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 This paper proposes a GRASP approach for solving the Bus Crew Scheduling Problem (BCSP) to 
find high-quality solutions within short computing times. The BCSP described the process related 
to the assignment of drivers and conductors to a bus company's regular daily operation of a mass 
transit system, seeking to minimize the cost of operation and, at the same time, the improvement 
of the working environment by considering the satisfaction of the drivers with the assigned shifts. 
The BCSP has drivers in charge of covering the demand for shifts, with an assignment that contains 
several constraints, such as minimum and maximum work blocks, minimum rest days, and shift 
sequences that must not be assigned. The former GRASP algorithm is proposed with a constructive 
procedure, a solution repair procedure, and two local search operators. Classical instances from the 
literature have been adapted for the shift assignment problem by adding a satisfaction variable. 
Besides, the proposed approach has been tested for a real company operating articulated and feeder 
vehicles. The results show that the satisfaction function adds value to the assignments, substantially 
improving the work environment and generating favorable results in terms of time and quality of 
the solution. 
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1. Introduction 
 

Public passenger transportation is a determining factor in the city's way of life. A good transport system provides comfort in 
the mobility of people and becomes one of the main measures of quality of life. In this sense, public passenger transport plays 
a fundamental role in decision-making from a social, economic, and environmental point of view. Indeed, planning the 
transport network is extremely important for providing quality service and for the transport operator and the costs it assumes. 
Planning is complex and challenging, so this process is generally split into three phases covering strategic, tactical, and 
operational decisions. Strategic decisions are related to the design of the transportation network. Tactical decisions consider 
the set of frequencies and schedules of the transport network. Operational decisions are related to the problem of vehicle 
scheduling, shift scheduling, and shift assignment to drivers. However, each problem associated with each public passenger 
transport planning stage has been extensively studied because they are complex problems (mathematically and 
computationally). All these problems are classified as NP-hard problems. Therefore, each problem must be solved separately 
and sequentially (Byrne, 1973). 
 

This paper is related to crew scheduling for transportation public belonging to the operational decisions. Whenever a bus is 
in operation, a driver must be assigned to it. Sometimes, the waiting time of a bus could be considered, for instance, the arrival 
of one journey and the departure of the next. However, when a crew leaves a bus, a relieving crew must be available to take 
it over (Smith, 1986). For the crew scheduling problem, it is necessary to consider that a crew leaves the bus to take a break 
or finish their duty, and another crew must take over the bus operation just starting their duty or having already worked on 
another bus (Smith, 1986). The Bus Crew Scheduling Problem (BSCP) is an integral part of the logistic management of bus 
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planning and scheduling. The BSCP involves assigning staff (crew) to different scheduled bus services considering many 
resources that must be managed, including the complexity of allocating crew shifts, satisfaction level, unpredictability of 
traffic, crew compatibility, and availability—operational and practical constraints of the BSCP. Besides, the BSCP considers 
unpredictable events such as late crew sickness while on duty or absenteeism without prior notice (Cheng & Chang, 1999). 
When a specific unpredictable event occurs, changes must be made to the schedule or resource allocation. The times and crew 
schedule will remain the same, and only reallocation or reassignment is performed to cover the schedule (Shibghatullah et al., 
2006a). 
 
This paper proposes a GRASP approach for solving the operational planning stage, specifically the BSCP. The problem is 
solved because one of the main costs assumed by public passenger transportation companies is the operating costs related to 
the payroll of their drivers. This paper seeks to present an alternative solution within the context of articulated and feeder 
vehicle operators of massive transport systems (INTEGRA S.A.) and to test the effectiveness of the proposed methodology 
by adapting instances of Musliu (2006) addressing a similar shift assignment problem. The INTEGRA S.A. problem consists 
of a set of shifts with a particular demand that must be assigned to a group of drivers, and the drivers have a minimum and 
maximum number of working days per week and a minimum number of rest days. In addition, there are different types of 
shifts with different schedules, which must be reviewed before generating the shift assignment for the next day. 
 

The rest of the paper is organized as follows. Section 2 shows the literature review related to the bus crew scheduling problem. 
Section 3 introduces the crew-scheduling problem for bus drivers (BSCP) in general terms and elaborates on constructing a 
mathematical model. Section 4 describes the proposed GRASP algorithm for solving the considered problem. Section 5 
provides the computational experiments for the proposed approach. Finally, Section 6 gives conclusion remarks and 
suggestions for future research. 
 

2. Literature Review 
 

Several early works dealing with the crew scheduling problem, such as those proposed by Young & Wilkinson (1966), have 
proposed mathematical formulations and heuristic methods. The most natural formulation of the crew scheduling problem is 
the set covering or partitioning problem (Smith, 1986). Indeed, a large number of possible duties are performed, from which 
a crew schedule is selected covering all the shift works of the bus schedule at least once (set covering problem) or exactly 
once (set partitioning problem) (Smith, 1986). Smith (1986) studied a bus crew scheduling problem by three British bus 
companies. The problem is formulated as mixed integer linear programming using an extension of the set covering the problem 
and generating a large set of possible duties, minimizing the total cost. Some heuristic approaches are considered within the 
framework, reducing the set covering problem to a manageable size while still allowing good-quality schedules to be 
compiled. A branch and price algorithm for a real-life case of a BSCP has been proposed by Fournier (2009). This algorithm 
can solve a problem with 300 tasks in less than an hour, and instances with 1000 tasks can usually be solved in a few hours. 

Shibghatullah et al. (2006a) model the bus crew scheduling problem with agents and study the feasibility of using the crew 
reassignment process to cope with unpredictable events. This work uses a Gaia methodology (Wooldridge et al., 2000; 
Zambonelli et al., 2003) for analyzing and designing agent-based models. Shibghatullah et al. (2006b) study the 
unpredictability problem of the BCSP and investigate how companies currently manage their schedules. This work proposes 
a set of requirements for a dynamic crew scheduling system that can reassign crew in real time given unpredictable events 
such as lateness for duty, sickness on duty, or crew absenteeism without prior notice. Kang et al. (2019) studied the BCSP 
considering mealtime windows for a single public transport bus route. Three Integer Linear Programming (ILP) models enable 
bus operators to solve their bus driver scheduling problems by directly invoking an available optimization solver such as 
CPLEX. A valid inequality approach that can generate valid cuts incorporating the CPLEX has been introduced. Cárdenas-
Parra (2019) developed a mathematical model for the considered problem of this paper. However, this model does not consider 
the satisfaction of the drivers, showing in general feasible solutions to the problem, but with low satisfaction for the employees 
to whom the shifts are assigned, a situation that in the medium or long term may imply problems with the performance and 
permanence of the workers. Most proposed approaches are based on mathematical programming or hybrid approaches 
(combining heuristics and mathematical models) (Fores et al., 1999; Fores et al., 2002; Chen & Shen, 2013; Masbah et al., 
2019). However, these approaches generally can solve small – to medium-sized instances with some limitations (Kwan et al., 
2001; Li & Kwan, 2003). 

