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 Order picking (OP) is a critical yet time-consuming and labor-intensive warehouse operation within 
the supply chain. In picker-to-part systems with high demand, pickers are exposed to fatigue due 
to the excessive repetition of picking activities, which results in high human energy expenditure. 
The literature indicates that energy expenditure depends on the picking activity and the worker’s 
attributes, such as pickers’ weight, gender, and age. Studies have shown that as the weights of 
individuals increase, the energy consumed for the same task increases. This study proposes a two-
stage stochastic programming model that minimizes assignment and overtime costs while avoiding 
excessive fatigue levels for pickers by incorporating rest allowance into the picking tour time. In 
the first stage, the number of pickers required is decided. In the second stage, orders are assigned 
to pickers considering uncertain energy expenditure. The two-stage stochastic programming model 
is solved by the sample average approximation algorithm. Results show that both OP cost and the 
number of pickers required to fulfill an order increase when the picker’s weight exceeds 80kg. In 
allocating orders, pickers weighing less than 80kg should be assigned to orders with more items, 
such as those containing 4- or 5-items. Conversely, pickers weighing more than 80kg should be 
assigned to orders with fewer items, like those containing 2- or 3-items, to avoid fatigue side effects. 
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1. Introduction 

Companies must effectively plan their warehouse activities to provide customers with high-quality service and reduce logistics 
costs. OP is one of the critical warehouse activities that requires more time and workforce than other activities. In OP, pickers 
retrieve items from storage units in response to customer demand. According to De Koster et al. (2007), OP costs are estimated 
to be as high as 55% of the overall warehouse operating costs. Therefore, any underperformance in OP operations can lead to 
higher financial loss for warehouses and, consequently, the whole supply chain. Many companies prefer manual systems 
operated by human order-pickers due to human flexibility in responding to short-changing product portfolios and handling 
order heterogeneity (Grosse et al., 2017). Estimates show that almost 80% of warehouses rely on the picker-to-part systems 
(De Koster et al., 2007; Grosse et al., 2017), where pickers retrieve items from storage shelves by walking along the warehouse 
without using any additional lifting equipment/vehicle. Considering the dominance of human factors in warehouses, this study 
focuses on pickers’ well-being and system performance concurrently while assigning orders to pickers. During the OP route, 
workers perform repetitive tasks (e.g., stooping, squatting, or lifting) in awkward body positions and under high stress to ship 
orders on time. Even though lightweight items are handled, excessive item-picking accumulates significant energy expenditure 
that causes fatigue (Al-Araidah et al., 2021; Grosse et al., 2017). Fatigue is a sense of overwhelming tiredness, a feeling of 
exhaustion that affects individuals’ physical or mental health, and it causes a reduction in human physical performance (Comi 
et al., 2001; Gawron et al., 2000). When pickers’ fatigue has not been considered in OP operations, many economic losses 
(e.g., delays due to wrong or incorrect items) or ergonomic risks (e.g., injuries and musculoskeletal disorders) occur 
(Vanheusden et al., 2020). The direct link between economic and ergonomic aspects of operations planning is presented by 
Finco et al. (2020), where work-related musculoskeletal disorders sum up to 160 million, decreasing the gross national product 
by 3.94% worldwide.  
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Several attempts have been made in the literature to incorporate personal differences in estimating workers’ energy 
expenditure to prevent fatigue effects. For instance, the impact of the worker’s age on energy expenditure is integrated into 
mixed-model assembly line balancing problems (ALBP) (see Calzavara et al., 2020; Finco et al., 2021). Pickers’ weight is 
another feature that strongly affects energy expenditure; as weight increases the amount of energy consumed increases (Al-
Araidah et al., 2021). Therefore, pickers’ weight must be considered in OP planning to achieve acceptable ergonomic levels. 
For instance, the duration of rest time can be dependent on pickers’ weight as there is a positive relationship between weight 
and energy consumption (Al-Araidah et al., 2021). According to the Health briefly Report OECD (2021), overweight and 
obese individuals constitute a significant portion of the population; the ratio is 59.6% on average for OECD countries, and 
Mexico, Chile, and the US are the top three countries suffering from this problem.  
 
Higher ratios of overweight individuals call upon management to account for challenges associated with weight problems in 
workplaces where manual operations are intensively performed, such as picker-to-parts manual picking systems. The 
importance of workforce allocation in providing practical solutions to industry needs was addressed by Van Gils et al. (2018). 
In order to contribute to the weight challenge in workplaces, this study focuses on pickers’ weight as a responsible personal 
factor for the variation in energy expenditure for manually operated warehouses. In many OP studies, calculations depend on 
the metabolic energy expenditure of the “average people”. Nevertheless, Sgarbossa et al. (2020) highlight that the design of 
human-centered systems necessitates personalized solutions that consider individual differences. In this context, incorporating 
physical metrics of pickers has proven to be highly effective in assigning the most suitable tasks to each picker, as discussed 
by Matusiak et al. (2017) and Katiraee et al. (2019). The uncertainties originating from personal differences pose a burden on 
balancing the physical effort or fatigue level among workers. Deterministic approaches are adapted for ease of use in practice, 
assuming more stable environments to provide good approximations. However, in the case of high fluctuation in order 
configuration and associated responsive actions (e.g., searching, grasping, carrying), deterministic models are inadequate to 
cover the system’s randomness and may provide managers with wrong conclusions. Motivated by Van Gils et al. (2018), this 
paper incorporates the energy expenditure of pickers into the worker assignment problem to avoid fatigue. Specifically, this 
research deals with the worker assignment problem, which is deciding the number of order pickers employed and the 
workforce allocation based on pickers’ energy expenditure concerning their weight and OP costs. In this study, using energy 
expenditure as an index to calculate the order picker’s fatigue level, the following research questions were investigated: RQ1) 
How does the picker’s weight impact the worker assignment problem? and RQ2) How should orders be assigned to pickers 
considering their body weight so that no excessive fatigue effects are observed? To answer these questions, a novel two-stage 
stochastic programming model that minimizes the total expected assignment and the overtime cost considering the energy 
expenditure depending on the order configuration and picker’s weight was developed. In the first stage, the optimal number 
of order pickers was decided, and in the second stage, pickers were assigned to orders to minimize overtime. It is important 
to mention that the model aims to provide a better fit for order-to-picker assignments and provide practical implications for 
warehouse managers in the worker assignment problem. At the same time, this study avoids discriminating against workers 
because of their weight.  
 
The contribution of the model to the literature is in the following aspects: i) introduction of the rest allowance (RA) concept 
into the order-to-picker assignment problem to avoid fatigue, ii) consideration of the uncertainties in energy expenditure in 
the OP planning problem, iii) incorporation of individual differences as a function of energy consumption and picking-time 
to provide a better match between orders and pickers, and iv) provision of a daily decision support system that aids managers 
in assigning orders aiming to minimize the total cost and avoid excessive fatigue levels.  
 
