419.04 
7 18330.00 289100.66 
8 19584.91 287569.30 
9 20304.80 287140.20 
10 18506.00 288900.00 

 

 

The analysis of the Pareto frontier shows that option 1 is chosen when the company values the cost factor more, and option 9 
is chosen when the company values the order completion time more. Different types of the same product exist. For the pump 
assembly line, after subdividing the skill level and type required for the operation and the skill level of workers, workers only 
need to continuously learn the corresponding process to reduce non-value-added time while improving operational efficiency. 
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At the same time, after optimizing the salary structure, workers are more motivated to work and learn, which is conducive to 
improving the overall operational efficiency of workers. 

6. Conclusion 
 

This paper has focused on three aspects of the optimization problem of personnel allocation on assembly lines in a C2M 
environment: 

(1) Firstly, for the heterogeneity among workers and the ever-changing skill learning, a model of worker assignment efficiency 
change based on learning curve is constructed for single-skill and multi-skill tasks, respectively. And this model is used as 
the input of a multi-objective optimization number model for personnel assignment in assembly lines considering the learning 
effect. 

(2) Secondly, by studying the solution methods of multi-objective optimization problems and the characteristics of each hybrid 
metaheuristic algorithm, it is proposed that the whale optimization algorithm can be combined with the non- dominant ranking, 
crowding operator and cross-variance operator in genetic algorithm to achieve complementary advantages. The improved 
multi-objective elite non-dominant   sorting whale optimization algorithm (ENS-WOA) is designed. The classical arithmetic 
cases are selected for testing, and the experimental comparison and analysis with the WOA and the NSGA-II are conducted 
to verify the feasibility and superiority of the ENS-WOA. 

(3) Finally, taking the water pump product assembly line of Company B, which is transforming to C2M, as an example, the 
operational efficiency of the existing workers is measured and the personnel scheduling of the assembly line is optimized. 
MATLAB software is applied to establish the ENS-WOA for solving the problem, and the results are compared with the 
worker cost and delivery time required to complete the order in the original assembly line. The results show that the model 
proposed in this paper is reliable, the algorithm is stable, and the optimal solution can be found quickly and accurately. It 
outperforms both the WOA and the NSGA-II algorithm in terms of convergence speed and quality of the solution. Worker 
costs were reduced by 29.02% and orders were completed approximately 10 days earlier. 

The following conclusions are drawn from this research: when carrying out production with a wide variety of orders, short 
delivery periods, inconsistent worker skill levels, and assembly lines dominated by manual work, a mixed application of 
rapidly reconfigurable assembly cells, workers with multiple skill levels, and temporary workers can give full play to worker 
potential, significantly improve efficiency, and reduce worker cost. 
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