Metaheuristic algorithms have found near-optimal solutions to the BSCP, considering large-scale problems and practical 
constraints. According to Song et al. (2015), metaheuristic approaches have three advantages: i) they are very efficient in 
searching large solution space, ii) they can find rapidly feasible solutions, and iii) they have their own methodical and strategic 
structure. Tabu search approaches for the BSCP have been proposed by Chen & Niu (2012a), Chen & Niu (2012b), and Shen 
& Kwan (2001). Chen & Niu (2012a) propose an approach for solving the BCSP considering early, day, and late duty modes 
with time shift and work intensity constraints. Besides, constraint with the least crew number of a specific duty has also been 
considered. An integer 0-1 model is proposed to minimize the expense of the total idle time of the crew for a circle bus line. 
Besides, a tabu search approach has been proposed to solve the problem. The same authors (Chen & Niu, 2012b) consider 
impartiality constraint on the BCSP,  which is based on assurance to meet the time shift of trips and work intensity for the 
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crew and establishes a crew scheduling model to minimize the total idle time. Also, a tabu search procedure is presented to 
solve the problem. Shen & Kwan (2001) propose a tabu search-based approach called HACS to handle the BSCP with 
windows of relief opportunities. 
 

Genetic algorithms (GAs) are another prominent approach to solving major class crew scheduling problems. These algorithms 
have been proposed by Song et al. (2015). Song et al. (2015) propose a genetic algorithm (GA) with gene recombination for 
the BSCP. This work introduces a new method without using the potential shift set; instead, satisfied shifts generated from 
gene recombination in a genetic algorithm are employed. Experiments on real-life instances from Beijing Bus Group show 
the efficiency of the proposed approach. Ant colony algorithms for the BSCP have been proposed by Forsyth & Wren (1997), 
Ghoseiri & Morshedsolouk (2006), and Mazloumi et al. (2012). Finally, Simulated Annealing approaches for the BSCP have 
been introduced by Costa et al. (2013). 
 

A Variable Neighborhood Search for a real-world case of BCSP has been proposed by Ma et al. (2016). This algorithm has 
been tested on a case study of two depots of the Beijing Public Transport Group. The results show that the former algorithm 
can reduce total driver costs by up to 18.1%, implying that the VNS algorithm may be a good optimization technique to solve 
the BCSP. Boyer et al. (2018) study the BCSP faced by urban bus transport agencies that must assign their resources (vehicles 
and drivers) to cover timetables generated at the tactical level. A mixed-integer linear programming model and a variable 
neighborhood search for this problem have been proposed.   
 

An integrated framework considering the scheduling of buses and crew for local transportation public has been proposed by 
Ciancio et al. (2018). In the BSCP problem, each trip is assigned to a driver. The solution is performed with a  classical 
sequential approach. This solution is then modified by changing the allocation of trips on vehicles in order to minimize the 
combined objective function. Perumal et al. (2021) introduce the integrated vehicle and crew scheduling problem for electric 
buses. An adaptive large neighborhood search that utilizes branch-and-price heuristics is proposed to tackle the considered 
problem. The proposed method is tested on real-life instances from public transport companies in Denmark and Sweden that 
contain up to 1109 timetabled trips. Moreno et al. (2019) propose a two-phase heuristic algorithm to solve the BCSP of a 
Megabus Bus Rapid Transit System. In the first stage, a division of the original schedules is performed using a recursive 
algorithm based on dynamic scheduling. In the second stage, work shift construction based on Fig. theory is performed using 
a pairing algorithm (i.e., matching). Öztop et al. (2017) consider a real-life BCSP determining the optimal number of different 
types of crew members with a minimum cost covering a given set of tasks regarding working and spread time limitations. 
Each driver has a spread time limit from the start time to the end time of the shift, including the idle times. Additionally, a 
driver cannot exceed the maximum total working time limit. 
 

Recently, Xue et al. (2023) and Esquivel-González et al. (2023) have proposed methodologies for solving crew scheduling 
problems in metro and public bus transportation, respectively. Xue et al. (2023) consider the nature of the work of metro crews 
to study the equitability of crew planning. The train running diagram is split into segments by the duty points, including 
shifting stations, depots, and parking lots. Esquivel-González et al. (2023) consider the BSCP seeking to serve the most 
significant number of passengers possible instead of minimizing the schedule cost. A model and strategies for solving the 
problem are introduced, and clustering and Reoptimization procedures are proposed. 
 

According to the literature review, we found different methodologies already developed for the BSCP. However, the 
satisfaction of the drivers has yet to be considered for the scheduling tasks. Therefore, our paper considers a GRASP method 
for the BSCP, considering the satisfaction of the drivers. This variable generates a stabilization of the staff and avoids the 
rotation of the crew. Indeed, this situation could be reached by generating a cyclical schedule that repeats at a specific time 
for a group of workers, complying with a matrix of requirements and constraints. Among the conditions to be met are the 
availability of employees to work the scheduled hours, the number of hours worked, the number of days off, the number of 
consecutive shifts, and specific constraints, such as the prohibition of certain consecutive shift assignments. This fact allows 
the companies to plan workers' schedules efficiently and effectively. 
 
3. Problem description   

Due to the combinatorial nature of the BSCP, an exact method for large instances (real-size instances) may have a high 
computational cost. Therefore, the main contribution of this paper is to find shift assignment strategies that allow obtaining 
feasible solutions within a reasonable time while maximizing driver satisfaction using an approximate optimization algorithm 
so that the problem can be applied or adapted to any real situation. 