The organization of the manuscript is as follows: Section 2 provides a review of state-of-the-art studies. Section 3 presents 
the problem. The two-stage stochastic programming model is discussed in Section 4. Section 5 presents the solution method, 
which is the sample average approximation method. The numerical studies on order configuration and physical differences to 
gain managerial insights are provided in Section 6. Finally, Section 7 presents the general results and insights from numerical 
studies while concluding the paper.  
 
2. Theoretical background and state-of-the-art 

This section discusses the literature focusing on i) energy expenditure, fatigue, and RA and ii) workforce allocation in order 
picking in two subsections, 2.1 and 2.2. 
 
2.1. Energy expenditure, fatigue, and rest allowance  

Work-related musculoskeletal disorders occur when the physical needs of the work exceed the operators’ capabilities. From 
an ergonomic perspective, to prevent operators from musculoskeletal disorders, many ergonomic metrics, such as OCRA, 
NIOSH, or RULA, have been used in the literature (e.g., Gebennini et al., 2018). With technological advances, these metrics 
have been deployed for real-time posture monitoring to provide ergonomic solutions to warehouses or manufacturing 
environments. To benefit from these solutions, sensors should be placed on the upper and lower parts of the body so that the 
postures of the operators can be fully captured and monitored, which is not always an easy or economical solution (Battini et 
al., 2014). Likewise, measuring the operators’ energy expenditure helps to assess the related ergonomic aspects of the job to 
improve human efficiency. Energy expenditure helps understand the physical stress required to perform a task objectively 
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(Garg et al., 1978). It has been used as an ergonomic metric for comparing the effort paid for the execution of various tasks 
and monitoring the fatigue level of the individuals. Fatigue can be in psychological and physical forms (Gawron et al., 2000). 
This study considers physical fatigue due to executing a task with an applied force for a particular time. Various approaches 
assess physical fatigue depending on whether the complete body or specific body parts are used. OP operations, such as 
walking or carrying, typically force workers to use their whole body rather than specific muscles. To measure the general 
fatigue raised, Garg, Chaffin, & Herrin (1978) proposed an approach that depends on dividing the work into simple tasks and 
then calculating the energy expenditure for every task and maintenance of the postures depending on individual characteristics, 
such as age, gender, and body weight. The accumulated energy expenditure of all tasks presents the total energy expenditure 
for executing that work. This method is prevalent in literature as it is easy to calculate and integrate individual characteristics.  

There should be a comparison between energy expenditure during task execution and the maximum acceptable energy 
expenditure (MAEE), which is the highest (maximum) energy consumption level, a.k.a. maximum aerobic capacity, for a 
human to avoid fatigue during work (Åstrand, 1967). In the literature, MAEE has been recommended at 33% of an individual’s 
maximum energy expenditure (NIOSH, 1981). When MAEE is exceeded, workers are subjected to expedited fatigue. In 
response, the RA concept, which suggests giving additional break time to operators to rest and prevent fatigue effects, is 
introduced. Even though multiple approaches are deployed to determine RA, many require collecting various measures in the 
industrial context, which is not always a practical solution. We selected the model proposed by Price (1990) due to its prevalent 
usage, adherence to practical implications, and ease of use. Based on the formulation in Price (1990), RA occurs when the 
metabolic energy expenditure during task execution exceeds the MAEE as follows in Eq. (1): 
 

max , work

rest

EE MAEERA 0
MAEE ET

 −
=  − 

 (1) 

where workEE and restET  are the metabolic energy expenditure during work and rest time, respectively. In this formulation, it 
is important to notice that RA is defined as a percentage of working time. For instance, 10% RA for a 10-minute job means 
the worker needs an additional one minute to rest adequately. After providing the theoretical background, below presents the 
studies that attempt to integrate energy consumption and fatigue as ergonomic assessment metrics. Both metrics were utilized 
in manufacturing problems (e.g., ALBP and job scheduling) and designing warehouse operations. Battini, Delorme, et al. 
(2016a) were the first to introduce the energy expenditure concept as a human factor metric in ALBPs. They proposed a multi-
objective optimization model that considers the time and ergonomic sides of the assembly line. The Pareto frontiers were 
presented to help practitioners understand how the solution to balancing problems affects productivity and ergonomics. 
Similarly, Abdous et al. (2018) developed a linear multi-objective mixed integer programming (MIP) model that aimed to 
optimize the number of workstations and minimize the fatigue level of the operators for ALBP. Based on the results, the 
increase in the number of workstations led to an exponential decrease in the fatigue level of the workers. The study helped 
balance the assembly line with less worker fatigue. Similarly, Abdous et al. (2022) developed a multi-objective MIP model 
that considered assembly line workers’ fatigue levels while minimizing the number of stations for the ALBP. Numerical 
studies showed that improving ergonomics is not necessarily translated as higher tact time or additional workstations. Ferjani 
et al. (2017) worked on assigning multi-skilled workers in manufacturing, considering the fatigue effect. The fatigue levels of 
the workers were dynamically calculated through an exponentially increasing indicator, which is a function of time. A 
simulation-based optimization is proposed to assign workers considering their fatigue levels and skills to minimize the mean 
flow time of jobs. In order to reduce excessive fatigue levels, Finco et al. (2020) introduced the RA concept for the ALBP to 
improve the performance of the assembly lines, considering both economic and ergonomic aspects. In their study, they 
developed a MIP model to minimize the smoothness index to ensure a similar distribution of work among stations. 
Additionally, a heuristic algorithm was proposed when the MIP model fell short of computation due to the large number of 
tasks assigned to the stations.  
 
Additionally, although workers perform the same task, the MAEE varies for their physical features. In this regard, Dalle Mura 
and Dini (2019) developed a model for solving ALBP regarding workers’ skills and capabilities, which were assessed through 
anthropometric and physiological characteristics. Their study showed that energy expenditure differed from human to human 
regarding personal features, such as gender, age, and weight; thus, incorporating those differences in ALBP can improve 
productivity and human factor-related issues. Similarly, Katiraee et al. (2021) presented a bi-objective model focusing on 
cycle time and physical workload minimization by introducing the Worker Tasks Categorization Matrix for ALBP. The Borg 
scale was used to assess physical effort considering personal features and perceptions. Results showed that the worker 
assignment plan that avoids overwhelming physical workload with slightly increased cycle time was applicable. Likewise, 
Finco et al. (2021) considered “age” as an individual factor that impacts the acceptable energy expenditure of mixed model 
assembly line workers. First, a linear model was built to minimize cycle time for ALBP. Then, a sequencing model was 
developed to minimize the workload calculated through RA integration concerning workers’ age.  In addition to ALBP, some 
papers consider the fatigue level of the workers for job scheduling problems. Berti et al. (2021) showed how fatigue and work 
experience could be included in scheduling problems to fit jobs and workers better considering RA for workers. Results 
showed that ignoring RA can cause critical performance decline, which decreases system performance. Individual rest breaks 
should be determined depending on individual features like age. Recently, Battini et al. (2022) developed a multi-objective 
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job rotation scheduling model that considered socio-technical factors: workers’ experience, physical capacity, postural 
ergonomic risks, noise and vibration exposure, and workers’ boredom. The study aimed to determine the best job assignment 
and provide workers with individualized rest plans. The results showed that flexible work plans help workers improve their 
capabilities through acquiring experience in various tasks with less perceived fatigue and boredom and increased satisfaction 
and motivation.  
 