3.1 Related work 
 
Most of the models used for the rostering solution are based on the Set Covering model proposed by Dantzig (1954) and its 
variations. Additionally, there is a strong relationship with the Generalized Assignment Problem (𝐺𝐴𝑃) model proposed by 
Martello and Toth (1992), where 𝑛 items are assigned to 𝑚 units so that the total available resources are not exceeded, and 
the sum of the penalties related to the assignment are minimal. The formulation goes very well in parallel, but for a real 
situation, it would have to be adapted to the requirements of the company, and additional constraints would be added to the 
model: 



  

 

446ሺ𝐺𝐴𝑃ሻ = 𝑀𝑖𝑛𝑐
ୀଵ 𝑥

ୀଵ  

subject to: 

 (1) 

𝑥 = 1
ୀଵ  ∀𝑖 = 1, … ,𝑚 (2) 

𝑎𝑥 ≤ 𝑏
ୀଵ  ∀𝑗 = 1, … ,𝑛 (3) 

𝑥 ∈ ሼ0,1ሽ ∀𝑖 = 1, … ,𝑚;   ∀𝑗 = 1, … ,𝑛 (4) 

 

The objective function (1) considers the minimization of assignment costs considering the binary decision variable 𝑥 (which 
takes the value of 1 when element 𝑖 is assigned to a unit 𝑗) to a cost matrix 𝑐. Eq. (2) refer to the fact that only one element 𝑖 can be assigned to a unit 𝑗, and all elements are assigned. Eq. (3) is associated with a matrix 𝑎, where the number of 
resources used is represented, and the logic is that the resources spent are not greater than the available resources of each unit. 𝑚𝑖𝑛 𝑍 = 𝑐𝑥∈ௌ  

subject to: 

 (5) 

𝑎𝑥 ≤ 1∈ௌ  ∀𝑖 = 1, … ,𝑚 (6) 

We can observe the general set covering model of Dantzig (1954), which aims to cover all the rows of the matrix 𝑎 using 
the same cost of subsets of the columns. Eq. (5) considers the objective function where the cost associated with the selected 
columns is minimized and Eq. (6) restricts the coverage of each of the rows to at least one column. 

3.2 Mathematical formulation  
 

We proposed a mathematical model based on the formulation proposed by Cárdenas-Parra (2019) for the BCSP but 
considering the satisfaction level of the drivers. We have tested the proposed model on instances of Musliu (2006) with 
constraints similar to the considered problem. The rostering model is mathematically formulated as an integer linear model 
with a three-subindex decision variable and a two-subindex auxiliary variable: 

Sets and Variables 

 𝑖 Set of available workers, 𝑖 = 1,2, … , 𝐼. 𝑗 Set of roster horizon days, 𝑗 = 1,2, … , 𝐽. 𝑘 Set of shift types, 𝑘 = 1,2, … ,𝐾 𝑥 Decision variable that takes the value of 1 if worker 𝑖 is assigned to day 𝑗 in shift 𝑘, and 0 otherwise 𝑦 Auxiliary variable that takes the value of the number of shift types 𝑘 that worker 𝑖 performs during 
the roster 

Parameters 𝑃ௌ Number of shifts that can be assigned to a worker 𝐷 Shift 𝑘 duration 𝐽𝑂 Maximum time allowed that can be assigned to a worker in a roster. 𝐿 Maximum number of days that can be assigned to a worker in a time horizon 𝑅𝑒𝑞 Number of workers required in a day 𝑗 in a shift 𝑘 𝑀𝑖𝑛 Minimum number of days that must be assigned to a worker 𝑖 for a given horizon 𝑐 Cost associated with shift k type 
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Proposed General Mathematical Model 𝑚𝑎𝑥 𝑆𝑎𝑡𝑖𝑠𝑓. ሺ%ሻ = 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑠ℎ𝑖𝑓𝑡𝑠 − 𝑈𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑠ℎ𝑖𝑓𝑡𝑠𝑆ℎ𝑖𝑓𝑡𝑠 𝑡𝑜 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  

subject to: 
 (7) 

𝑥 ≤ 𝑃௦
ୀଵ  ∀𝑖, 𝑗 (8) 

𝑥 ∗ 𝐷 ≤ 𝐽𝑂
ୀଵ


ୀଵ  ∀𝑖 (9) 

𝑥 ≤ 𝐿
ୀଵ


ୀଵ  ∀𝑖 (10) 

𝑥 ≥ 𝑅𝑒𝑞ூ
ୀଵ  ∀𝑗,𝑘 (11) 

𝑥 ≥ 𝑀𝑖𝑛
ୀଵ


ୀଵ  ∀𝑖 (12) 

𝑥 ≤ 𝑦ூ
ୀଵ  ∀𝑖,𝑘 (13) 

𝑥 ∈ ሼ0,1ሽ,𝑦 ≥ 0  ∀𝑖, 𝑗,𝑘 (14) 

 

The objective function (7) considers the satisfaction level of the drivers. This satisfaction level can be represented by 
quantifying the number of favorable shifts for the driver since many of them have other constraints such as study, the time 
they would like to dedicate to their family or other activities. The objective function is defined in terms of the shifts the drivers 
dislike and the total shifts. A weight of 1 in the objective function was assigned to all shifts assigned to a driver comfortable 
with the shift and a weight of -1 if the driver was uncomfortable. In this case, a score is calculated from the satisfied and 
dissatisfied, as explained above. It is divided by the maximum number of satisfied drivers that we could hypothetically have, 
where all shifts are assigned to drivers who like the shift. In addition, the assumption was made that the shifts to which the 
driver is indifferent do not add or subtract from the objective function. However, it could be an interesting topic for further 
research: How much impact does indifference have on satisfaction? We can find cases where there is much indifference with 
little dissatisfaction and cases with much satisfaction but also much dissatisfaction. Note that we could find such solutions 
with the same level of satisfaction but need to know which one is better. Constraints (8) limit the total number of shifts that a 
driver could make. Constraints (9) and (10) limit the maximum time per day and the maximum number of days to be assigned 
a driver, respectively. Equations (11) determine the number of workers required per day. Constraints (12) ensure the minimum 
number of days to be assigned to a driver. Eq. (13) generate the relationship between the variables of the assignment and the 
number of shifts. Finally, constraints (14) are related to the nature of the variables. 