To our knowledge, Al-Araidah et al. (2021) is the first study that mentioned the RA concept for the OP problem. The study 
presented a Monte Carlo simulation model to estimate the average energy expenditure of female order pickers working in a 
large warehouse regarding their weights and walking speed. The simulation results presented a significant increase in energy 
expenditure levels of the order pickers above the average weight. The study clearly stated that warehouse operation planning 
should consider this difference in pickers’ well-being and operational performance. 
 
2.2. Workforce allocation  

The primary focus of the workforce allocation in OP operations was on pick-time reduction and associated delays. Henn 
(2015) studied combined order batching and sequencing problems for manual picker-to-parts OP systems. The study proposed 
a variable neighborhood descent approach and a variable neighborhood search as solution methods for the problem and 
showed that both methods achieved high-quality solutions. Numerical studies revealed that both methods improved warehouse 
management and increased customer satisfaction regarding on-time order shipment. Similarly, Scholz et al. (2017)  developed 
a mathematical model for the joint order batching, assignment, sequencing, and routing problems to minimize total tardiness. 
Due to the exponential increase in solution time regarding the number of orders, a variable neighborhood descent approach 
was introduced for larger-size problems. Their model outperformed other state-of-the-art solution approaches, and a 
considerable reduction in total tardiness was achieved. 
 
Hong et al. (2012) presented an integrated order batching and sequencing problem to minimize the total order retrieval time, 
considering congestion delays during the picking tour. They developed an MIP model for the exact solution and introduced a 
simulated annealing procedure for large-scale problems. Results showed that decreasing the picker blocking improved order 
retrieval time by 5-15%. Matusiak, De Koster, & Saarinen (2017) developed a model for combined order batching, routing, 
and picker assignment problems for picker-to-parts systems to minimize the total retrieval time regarding the properties of 
the batches and the skills of the pickers, such as agility, driving skills, picking high items, picking from a high level, and 
picking large volume of batches. The problem was solved using a heuristic approach with the adaptive large neighborhood 
search algorithm. Based on the numerical study, incorporating the picker skills into the OP planning problem led to a 10% 
reduction in total order processing time. Zhang et al. (2017) studied online order batching and assignment problems with 
multiple pickers to ensure an impartial workload among pickers while minimizing the maximum completion time of the 
orders. A hybrid rule-based algorithm that considered the fixed time window batching rule and the number of arrived orders 
during the fixed time window was proposed to solve the problem. The algorithm’s efficiency was shown under various 
uncertain demand scenarios, picker quantity, and order arrival rate. Their results showed that, with reasonable picking capacity 
and number of pickers, picking efficiency and employee availability can be enhanced while reducing employment and facility 
expenses. 
 
To minimize tardiness, Van Gils et al. (2019) developed a model incorporating three order picking problems: batching, picker 
routing, and picker scheduling. An iterated local search algorithm was efficient in solving the integrated problem. However, 
human factors were not included in these three decision problems. The authors also pointed out that human factors, especially 
incorporating individual capabilities into a conjoint OP problem, were crucial in reducing on-time delivery and relevant to 
real-life OP planning.  Few studies have incorporated human factors in workforce allocation for OP. Moussavi (2018) 
proposed a multi-objective model that aimed to (i) minimize the maximum physical workload of the operators, (ii) decrease 
cycle time, and (iii) balance the workload among operators. For solving the problem, linear aggregation and ε -constraint 
methods were used. Gebennini et al. (2018) integrated job scheduling and assignment problems considering the walking cost 
and ergonomic aspects, i.e., physiological, and biomechanical measures for manual lifting activities. The study employed the 
NIOSH index to evaluate the associated lifting operations, and the metabolic cost of walking was calculated according to 
Garg, Chaffin, and Herrin (1978). A MIP model was proposed for solving the joint problem. Battini et al. (2017) proposed a 
new procedure that can be used to assess the ergonomic effort put forward by the order pickers in the warehouse so that 
additional effort needed for the pickers could be calculated considering human availability (e.g., absence due to injury, sick 
leave - presence) and RA. The study compared two case studies where additional effort was fulfilled through indirect workers, 
and no indirect workforce was allowed regarding ergonomic cost savings. Results showed the benefit of employing indirect 
workers when an additional effort was needed. Although not directly linked with workforce allocation, Battini et al. (2016b) 
have worked on the storage assignment problem that decides on the positions of the items on the storage shelves to minimize 
the picker’s energy consumption and picking time. They found that optimal positions of the items on the shelves varied 
significantly for two objective functions when the shelves had short aisles or when any high vertical movement was needed 
to retrieve items. On the other hand, for longer aisle warehouses the optimal solution was almost the same for both objectives.  
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Table 1 summarizes the studies that focus on workforce allocation in OP systems. According to Table 1, almost all studies 
incorporate pick time as a deterministic parameter. However, pick times are uncertain and change over time. Another insight 
we gain from Table 1 is the scarcity of studies considering the ergonomic aspects of the problem. Additionally, none of these 
studies took into account individual differences. Human-centered approaches that envision inter-individual differences are 
highly suggested for future research areas (Sgarbossa et al., 2020). Especially for OP planning, De Lombaert et al. (2022) 
addressed the urgent need for solutions to work rate variation and personal features. Inspired by Sgarbossa et al. (2020) and 
De Lombaert et al. (2022), in this study, we developed a two-stage stochastic optimization model that considers uncertainty 
originated by weight as a physiological measure and OP tour time. 
 
Table 1 
Summary of the literature 

Author Pick time Human Factors Objective Solution Method 
Hong, Johnson, 
& Peters (2012) 

Stochastic/ 
Deterministic - Minimize the total order retrieval 

time  
MIP 
Simulated annealing 

Henn (2015) Deterministic - Minimize the total tardiness Variable neighborhood descent 
Variable neighborhood search  

Scholz, Schubert, 
& Wäscher (2017) Deterministic - Minimize the total tardiness Variable neighborhood descent  

Matusiak, De Koster, 
& Saarinen (2017) Deterministic Skills of the pickers Minimize the total order retrieval 

time  Adaptive large neighborhood search  

Zhang et al. (2017) Deterministic - Minimize the maximum completion 
time of the orders 

Heuristic 
Hybrid rule-based algorithm  

Battini et al. (2017) Deterministic Risk (OWAS index) 
Physical effort, fatigue Additional effort estimation Simulation 

Gebennini et al. (2018) Deterministic 

Physiological and 
biomechanical 
measures for manual 
lifting (NIOSH index) 

Minimize walking costs and 
ergonomic effort MIP 

Moussavi (2018) Deterministic Workload per picker 

Minimize the maximum physical 
workload of the operators 
Decrease cycle time 
Balance the workload  

Epsilon-constraint method 

Van Gils et al. (2019) Deterministic - Minimizes the total order pick time Iterated local search algorithm  
 
3. Problem description 

This study deals with lightweight item picking for the picker-to-part OP system for a traditional warehouse that includes 
parallel racks with a centralized pick-up and drop-off point (I/O). The picking tour starts from the I/O point as the picker 
receives the order notice and ends when all the items are dropped off at the same point I/O. OP tour time and associated energy 
expenditure data from a former work (Al-Araidah et al., 2021), which deployed a Monte Carlo simulation model to fulfill 
10,000 orders, were used. Each order included 1 to 5 uniformly distributed items in that study, shortly called order 
configuration. Those items were assumed to be stored in locations numbered 1-720. The size of each stock location was 
0.5(width)×0.5(depth)×0.3(height) meters, and all were in a total of 6 compartments. Picking times of gathering items from 
heights of 0.3, 0.6, 0.9, 1.2, 1.5-, and 1.8-meters compartments were assumed to be 4s, 4s, 2s, 2s, 4s, and 4s, respectively. 
Travel times were calculated considering the walking speed between 0.2 and 1.8 m/s. Then, total tour times were computed 
according to Tompkins et al. (2010), where travel and pick times accounted for 65% of OP tour time. During the OP tour, 
pickers were assumed to squat, stoop, arm lower, hold, carry, stand, and sit. The energy expenditure for each activity was 
calculated by Garg, Chaffin, and Herrin (1978), considering their physical measures. The study simulated the OP process 
considering a range of body weights (40 - 100 kg), order configuration (1-5 items), walking speed (0.2 and 1.8 m/s), item 
weight (0.25, 0.5, or 1.0 Kg) and allowable occupational physical work capacity to investigate the change in times 
(distance/speed) and energy expenditure for each OP tour. Building upon the statistics gained from the Monte Carlo 
simulation, the problem is to decide on the picker assignment considering the energy expenditure of the workers based on 
their weight. Following, we aim to investigate how the variation in weight impacts the assignment. 
 

4. Problem formulation 
Inspired by the Stochastic Generalized Assignment Problem (SGAP), this study proposes a new stochastic MIP model to 
decide the number of order pickers and job assignments under uncertain OP tour time and energy expenditure depending on 
pickers’ weight. In SGAP with simple recourse, jobs must be assigned to machines to minimize the cost of assignment and 
overtime under uncertain working times. In the formulation, we interchangeably use the terms “orders” for “jobs” and 
“pickers” for “machines.” Each order is assigned to only one picker and consumes a stochastic amount of OP tour time for 
order preparation needed for retrieving orders from warehouses. Depending on many factors, such as location or order 
configuration, OP tour time varies. Thus, tour time is a random variable. Both the fluctuation in order tour time and weight of 
the picker impacts the energy expenditure (Kcal/min) for OP, which is another random variable. Building upon SGAP, 
considering uncertain OP tour times and energy expenditure, the objective is to assign orders to pickers to minimize the cost 
of assignment and overtime while fatigue is eliminated. First, the deterministic version of the problem, a core model, is 
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presented in Section 4.1. Next, by extending the model to incorporate random OP tour time and energy consumption, a two-
stage stochastic model is developed in Section 4.2.  The main assumptions of the model are as follows: 
 
There are number of O orders; 
 
There are number of W pickers; 
 
For the deterministic model in Section 4.1, each order has a deterministic OP time it and an energy expenditure ije . OP time

it is a function of order configuration, walking speed of the picker. The deterministic values are replaced by their uncertain 
counterparts in Section 4.2, in which each order has an uncertain OP time it and energy expenditure ije ; 
 
No order batching is allowed. Starting from the I/O point, each picker starts the OP route and finalizes the tour in the I/O 
point after all the items in the order are collected; 
 
OP time includes all picking-associated activities, such as searching, grasping, and carrying items; 
 
Pickers are assumed to expend energy to maintain a standing posture throughout the tour; 
 
RA is calculated for each order and picker, and added to the OP time; 
 
There are enough items in storage locations to fulfill the daily demand. 
 
4.1. Deterministic model 

This section presents the sets, parameters, and mathematical formulation of the deterministic model as follows: 
 

Sets  
:I set of orders, { },...,I 1 o=  

:J set of pickers, { },...,J 1 w=  

:K set of item counts in the order, { },...,K 1 κ=  

kS subset of orders that include k items, kS I⊂  
Parameters  

:a assignment cost [dollars per 8 hours] 
:p overtime penalty [dollars per minute] 
:it OP tour time of order i [minute]  

limit :t regular working hours [8 hours]  
:ije energy expenditure of order picker j to prepare order i [Kcal/min]  

limit :e MAEE for a picker [Kcal/min] 
:reste energy expenditure during rest [Kcal/min] 

Decision variables 
:ijx 1 if order i is assigned to picker j  
:jy 1 if picker j has been employed for any order picking 
:jot The amount of overtime for picker j  
:ijRA RA required by picker j for order i  

 

,
min  j jy ot j J j J

a y p ot
∈ ∈

⋅ + ⋅    (2) 

subject to    

ij
j J

x 1
∈

=  i I∀ ∈  (3) 
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( ) limit
k

i ij ij j
i S

t 1 RA x ot t
∈

⋅ + ⋅ − ≤  ,  k K j J∀ ∈ ∈  (4) 

ij jx y≤  ,  i I j J∀ ∈ ∈  (5) 

{ },ijx 0 1∈  ,  i I j J∀ ∈ ∈  (6) 

{ },jy 0 1∈  j J∀ ∈  (7) 

jot 0≥  j J∀ ∈  (8) 

ijRA 0≥  ,  i I j J∀ ∈ ∈  (9) 
 
Eq. (2) presents the objective function, which includes the cost of assignment and overtime for daily demand. Constraint (3) 
ensures that each order i is strictly assigned to a picker. Constraint (4) calculates the overtime considering the energy 
expenditure and OP tour time jointly. The RA amount is added to the tour time of the order picker and the OP tour time with 
RA is ( )i ijt 1 RA⋅ + . Constraint (5) shows whether picker j is employed. Constraints (6-9) define the type of variables in the 

model formulation. The mathematical model presented above is not linear due to the product of variables ijx and ijRA in Eq. 
(4). Thus, Constraint (4) is rewritten in the following formulation: 
 

limitTRA  
k k

ij i ij j
i S i S

t x ot t
∈ ∈

+ ⋅ − ≤   ,  k K j J∀ ∈ ∈  (10) 

 
where, TRAij is: 
 

limit

limit rest

TRA max , ij
ij i ij

e e
0 t x

e e
− 

= ⋅ ⋅ − 
 ,  i I j J∀ ∈ ∈  (11) 

 
To linearize Eq. (11), the below constraints in Eq. (12-16) are included in the model. 
 