4. Proposed methodology  

A GRASP-based methodology is proposed with a constructive procedure, a solution repair mechanism, and two local search 
operators (INSERT and SWAP operators) for the BSCP. The constructive procedure relaxes the constraint of the maximum 
working days that can be assigned to the driver. Then, it applies a repair and balancing strategy, thus allowing the exploration 
of promising solutions. The constructed solutions (repaired and balanced) are improved through an exhaustive local search 
using two neighborhoods. The balancing mechanism reallocates the shifts to level the workload and recover the feasibility of 
the solution in terms of the relaxed constraint. 

4.1 GRASP algorithm 
 
The proposed GRASP algorithm consists of two phases: the constructive and the local search phases, for this it uses the 𝑖𝑡𝑒𝑟𝑎 parameter that allows us to calibrate the number of times that both phases will be repeated (line 2). First, it checks if 
the 𝑖𝑡𝑒𝑟𝑎 parameter has already exceeded the limit of solutions without repair and if no feasible solution has been found, it 
turns on the construction repairer (lines 3 and 4). Then the shifts are assigned using the constructive algorithm (line 5). If the 
constructive assignment is promising, it enters the improvement phase (line 7) where the result of the assignment is validated 
to see if it can improve the incumbent (lines 8,9,10,11). To do so, the solution must be checked for feasibility considering the 
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number of assignments made and the number of shifts (line 6). 
 

Algorithm 1 GRASP 
Parameters: 𝑖𝑡𝑒𝑟𝑎: Total number of iterations, 𝑎𝑙𝑝ℎ𝑎: size of the restricted list of candidates, 𝑙𝑖𝑚𝑖𝑡: Proportion of 
iterations during which no repair is performed. 
 
Input: Dict 𝑎𝑑𝑎𝑦: dictionary with list of available drivers per day, Dict 𝑝𝑟𝑜ℎ: dictionary with list of prohibited drivers 
according to the day and shift type 
 
Output: Dict t_incumbent: Shift assignment dictionary, List worked_incumbent: List of days worked by driver, Integer 
obj_incumbent: 

1. 𝑟𝑒𝑝𝑎𝑖𝑟 = 𝐹𝑎𝑙𝑠𝑒 
2. 𝑭𝒐𝒓 𝑖 = 1 𝒕𝒐 𝑖𝑡𝑒𝑟𝑎 𝒅𝒐 
3.              𝒊𝒇 𝑖 ≥ 𝑖𝑡𝑒𝑟𝑎 ∗ 𝑙𝑖𝑚𝑖𝑡  𝑎𝑛𝑑  𝒕𝒉𝒆𝒏 
4.                             𝑟𝑒𝑝𝑎𝑖𝑟 = 𝑇𝑟𝑢𝑒 
5.              𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏  𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑜ሺ𝑎𝑙𝑝ℎ𝑎, 𝑟𝑒𝑝𝑎𝑖𝑟ሻ 
6.              𝒊𝒇 𝒔𝒖𝒎ሺ𝑤𝑜𝑟𝑘𝑒𝑑ሻ = 𝒍𝒆𝒏ሺ𝑡ሻ 𝒕𝒉𝒆𝒏 
7.                             𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏  𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 ← 𝑏𝑢𝑠𝑞𝑢𝑒𝑑𝑎𝐿𝑜𝑐𝑎𝑙( 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗) 
8.                             𝒊𝒇 𝑜𝑏𝑗 > 𝑜𝑏𝑗_𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡  𝒕𝒉𝒆𝒏 
9.                                            𝑜𝑏𝑗_𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 = 𝑜𝑏𝑗 
10.                                             𝑡_𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 = 𝑡 
11.                                             𝑤𝑜𝑟𝑘𝑒𝑑_𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 = 𝑤𝑜𝑟𝑘𝑒𝑑 
12.   𝑹𝒆𝒕𝒖𝒓𝒏 𝑡_𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 

 
4.2    Constructive Algorithm 
 
The constructive algorithm is divided into three phases: a pseudo-random procedure (line 1), a repair process (line 3), and a 
balancing procedure (line 5). As the construction relaxes the constraint of maximum working days, the idea is to make a 
restricted list of candidates based on the number of days the drivers have worked as a strategy to narrow down the constraint 
and balance the shift allocation in a certain way. With these lists, drivers are randomly selected to be assigned to shifts, 
checking that the other restrictions are met. Then there is the repair phase, which is only performed if it is activated; there are 
no shifts to be assigned, and at least a percentage of the shifts have been assigned (line 2). In this phase, we review all the 
drivers that can be assigned to the missing shifts and assign the first one found, all this in order not to lose the process of some 
solutions that are close to being feasible. Finally, it is verified that the solution is feasible to move on to balancing (line 4), 
where the workload is reviewed and shifts already assigned to other drivers are reassigned to balance the workdays until a 
solution is found that not only meets the maximum workload constraint but is also feasible. It should be noted that some 
solutions go through the repairer and balancing and are still not feasible because they are not suitable for balancing. 

Algorithm 2 General Constructive 
Parameters:  𝑎𝑙𝑝ℎ𝑎: size of the restricted list of candidates, 𝑟𝑒𝑝𝑎𝑖𝑟: Parameter to activate the repairer 
 
Input: Dict 𝑎𝑑𝑎𝑦: dictionary with list of available drivers per day, Dict 𝑝𝑟𝑜ℎ: dictionary with list of prohibited drivers 
according to the day and shift type 
 
Output: Solution 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 

1. 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑,𝑑𝑑𝑖𝑎,𝑝𝑟𝑜ℎ ← 𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑎𝑙𝑝ℎ𝑎) 
2. 𝒊𝒇 𝑟𝑒𝑝𝑎𝑖𝑟 = 𝑇𝑟𝑢𝑒 𝒂𝒏𝒅 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑡 ≤ 𝒔𝒖𝒎(𝑤𝑜𝑟𝑘𝑒𝑑) < 𝒍𝒆𝒏(𝑡)   𝒕𝒉𝒆𝒏 
3.              𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑎𝑑𝑎𝑦,𝑝𝑟𝑜ℎ ← 𝑟𝑒𝑝𝑎𝑖𝑟𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛() 
4. 𝒊𝒇 𝒔𝒖𝒎(𝑤𝑜𝑟𝑘𝑒𝑑) = 𝒍𝒆𝒏(𝑡)  𝒕𝒉𝒆𝒏 
5.              𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑎𝑑𝑎𝑦,𝑝𝑟𝑜ℎ ← 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔() 

 

The pseudo-random algorithm checks if any assignment has been made each iteration as a stop condition (line 1). The idea is 
that it runs through the shifts several times because sometimes, the random choice of the driver is not feasible. Each iteration 
starts running through the shifts (line 3) and checks if the shift has already been assigned if it has a value of -1 (line 4). It then 
generates the restricted list of candidates from the available drivers on the day of the shift. Having the initial restricted list of 
candidates, it generates three other lists categorizing which drivers like the shift, which are indifferent, and which do not like 
the shift, then one of the three lists is chosen as the restricted list of candidates (line 5). The criteria for choosing the list 
changes as it finds no drivers to assign to shifts until it reaches the list of those who do not like it (lines 11-13). The list is 
checked to see if it contains any drivers to choose one randomly (lines 6-7). Before assigning the chosen driver to the shift, it 
should be checked that it is not prohibited for the type of shift to be assigned that day (line 8) to subsequently assign it (line 
9) and update the lists of prohibited, available by day and shifts assigned by the driver (line 10). When it no longer finds 
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drivers to assign to shifts, the algorithm stops. In summary, it determines which of the three lists to use, randomly selects 
drivers, and then assigns them to shifts. 

Algorithm 3 pseudo-random construction 
Parameters:  𝑎𝑙𝑝ℎ𝑎: size of the restricted list of candidates 
 
Input: Dict 𝑎𝑑𝑎𝑦: dictionary with list of available drivers per day, Dict 𝑝𝑟𝑜ℎ: dictionary with list of prohibited drivers 
according to the day and shift type 
 
Output: Solution 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 1. 𝒘𝒉𝒊𝒍𝒆 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑇𝑟𝑢𝑒 

2.                𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 
3.              𝑭𝒐𝒓 𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝒊𝒏 𝑡 
4.                          𝒊𝒇 𝑡ሾ𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ሿ = −1 𝒕𝒉𝒆𝒏 
5.                                      𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏  𝑙𝑖𝑠𝑡 ← 𝑅𝐶𝐿(𝑡𝑦𝑝𝑒, 𝑎𝑑𝑎𝑦ሾ𝑑𝑎𝑦ሿ,𝑤𝑜𝑟𝑘𝑒𝑑,𝑎𝑙𝑝ℎ𝑎)[𝑣] 
6.                                      𝒊𝒇  𝒍𝒆𝒏(𝑙𝑖𝑠𝑡) > 0 𝑻𝒉𝒆𝒏 
7.                                                  𝑐ℎ𝑜𝑠𝑒𝑛 ← 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒄𝒉𝒐𝒊𝒄𝒆(𝑙𝑖𝑠𝑡) 
8.                                                  𝒊𝒇 𝑐ℎ𝑜𝑠𝑒𝑛 𝒏𝒐𝒕 𝒊𝒏 𝑝𝑟𝑜ℎ[𝑑𝑎𝑦, 𝑡𝑦𝑝𝑒] 𝒕𝒉𝒆𝒏 
9.                                                              𝑡[𝑡𝑖𝑝𝑜,𝑑𝑖𝑎, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ] = 𝑐ℎ𝑜𝑠𝑒𝑛 
10.                                                              𝑼𝒑𝒅𝒂𝒕𝒆 𝑎𝑑𝑎𝑦, 𝑝𝑟𝑜ℎ,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 
11.              𝒊𝒇 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 𝒂𝒏𝒅 𝑣 < 2: 
12.                          𝑎𝑑𝑑𝑒𝑑 = 𝑇𝑟𝑢𝑒 
13.                          𝑣 = 𝑣 + 1 

 

The detailed pseudocode of the algorithm that constructs the restricted list of candidates for the pseudorandom construct is 
presented below. First, the maximum and minimum days worked to generate the general restricted list of candidates are found 
(lines 1-5). Then, the general candidate-constrained list is generated (lines 6-8). Finally, splitting into three lists according to 
the drivers' preferences is performed (lines 9-15). 

 

Algorithm 4 Restricted list of candidates (RCL) 

Parameters:  𝑎𝑙𝑝ℎ𝑎: size of the restricted list of candidates, 𝑡𝑦𝑝𝑒: Type of shift to be assigned, 𝑎𝑑𝑎𝑦: Dictionary with list 
of available drivers per day, 𝑤𝑜𝑟𝑘𝑒𝑑: List of shifts assigned per driver,  
 

Input: Dict 𝑝𝑟𝑜ℎ: dictionary with list of prohibited drivers according to the day and shift type Dict 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 
dictionary with tuple list of values of the shift type liked and disliked by each driver. Position 0 contains the type of shift 
liked and position 1 the type of shift disliked. 

 

Output: Solution 𝑙𝑖𝑠𝑡: List containing 3 lists with drivers suitable for shift assignment, the first one containing drivers 
who like the shift, the second one containing drivers who are indifferent to the shift and the last one containing drivers 
who do not like the shift. 