TRA ij 0≥  ,  i I j J∀ ∈ ∈  (12) 

limit

limit rest

TRA ij
ij i ij

e e
t x

e e
−

≥ ⋅ ⋅
−

 ,  i I j J∀ ∈ ∈  (13) 

( )TRA BMij ij1 w≤ ⋅ −  ,  i I j J∀ ∈ ∈  (14) 

limit

limit rest

TRA BMij
ij i ij ij

e e
t x w

e e
−

≤ ⋅ ⋅ + ⋅
−

 ,  i I j J∀ ∈ ∈  (15) 

{ },ijw 0 1∈  ,  i I j J∀ ∈ ∈  (16) 
 

In Eq. (14-16), BM refers to the big- M , a large number; ijw is a binary variable that arranges the selection of the highest 

value for TRA ij , 0 or limit

limit rest

ij
i ij

e e
t x

e e
−

⋅ ⋅
−

. The deterministic form of the developed model is Eqs. (2-3), Eqs. (5-10), and Eqs. 

(12-16). However, because OP tour time it and energy consumption ije are uncertain random variables, the core deterministic 
model is extended to a two-stage stochastic programming model in Section 4.2.  
 
4.2. Two-stage stochastic model 

In the stochastic model, we assumed that OP tour time and associated energy expenditure during picking are uncertain 
parameters with the known joint distribution. The uncertain parameters are denoted by ,ξ ( ),t eξ =   , and the tilde mark is used 
to distinguish uncertain parameters from their deterministic counterparts. The objective of the developed two-stage stochastic 
program in Eqs. (17-29) is to minimize the total assignment cost and the expected penalized overtime needed to meet the 
demand. The first stage decision variable jy , simply Y, shows the assigned workers for order picking. The second stage 
decision variable is jot , simply OT, and shows pickers’ overtime hours to meet the demand. 

( )min  ,jy j J
a y E Q y ξ

∈

⋅ +      (17) 
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subject to    
ij

j J
x 1

∈

=  i I∀ ∈  (18) 

ij jx y≤  ,  i I j J∀ ∈ ∈  (19) 
{ },ijx 0 1∈  ,  i I j J∀ ∈ ∈  (20) 
{ },jy 0 1∈  j J∀ ∈  (21) 

 
where 

( ), min jot j J
Q y p otξ

∈

= ⋅   (22) 

subject to   
limitTRA

k k

j ij i ij
i S i S

ot t x t
∈ ∈

≥ + ⋅ −   ,  j J k K∀ ∈ ∈  (23) 

TRA ij 0≥  ,  i I j J∀ ∈ ∈  (24) 

limit

limit rest

TRA ij
ij i ij

e e
t x

e e
−

≥ ⋅ ⋅
−

  ,  i I j J∀ ∈ ∈  (25) 

( )TRA BMij ij1 w≤ ⋅ −  ,  i I j J∀ ∈ ∈  (26) 

limit

limit rest

TRA BMij
ij i ij ij

e e
t x w

e e
−

≤ ⋅ ⋅ + ⋅
−

  ,  i I j J∀ ∈ ∈  (27) 

{ },ijw 0 1∈  ,  i I j J∀ ∈ ∈  (28) 

jot 0≥  j J∀ ∈  (29) 
 

Eq. (17) presents the objective function of the two-stage stochastic programming model, which minimizes the first-stage cost 
and expected second-stage cost under a set of possible scenarios. The first term in the objective function is the first-stage cost, 
which refers to the total assignment cost of pickers for OP. The second term in the objective function is the expected total cost 
of penalized overtime associated with exceeding the regular working hours, i.e., the expected value of the recourse function. 
The expected value of the recourse function for a given assignment ˆijx is 
 

limit limitˆ ˆTRA  TRA
k k k k

ij i ij ij i ij
j J i S i S j J i S i S

E p t x t p E t x t
+ +

∈ ∈ ∈ ∈ ∈ ∈

      
   + ⋅ − = + ⋅ −               
        (30) 

 

where limitˆTRA
k k

ij i ij
i S i S

E t x t
+

∈ ∈

  
 + ⋅ −     
  is the expected overtime for picker j .  

Constraints (17) – (21) present the first stage model, in which the orders are assigned to the pickers, and constraints (22) – 
(29) denote the second stage model that calculates the penalized overtime to meet the demand.  
 
5. Solution method 

There are two potential difficulties in solving the two-stage stochastic model presented in Section 4.2. The first difficulty is 
the computation of the objective function for a given set of pickers, which requires the calculation of the ( ),E Q y ξ    in Eq 
(17). When the uncertain parameter, such as OP tour time and energy expenditure in our problem, has continuous distribution, 
the exact calculation of this expected value involves the computation of multiple integrals (Santoso et al., 2005). The second 
obstacle is the optimization of the expected overtime cost ( ),E Q y ξ   due to not having the closed analytical form of the

( ),E Q y ξ   . To overcome these issues, the Sample Average Approximation (SAA) algorithm is introduced by Kleywegt, 
Shapiro, & Homem-de-Mello (2002). SAA is a Monte Carlo-based optimization method for solving stochastic optimization 
problems. The overall idea behind the SAA is approximating the expected objective function through a sample average 
obtained from a random sample. The SAA searches the solution space iteratively, increasing the set of scenarios until ε – 
optimal solution is found. In the SAA algorithm, random sample ,...,1 Nξ ξ of N scenarios of the OP tour time and energy 
expenditure are generated according to the prior known probability distributions. Then, expectation in the objective function

( ),E Q y ξ   is approximated by the SAA function, ( ),
N

n

n 1
Q y Nξ

=
 . Finally, the true problem in Eq. (17) – (21) is 
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approximately calculated by the SAA problem in Eq. (31), where Ta y resents the total assignment costs and ( ),
N

n

n 1
Q y Nξ

=


shows the expected overtime costs. 
 