1. 𝑭𝒐𝒓 𝑖 𝒊𝒏 𝑎𝑑𝑎𝑦  
2.              𝒊𝒇 𝑤𝑜𝑟𝑘𝑒𝑑[𝑖] < 𝑚𝑖𝑛 𝒕𝒉𝒆𝒏 
3.                               𝑚𝑖𝑛 = 𝑤𝑜𝑟𝑘𝑒𝑑[𝑖] 
4.              𝒊𝒇 𝑤𝑜𝑟𝑘𝑒𝑑[𝑖] > 𝑚𝑎𝑥 𝒕𝒉𝒆𝒏 
5.                               𝑚𝑎𝑥 = 𝑤𝑜𝑟𝑘𝑒𝑑[𝑖] 
6. 𝑭𝒐𝒓 𝑖 𝒊𝒏 𝑎𝑑𝑎𝑦  
7.              𝒊𝒇 𝑤𝑜𝑟𝑘𝑒𝑑[𝑖] ≤ 𝒎𝒂𝒕𝒉. 𝒄𝒆𝒊𝒍(𝑚𝑖𝑛 + 𝑎𝑙𝑝ℎ𝑎 ∗ (𝑚𝑎𝑥 −𝑚𝑖𝑛)) 𝒕𝒉𝒆𝒏 
8.                               𝑅𝐶𝐿.𝒂𝒑𝒑𝒆𝒏𝒅(𝑖) 
9. 𝑭𝒐𝒓 𝑝 𝒊𝒏 𝑅𝐶𝐿 
10.              𝒊𝒇  𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠[𝑝][0] = 𝑡𝑦𝑝𝑒 𝒕𝒉𝒆𝒏 
11.                               𝑙𝑖𝑠𝑡[0].𝒂𝒑𝒑𝒆𝒏𝒅(𝑝) 
12.              𝒆𝒍𝒊𝒇  𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠[𝑝][1] = 𝑡𝑦𝑝𝑒 𝒕𝒉𝒆𝒏 
13.                               𝑙𝑖𝑠𝑡[2].𝒂𝒑𝒑𝒆𝒏𝒅(𝑝) 
14.              𝒆𝒍𝒔𝒆 
15.                               𝑙𝑖𝑠𝑡[1].𝒂𝒑𝒑𝒆𝒏𝒅(𝑝) 

 



  

 

450

After the initial construction, it is verified that the solution is suitable and that there are no unassigned shifts. To do so, it 
enters the repair phase, where there are two essential criteria to start with the repair. First, the repair parameter must be valid, 
and second, the number of assigned shifts must be less than the total number of shifts and greater than the percentage of 
unassigned shifts (line 1). The percentage of minimum assignments to repair the solution was determined as the same 
parameter alpha of the RCL size. If this decreases, it is expected that more solutions should be repaired and, therefore, this 
percentage as well. The logic of the repair is to go through the available drivers for the day the shift that has yet to be assigned 
is needed and choose the first one that meets the conditions in terms of no constraint being breached (lines 5-7). In this case, 
it will not be considered whether the driver likes or dislikes the shift. After being assigned, the lists of banned, available per 
day, and assigned shifts per driver will be updated (line 8). If no suitable driver is found, the solution will not be repaired to 
avoid wasting computational time on that solution (lines 9-10). 

Algorithm 5 Repair procedure 
Parameters:  𝑎𝑙𝑝ℎ𝑎: size of the restricted list of candidates, 𝑟𝑒𝑝𝑎𝑖𝑟: Parameter to activate the repairer 
 
Input: Dict 𝑎𝑑𝑎𝑦: dictionary with list of available drivers per day, Dict 𝑝𝑟𝑜ℎ: dictionary with list of prohibited drivers 
according to the day and shift type 
 
Output: Solution 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 

1. 𝒊𝒇 𝑎𝑙𝑝ℎ𝑎 ∗ 𝒍𝒆𝒏(𝑡) ≤ 𝒔𝒖𝒎(𝑤𝑜𝑟𝑘𝑒𝑑) < 𝒍𝒆𝒏(𝑡) 𝒂𝒏𝒅 𝑟𝑒𝑝𝑎𝑖𝑟 = 𝑇𝑟𝑢𝑒 𝑻𝒉𝒆𝒏 
2.             𝑭𝒐𝒓 𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝒊𝒏 𝑡 
3.                        𝒊𝒇 𝑡[𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡] = −1 𝒕𝒉𝒆𝒏  
4.                                   𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 
5.                                       𝑭𝒐𝒓 𝑐ℎ𝑜𝑠𝑒𝑛 𝒊𝒏 𝑎𝑑𝑎𝑦[𝑑𝑎𝑦] 
6.                                                    𝒊𝒇 𝑐ℎ𝑜𝑠𝑒𝑛 𝒏𝒐𝒕 𝒊𝒏 𝑝𝑟𝑜ℎ[𝑑𝑎𝑦, 𝑡𝑦𝑝𝑒] 𝒕𝒉𝒆𝒏 
7.                                                               𝑡[𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡] = 𝑐ℎ𝑜𝑠𝑒𝑛 
8.                                                               𝑼𝒑𝒅𝒂𝒕𝒆 𝑎𝑑𝑎𝑦,𝑝𝑟𝑜ℎ,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 
9.                                     𝒊𝒇 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 𝒕𝒉𝒆𝒏 
10.                                                   𝒃𝒓𝒆𝒂𝒌  

 

 
The last step of the construction corresponds to the balancing stage, where the workload is leveled to meet the constraint of 
maximum working days that can be assigned to a driver. The algorithm works similarly to the pseudo-random construction in 
the sense that it runs through the shifts several times until no more changes have been made and has an additional criterion 
that all shifts must be assigned (line 1). The logic of the algorithm starts from three important lists, 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 contains all the 
drivers that have not reached the maximum workload, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  contains the drivers that already have the maximum 
workload, and 𝑒𝑥𝑐𝑒𝑒𝑑 contains the drivers that exceed the maximum workload. It scrolls through the shifts until it finds a 
shift that is on the 𝑒𝑥𝑐𝑒𝑒𝑑 list (llines3-5), then randomly chooses a driver from the 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 list (line 6) and verifies that it is 
suitable for assignment to the shift and meets all the constraints (line 7). After the driver is assigned (line 8), the 𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, and 𝑒𝑥𝑐𝑒𝑒𝑑 lists are updated, as well as the prohibited, available per day, and assigned shifts per driver lists 
(lines9-10). 
 