( )ˆ min  ,NT n
N n 1y

1z a y Q y
N

ξ
=

= +   (31) 

 
As sample size N increases, the optimal solution of the SAA problem ŷ and its objective function ˆNz converges to the optimal 
optimal solution *y and value *z of the true problem with probability one (i.e., asymptotic convergence). The steps of the SAA 
algorithm are presented below: 
 
Step 1: Generate M independent samples each of size N and solve the SAA problem in Eq. (31). For ˆ,..., ,  m

Nj 1 M z= and ˆ m
Ny

denote the corresponding optimal objective function value and optimal solutions. 
 
Step 2: Compute Mz and

M

2
zσ as follows as in Eqs. (32-33), respectively: 

ˆ
M

m
M N

m 1

1z z
M =

=   (32) 

( ) ( )ˆ
M

M 22 m
z N M

m 1

1 z z
M 1 M

σ
=

= −
−   (33) 

Mz is an unbiased estimator of [ ]ME z , and [ ] *
ME z z≤ (Mak et al., 1999; Santoso et al., 2005). Therefore, Mz produces a lower 

bound for the optimal value of the true stochastic problem, *z . 
 
Step 3: Find the *ŷ , optimal solution among m solutions that provides the minimum objective value as in Eq. (34), 

( ) { }{ }*ˆ ˆ ˆ ˆ ˆ ˆˆargmin : , ,...,1 2 m
Ny z y y y y y∈ ∈  (34) 

 

Then, generate another sample size of 'N , independent from the previous sample N . Note that 'N is much larger than the 
sample size of SAA problems. Next, fixing the optimal solution *ŷ , estimate the true objective function ( )' *ˆNz y . This step 
includes solving 'N second-stage problems as in Eq. (35). 

( )'' * * *ˆ ˆ ˆ( ) ,
'

NN T n
n 1

1z y a y Q y
N

ξ
=

= +   (35) 

' *ˆ( )Nz y is unbiased estimator of ( )* *ˆ ˆ ,T na y E Q y ξ +   . For any feasible *ŷ , ' * *ˆ( )Nz y z≥ (Mak et al., 1999; Santoso et al., 

2005). Thus, ' *ˆ( )Nz y produces an upper bound for the optimal value. The variance of the estimate is: 
 

( ) ( )( )' *

'
* * ' *

ˆ( )
ˆ ˆ ˆ, ( )

' 'N

2N
2 T n N
z y

n 1

1 a y Q y z y
N 1 N

σ ξ
=

= + −
−   (36) 

 

Step 4: Compute the optimality gap through lower and upper bound estimates as follows: 
( )* ' *ˆ ˆ( )N

Mgap y z y z= −  (37) 
 
The estimated variance of the optimality gap is 
 

' *ˆ( )N M

2 2 2
gap zz y

σ σ σ= −  (38) 
 

Step 5: If the optimality gap is less than ε , stop the algorithm and choose *ŷ as optimal solution; otherwise, increase
,  ,  'M N N and repeat steps (1-4). 

 
6. Computational experiments 

In this section, first, common data used in the numerical studies are presented in Section 6.1. Then, in Section 6.2, the 
capability of the proposed model is tested by solving two benchmark problems. However, it is important to mention that the 
primary objective of this study is to discover the impact of pickers’ weight and energy consumption on the picker assignment 
problem for warehouses. In this regard, this research does not center on the computational capability of the mathematical 
model. Instead, it focuses on the impact of pickers’ weight on the number of required pickers and OP costs. Therefore, to 
evaluate the benefits achieved by applying the proposed model, Section 6.3 is designed to answer RQ1, while Section 6.4 is 
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constructed to investigate RQ2. Last, Section 6.5 presents the value of the stochastic solution. All the numerical experiments 
are conducted on a PC with Intel Core i7/2.5GHz/8GB RAM using GAMS 23.3 with a CPLEX solver.   
 
6.1. Data 

Data used in the model about the warehouse design parameters and OP tour time are based on a former simulation study 
conducted by Al-Araidah et al. (2021). In that study, energy expenditure levels are calculated by Garg et al. (1978), 
considering the design and pick-up time of the orders. Table 2 presents the list of all the parameters used in the study with the 
collected resources. 

 
Table 2  
Model parameters 

Parameters Values 
Cost related parameters  
a  116.64$/day [14.58$/hr × 8hr] (Bureau of Labor Statistics 2021) 
p  0.365$/min [× 1.5 assignment cost] 

Picker related parameters  
Walking speed 1.3m/s 𝑒௧ 4 Kcal/min  Kcal/min (Morelli 2001) 𝑒௦௧  1.86 Kcal/min (Finco et al. 2020) 
Warehouse related parameters  
Aisle width 1m (Al-Araidah et al. 2021) 
Number of aisles 3 (Al-Araidah et al. 2021) 
Compartment width 0.5m (Al-Araidah et al. 2021) 
Shelf height  0.3m (Al-Araidah et al. 2021) 
Rack depth  0.5m (Al-Araidah et al. 2021) 
Bench height  0.81m (Al-Araidah et al. 2021) 
Storage locations 720 (Al-Araidah et al. 2021) 
Order related parameters  
Item weight in the order  1kg (Al-Araidah et al. 2021) 
Basket weight 0.68kg (Al-Araidah et al. 2021) 

 
The energy expenditure ( )ije  and the OP tour time ( )it are approximated to follow a normal distribution with a mean of ijeμ and

itμ ; and variance of 2
ijeσ and 2

itσ , respectively, based on simulation of 10,000 orders (Al-Araidah et al., 2021) as presented in 
Table 3.  

 
Table 3  
OP time and energy expenditure of the pickers depending on weight under the walking speed of 1.3 m/s 

Order 
configuration 

Time in min 
(No allowance) 

Energy expenditure (Kcal/min)  
70kg 80kg 90kg 100kg 

 itμ  2
itσ  ijeμ  2

ijeσ  ijeμ  2
ijeσ  ijeμ  2

ijeσ  ijeμ  2
ijeσ  

1-item 0.381 0.014 3.764 0.042 4.232 0.052 4.700 0.063 5.168 0.075 
2-items 0.630 0.015 3.734 0.023 4.197 0.028 4.660 0.034 5.123 0.041 
3-items 0.873 0.022 3.743 0.017 4.202 0.022 4.662 0.027 5.122 0.032 
4-items 1.119 0.028 3.768 0.013 4.226 0.017 4.685 0.020 5.143 0.025 
5-items 1.368 0.035 3.804 0.012 4.261 0.015 4.719 0.018 5.176 0.021 

 
In all numerical experiments, the number of orders and item counts in each order { },...,K 1 5= are randomly generated to 
derive insights about the picker’s weight. The SAA parameters used in the numerical studies are ,  ,  'M 5 N 20 N 50= = = . 
 
6.2. Computational analysis 

We tailored some well-known data sets for our problem to illustrate the model’s capability to find a solution. Because our 
problem is related to GAP and OP allocation, we select two different datasets (Spoerl & Wood, 2003; Henn, 2015) to cover 
both aspects of the problem. However, due to the incorporation of warehouse and energy expenditure-related parameters and 
constraints in our model, it is impossible to compare their models and ours based on the objective function. Therefore, the 
solution time metric is used for the comparison. Table 4 presents the data instances and compares the solution times of Spoerl 
& Wood (2003) and our model. The modifications in our data set are as follows: (i) the number of trucks and operators in the 
original dataset is replaced by the number of pickers and orders, (ii) the number of items in the orders is assumed to be 
uniformly distributed between 1 and 5 and, (iii) all pickers assumed to weigh 70kg.  
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Table 4  
Solution time for the data instances adopted from (Spoerl & Wood, 2003) 

Data 
instances Pickers Orders 

Solution Time (CPU Seconds) 
Deterministic Stochastic Our solution EGAP PMVM GMVM 

XSLONGD 6 21 0.3 0.3 0.2 2.4 
XSLONGN 8 22 0.3 0.3 0.2 2.5 
XSBOSTD 15 50 0.5 1 1.6 4.5 
XSBOSTN 17 56 1.3 0.8 1.2 4.9 
XSDLWRN 11 48 0.3 0.3 0.8 3.6 
XSDLWRD 19 70 0.4 1.4 21.5 5.9 
XSLOSAD 34 151 44.8 9.8 403.6 17.1 
XSLOSAN 35 147 19.9 110.3 164.3 17.2 

* PMVM: proportional mean-variance model, GMVM: general mean-variance model – stochastic approaches used in their study 
 
Table 4 shows that our model can solve all the instances in less than 17.2 seconds. Another comparison was performed over 
the data set used by Henn (2015), which deals with the picker assignment and scheduling problem. In Henn (2015), two 
different order quantities, 100 and 200, were assigned to a number of 2, 3, 5, and 8 pickers. The objective was to minimize 
the total due date tardiness. The following assumptions were needed for the comparison: (i) because our problem does not 
deal with order scheduling, we modified our model not to allow overtime; (ii) we assumed that each batch consisted of one 
order; (iii) the number of items in the orders are uniformly distributed between 1 and 5 and, (iv) all pickers were assumed to 
weigh 70kg. Our model was able to solve eight instances [2 (number of orders 100 and 200) × 4 (number of pickers 2, 3, 5, 
and 8)] in less than 7 CPU seconds.   
 
Solution time depends on many problem parameters and constraints. For example, the sensitivity of the solution time regarding 
overtime cost was mentioned in (Spoerl & Wood, 2003). In this manner, rather than making a fair comparison between the 
benchmark data sets and our model, the results provide a base to understand that our model can solve the test instances in a 
reasonable time. All the numerical experiments in Sections 6.3-6.5 were successfully solved in less than 1.6 hours. 
 
6.3. Impact of weight on total cost and number of order pickers 

Weight is a significant factor used in the calculations of energy expenditure. In this numerical experiment, the impact of OP’s 
weight on the total number of pickers and the total OP costs was investigated. Therefore, a typical daily demand of 3360 
orders consisting of 1264, 760, 552, 432, and 352 orders for each order configuration (1-item to 5-items), respectively, was 
selected from one of (Al-Araidah et al., 2021)’s experiments. Ten different sets of scenarios in which the weight of the picker 
changes from 50kg to 100kg are generated. In these experiments, we assumed that all the pickers weigh the same, changing 
respect to scenarios. Then, using the energy expenditure of the various picker’s weights (Kcal/min) from the simulation model 
(Al-Araidah et al., 2021), the two-stage stochastic programming model was solved to decide the number of pickers.  Fig. 1 
demonstrates the number of pickers and total OP costs for ten scenarios. As seen in Fig. 1, there was no change in the number 
of pickers and the total OP cost when the picker was between 50kg and 74kg. However, the total OP cost increased as weight 
exceeded 74kg, especially above 80kg. On the other hand, the number of workers remained the same until 80kg and suddenly 
increased to seven and eight for 90kg and 100kg, respectively.  
 

 
Fig. 1. Variation in total cost and number of pickers concerning pickers’ weight for a daily demand 

 
According to the weight percentile calculator for women 18 years and older in the United States (PK, 2023a), the median 
weight is 74kg. In our numerical experiment, a weight of 74kg constitutes a threshold for OP costs, implying that a rise occurs 
in costs when the picker’s weight exceeds 74kg. Similarly, another weight percentile by age calculator for adult women in the 
United States (PK, 2023b) computes that the median weight for the age interval of 35-39 is almost 78kg. This numerical study 
illustrates that the number of pickers required to fulfill the same order quantity increases when the picker’s weight exceeds 
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80kg. Using the two statistics (PK, 2023a; 2023b) and the results of the numerical study, an insight for warehouse managers 
is that pickers below 80kg provide a better match to fulfill the demand with fewer pickers and costs.  
 
6.4. Impact of weight on order-picker match 

This numerical experiment investigates how a better fit between order configuration and pickers with different weights can 
be achieved. We aim to reveal which order configuration can be allocated by what weight picker so that full benefit from the 
human resource is gained while considering their energy expenditure.  For a daily demand of 4500 orders, 900 from each 
order configuration, we generate 11 scenarios (S1-S11) in which the weights of pickers range between 70kg and 100kg. In 
these scenarios, weight is considered in three segments: low-weight, medium-weight, and high-weight. Pickers weighing 
70kg-80kg dominate in the low-weight segment, whereas 90kg-100kg pickers dominate in the high-weight segment. The 
medium-weight segment is between the low- and high-weight segments, showing that almost the same number of pickers are 
included between 70kg and 100kg. All 11 scenarios with three weight segments are presented in Table 5. In Table 5, the first 
four scenarios (S1-S4) belong to the low-weight segment; the following three scenarios (S5-S7) belong to the medium-weight 
segment; and the last four scenarios (S8-S11) belong to the high-weight segment. The first scenario (S1) includes five pickers 
weighing 70kg and four weighing 80kg. The weight distribution of the pickers for the rest of the scenarios can be read 
similarly. 

   
Table 5  
The weight distribution of pickers 

Weight 
Number of pickers 

Low-weight segment Medium-weight segment High-weight segment 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

70kg 5 4 6 1 3 0 0 1 1 0 0 
80kg 4 5 1 6 2 5 4 1 1 0 0 
90kg 0 0 1 1 2 4 5 6 1 5 4 
100kg 0 0 1 1 2 0 0 1 6 4 5 

Avg. weight(kg)  74.44 75.56 76.67 82.22 83.33 84.44 85.56 87.78 93.33 94.44 95.56 
 
The two-stage stochastic programming model for each scenario is solved, and the results for each weight segment are 
presented in Tables 6-8. For instance, in Scenario 1 in Table 6, only eight workers out of nine are allocated, and no order is 
assigned to the last picker weighing 80kg. The first picker weighing 70kg was assigned a total of 557 orders, which are 133, 
51, 44, 145, and 184 for each configuration ranging from 1-item to 5-item.  