Algorithm 6 Balancing 
Input:  Dict 𝑎𝑑𝑎𝑦: dictionary with list of available drivers per day, Dict 𝑝𝑟𝑜ℎ: dictionary with list of prohibited drivers 
according to the day and shift type, List 𝑚𝑖𝑠𝑠𝑖𝑛𝑔: List containing all drivers who have not reached the maximum 
workload, List 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒: List containing the drivers who already have the maximum workload, List 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑: List 
containing the drivers who exceed the maximum workload 
 
Output: Solution 𝑡,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 

1. 𝑾𝒉𝒊𝒍𝒆 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝑇𝑟𝑢𝑒 𝒂𝒏𝒅 𝒔𝒖𝒎(𝑤𝑜𝑟𝑘𝑒𝑑) = 𝒍𝒆𝒏(𝑡) 
2.         𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 
3.         𝑭𝒐𝒓 𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝒊𝒏 𝑡 
4.                    𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑡[𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡] 
5.                    𝒊𝒇 𝑎𝑐𝑡𝑢𝑎𝑙 𝒊𝒏 𝑒𝑥𝑐𝑒𝑒𝑑 𝒕𝒉𝒆𝒏 
6.                               𝑐ℎ𝑜𝑠𝑒𝑛 = 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒄𝒉𝒐𝒊𝒄𝒆(𝑚𝑖𝑠𝑠𝑖𝑛𝑔) 
7.                               𝒊𝒇 𝑐ℎ𝑜𝑠𝑒𝑛 𝒊𝒏 𝑎𝑑𝑎𝑦[𝑑𝑎𝑦]𝒂𝒏𝒅 𝑐ℎ𝑜𝑠𝑒𝑛 𝒏𝒐𝒕 𝒊𝒏 𝑝𝑟𝑜ℎ[𝑑𝑎𝑦, 𝑡𝑦𝑝𝑒] 𝒕𝒉𝒆𝒏 
8.                                           𝑡[𝑡𝑦𝑝𝑒,𝑑𝑎𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡] = 𝑐ℎ𝑜𝑠𝑒𝑛 
9.                                           𝑼𝒑𝒅𝒂𝒕𝒆 𝑎𝑑𝑎𝑦, 𝑝𝑟𝑜ℎ,𝑤𝑜𝑟𝑘𝑒𝑑, 𝑜𝑏𝑗 
10.                                           𝑼𝒑𝒅𝒂𝒕𝒆 𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑒𝑥𝑐𝑒𝑒𝑑  
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4.3   Local Search Algorithm 
 
Once we have an initial feasible construction, we can improve it through two operators (INSERT and SWAP). The first one 
consists of going through the shifts and assigning different drivers to those who are currently assigned to improve driver 
satisfaction. The second operator consists of swapping between two shifts the drivers that are assigned in order to see if both 
drivers or one of them can be more satisfied. An explanation diagram of both is shown below: 

 
5. Computational results 
 

This section is divided into two parts. The first part presents the calibration of the parameters along with the performance of 
the GRASP algorithm in terms of the percentage of successful, unsuccessful, repaired, and unrepaired solutions. The second 
part compares the obtained results with the work proposed by Cárdenas-Parra (2019). The solution approach was coded in 
Python 3.8.3 and was executed on a computer with an Intel(R) Core (TM) i7-8750H CPU 2.20 GHz using a Windows 11 
operating system and 16 GB of RAM. 

5.1 Calibration of parameters and performance of the proposed methodology 
 

Recall that the three calibration parameters of the GRASP algorithm are 𝑖𝑡𝑒𝑟𝑎 which is the number of iterations our algorithm 
will perform, 𝑎𝑙𝑝ℎ𝑎 which is the size of our restricted list of candidates and 𝑙𝑖𝑚𝑖𝑡 which is the percentage of iterations from 
where it will start repairing solutions in case it has not found any feasible one. 𝑙𝑖𝑚𝑖𝑡 was calibrated under the assumption that, 
although we do not want it to repair all the time due to computational time issues in case it is required it should be 50% or a 
little more. For the number of iterations, we took more into account the execution time, increasing the instance size increases 
the computational effort. The largest instance has a size of 595 shifts and takes on average approximately ten seconds, 
considering that the company's instance has a size of 323 shifts, we can see in the Fig. that it would take approximately two 
seconds to execute. Although we could consider increasing the number of iterations for the smaller instances, it does not 
generate a great added value since the performance was quite good and the variation between 10-1000 iterations (increasing 
every 100) was minimal for the small instances. 

 
Fig. 1. GRASP run time with 10 iterations vs instance size 

 

 
Fig. 2. Deviation by changing iterations 
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The alpha that defines the size of the restricted list of candidates was calibrated. In line with the logic of the algorithm, which 
consists of relaxing the workload constraint, the alpha should not be decreased too much since the constraint would be 
narrowed down again and the exploration of solutions would be too short. This parameter should be above 0.5 but at the same 
time we want to give a certain degree of restriction so that the solutions are not extremely unbalanced. For this reason, the 
calibration was focused mainly on the values of 0.6 and 0.9. For small instances, we found very good results with a value of 
0.7 but the result with large instances was not favorable because they were not given enough freedom to explore solutions and 
required to be repaired all the time, this is computationally expensive and decreases the quality of the solutions. In this case, 
we sought to find an alpha where the largest instances were given enough freedom to explore. It was found that the optimal 
alpha is 0.84 since all instances have successful solutions and the repair percentage is minimal. It can also be observed that 
the rate of successful solutions of the proposed methodology is quite high with the parameters used. The repair strategy was 
only activated for the instance with 213 shifts. This indicates that for all of them, feasible solutions are being found 
approximately 80% of the time. 

 
Fig. 3. Percentage of effective solutions with Alpha=0.84 

 

Likewise, we can observe the computational effort and the percentage of improvement of the objective function of the 
constructive algorithm and the local search, where we observe that the local search has a computational cost almost more than 
three times that of the constructive one within the whole algorithm despite the complexity of the constructive one. The 
improvement of the objective function behaves oppositely; we observe that most of the impact comes from the constructive 
algorithm. However, as the instance grows, we see that it starts to be more significant in the local search for the improvement 
of the solution. 

 
Fig. 4. Comparison of computational 

 
Fig. 5. Comparison of Objective function improvement 
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5.2 Comparison of the proposed methodology  
 
A comparison has been performed with the work proposed by Cárdenas-Parra (2019) to validate the performance of the 
GRASP methodology. The algorithm was run 30 times for each instance to make the mean of the indicators balance and thus 
carry out a better analysis of their behavior. Regarding feasible and complete solutions delivered, the result of the proposed 
methodology outperformed the linear model by 93% versus 57%, for neither proposal was a feasible solution found for the 
ninth instance. The difference is that the linear model does not find a feasible solution for two other instances and delivers 
three incomplete feasible solutions. Another point of comparison is driver satisfaction. It is important to mention that the 
linear model did not have the objective of maximizing satisfaction in any way. However, it shows us that it is possible to give 
added value to the assignment of driver shifts without violating the company's restrictions and requirements. In the linear 
model, the number of satisfied, indifferent, and unsatisfied employees is balanced. However, the difference is evident when 
we see how, on average, it is possible to obtain a percentage of satisfied employees of 85% and, in many cases, a percentage 
of satisfied employees of over 90%. 

Table 1  
GRASP approach 

Instance Global Satisfaction Satisfied Indifferent Unsatisfied Feasibility 
1 0.8985 0.9111 0.0763 0.0126 Yes (Complete) 
2 0.9000 0.9032 0.0936 0.0032 Yes (Complete) 
3 0.9089 0.9142 0.0805 0.0053 Yes (Complete) 
4 0.9991 0.9991 0.0010 0.0000 Yes (Complete) 
5 0.9437 0.9437 0.0563 0.0000 Yes (Complete) 
6 0.8352 0.8539 0.1276 0.0186 Yes (Complete) 
7 0.9757 0.9762 0.0233 0.0050 Yes (Complete) 
8 0.4636 0.6436 0.1765 0.1800 Yes (Complete) 
9 - - - - No 
10 0.6038 0.6824 0.2389 0.0786 Yes (Complete) 
11 0.4691 0.6433 0.1824 0.1743 Yes (Complete) 
12 0.9119 0.9560 0.0000 0.0440 Yes (Complete) 
13 0.9518 0.9519 0.0479 0.0002 Yes (Complete) 
14 0.5506 0.6470 0.2567 0.0964 Yes (Complete) 

Average 0.8009 0.8481 0.1047 0.0476  

 

Table 1  
Work proposed by Cárdenas-Parra (2019) 

Instance Global Satisfaction Satisfied Indifferent Unsatisfied Feasibility 
1 0.0667 0.3111 0.4444 0.2444 Yes (Complete) 
2 0.0476 0.3571 0.3333 0.3095 Yes (Complete) 
3 -0.1707 0.2195 0.3902 0.3902 Yes (Complete) 
4 - - - - No 
5 0.0845 0.3662 0.3521 0.2817 Yes (Complete) 
6 -0.0991 0.283 0.3349 0.3821 Yes (1 Missing) 
7 -0.0930 0.2636 0.3798 0.3566 Yes (Complete) 
8 0.0400 0.3667 0.3067 0.3267 Yes (Complete) 
9 - - - - No 
10 -0.0439 0.307 0.3421 0.3509 Yes (Complete) 
11 0.0429 0.3571 0.3286 0.3143 Yes (Complete) 
12 0.1154 0.5577 0.0000 0.4423 Yes (3 Missing) 
13 - - - - No 
14 -0.0017 0.3418 0.3148 0.3434 Yes (1 Missing) 

Average -0.0010 0.3392 0.3206 0.3402  

 
The computing time of the proposed methodology is comparable with the work proposed by Cárdenas-Parra (2019) and, in 
the case of small instances, does not exceed 1 second. A clear difference in satisfaction was found between the two methods 
for the INTEGRA S.A. solution, as shown below: 

Table 2   
Solutions INTEGRA S.A. 

Instance Global Satisfaction Satisfied Indifferent Unsatisfied Time (s) Feasibility 
1 1 1 0 0 1.91 Yes (Complete) 
2 0.0495 0.3746 0.3003 0.3251 1.07 Yes (Complete) 

Average 0.5248 0.6873 0.1502 0.1626 1.49   
 

Finally, we show the behavior of the objective function of the best solution for the company INTEGRA S.A. (see Fig. 5) and 
for the large instance of Musliu (2006), which has 595 shifts to be assigned (see Fig. 4). The solution obtained for the company 
is quite efficient and involves little work for the methodology compared to the other. It can be seen in Fig. 4 that part of the 
solution is infeasible and corresponds to the constructive algorithm, where the aim is to explore solutions and then recover 
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feasibility thanks to the relaxation of the constraint and the balancing strategy. However, in Fig. 5, we do not observe this 
behavior because, with the current constraints of the company, workers have enough free time, and a shift configuration where 
everyone is satisfied is possible. It would be possible to meet all requirements with fewer employees than currently. 

  

Fig. 6. Instance 14 Musliu Fig. 7. Instance INTEGRA S.A. 
 

The alternative presented is similar to the model presented by Cárdenas-Parra (2019) in speed and usefulness in terms of 
possible solutions found. However, the methodology proposed here gives added value to the solution of the problem of shift 
assignment to drivers in terms of staff satisfaction, generating solutions of better quality and welfare to the company's workers, 
an algorithm that will also indirectly help the company to minimize staff turnover. 

6. Concluding Remarks 
 

This paper proposes a GRASP approach for solving the Bus Crew Scheduling Problem (BCSP) to find high-quality solutions 
within short computing times. The BCSP described the process related to the assignment of drivers and conductors to a bus 
company's regular daily operation of a mass transit system, seeking to minimize the cost of operation and, at the same time, 
the improvement of the working environment by considering the satisfaction of the drivers with the assigned shifts. The 
proposed methodology resulted in an improvement in solution generation compared to previous work dealing with the same 
problems, finding a more significant number of feasible and complete solutions for the driver shift assignment problem. The 
GRASP algorithm proved to be 36% more efficient with a minimal difference in computational effort. As for the satisfaction 
maximization approach, it can be concluded that it implies a relatively significant improvement in terms of work environment, 
so it would be interesting to implement it in the company to observe the benefits that this can bring in the long term and to 
study other factors that can be added and taken into account in the calculation for the achievement of satisfaction. This paper 
opens the door to a new work proposal in which we will seek to improve this satisfaction function to make it more robust and 
delve into the information about the impact that brings a solution of this type compared to one that only seeks to comply with 
the restrictions and minimum parameters of a shift assignment in companies that have established their operation in this way. 
Finally, the algorithm developed is a flexible methodology that can be implemented not only in the company INTEGRA S.A. 
but also in other sectors of the industry where companies use shift assignment for their workers, such as health personnel in 
hospitals, workers in companies that provide public cleaning services or security service workers. It is interesting to observe 
how the calculation of satisfaction differs and changes depending on the sector of interest and how feasible it is to work it as 
proposed in this paper. 
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