 
Table 6  
The number of orders assigned to pickers in the low-weight segment 

Sc
en

ar
io

 1
 

Order configuration 70kg 70kg 70kg 70kg 70kg 80kg 80kg 80kg 80kg 
1-item 133 139 128 130 122 87 78 83 - 
2-items 51 53 45 51 52 210 226 212 - 
3-items 44 49 64 49 49 211 219 215 - 
4-items 145 137 136 121 140 79 67 75 - 
5-items 184 174 201 176 164 1 - - - 
Total 557 552 574 527 527 588 590 585 0 

Sc
en

ar
io

 2
 

Order configuration 70kg 70kg 70kg 70kg 80kg 80kg 80kg 80kg 80kg 
1-item 116 125 128 133 100 105 94 99 - 
2-items 28 23 25 30 199 177 208 210 - 
3-items 34 39 42 34 195 181 189 186 - 
4-items 135 115 147 121 92 107 90 93 - 
5-items 210 220 223 235 1 6 4 1 - 
Total 523 522 565 553 587 576 585 589 0 

Sc
en

ar
io

 3
 

Order configuration 70kg 70kg 70kg 70kg 70kg 70kg 80kg 90kg 100kg 
1-item 126 129 124 134 122 154 76 35 - 
2-items 78 62 77 76 76 86 277 168 - 
3-items 88 81 86 89 69 82 205 200 - 
4-items 141 152 108 128 141 127 50 53 - 
5-items 149 136 160 133 152 166 4 - - 
Total 582 560 555 560 560 615 612 456 0 

Sc
en

ar
io

 4
 

Order configuration 70kg 80kg 80kg 80kg 80kg 80kg 80kg 90kg 100kg 
1-item 129 117 100 100 118 123 121 92 - 
2-items 12 154 133 135 140 127 126 73 - 
3-items 12 146 144 139 125 125 127 82 - 
4-items 85 111 126 120 112 130 116 100 - 
5-items 583 32 35 42 50 40 51 67 - 
Total 821 560 538 536 545 545 541 414 0 
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Going in depth in this analysis to reveal what weight pickers are prevalently assigned to which order configuration, the 
percentages of assignments are calculated using Table 6 and are presented in Figs. 2(a)-(d). For instance, in Fig. 2(a), 
approximately 20% of the total orders assigned to 70 kg weighing pickers consist of 1-item orders, while almost 65% of their 
assignments include 4- (≅25%) and 5-items (≅%40).  
 
These percentages in Figs. 2(a)-(d) show that orders containing 4- and 5- items are predominantly assigned to pickers weighing 
70kg, while orders including 2- and 3-items are primarily assigned to 80kg weight pickers. Basically, the average amount of 
energy expenditure (Kcal/min) increases as the number of items in the order increases. This consumption is higher for heavier 
pickers. For instance, while the energy expenditure of a 70kg weight picker for a 5-items order is 3.804 Kcal/min, it is 4.261 
Kcal/min on average for an 80kg picker. Additionally, because the energy expenditure of an 80kg picker is above 4Kcal/min 
(MAEE), she is given RA time, which increases the total OP time and costs. Therefore, for a group of pickers weighing 
between 70kg to 90kg, 4- and 5-item orders are assigned to the lower-weight pickers (70kg). On the other hand, relatively 
heavier pickers (80kg and 90kg) are assigned to orders consisting of 2- and 3- items. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Percentage of order configuration allocated to pickers in the low-weight segment for scenarios S1-S4, (a)-(d), 
respectively 
 

Table 7 illustrates the assignment results for the medium-weight segment. The percentages of items assigned to pickers for 
the medium-weight segment are presented in Figures 3(a)-(c).  

 
Table 7  
The number of orders assigned to pickers in the medium-weight segment 

Sc
en

ar
io

 5
 

Order configuration 70kg 70kg 70kg 80kg 80kg 90kg 90kg 100kg 100kg 
1-item 174 197 177 103 98 76 75 - - 
2-items 63 67 49 220 205 151 145 - - 
3-items 68 68 62 196 209 142 155 - - 
4-items 182 207 191 76 76 86 82 - - 
5-items 295 280 301 3 3 10 8 - - 
Total 782 819 780 598 591 465 465 0 0 

Sc
en

ar
io

 6
 

Order configuration 80kg 80kg 80kg 80kg 80kg 90kg 90kg 90kg 90kg 
1-item 130 115 120 126 115 72 75 72 75 
2-items 126 144 140 144 134 44 59 49 60 
3-items 122 140 133 128 115 75 66 64 57 
4-items 113 126 123 126 122 70 84 67 69 
5-items 94 100 77 84 91 114 101 121 118 
Total 585 625 593 608 577 375 385 373 379 

Sc
en

ar
io

 7
 

Order configuration 80kg 80kg 80kg 80kg 90kg 90kg 90kg 90kg 90kg 
1-item 130 129 114 138 73 81 70 82 83 
2-items 153 155 135 151 72 60 57 52 65 
3-items 137 153 155 147 59 52 71 52 74 
4-items 132 114 116 141 83 82 73 80 79 
5-items 95 104 85 88 101 109 109 114 95 
Total 647 655 605 665 388 384 380 380 396 
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Fig. 3(a) shows that 70 kg weighing pickers are mostly allocated for 5-item orders. However, pickers are assigned orders 
from all configurations almost equally when the individuals weighing 80-90 kg in Figs. 3(b)-(c). 
 

  
(a) (b) 

 
(c) 

Fig. 3. Percentage of order configuration allocated to pickers in the medium-weight segment for scenarios S5-S7, (a)-(c), 
respectively 
 
Table 8 illustrates the distribution of total orders assigned to the high-weight segment. There is no balanced distribution across 
pickers in the high-weight segment, unlike in the low-weight segment. For example, in Scenario 8, a total of 1240 orders are 
assigned to a 70kg weighting picker, while an average of 446.5 orders are assigned to a 90kg picker, and no order is assigned 
to a 100kg picker. 

 
Table 8  
The number of orders assigned to pickers in the high-weight segment 

Sc
en

ar
io

 8
 

 Order configuration 70kg 80kg 90kg 90kg 90kg 90kg 90kg 90kg 100kg 
1-item 235 119 90 85 102 86 87 96 - 
2-items 45 182 117 91 116 123 114 112 - 
3-items 45 165 112 123 122 113 112 108 - 
4-items 228 96 95 104 94 95 99 89 - 
5-items 687 19 33 32 25 31 32 41 - 
Total 1240 581 447 435 459 448 444 446 0 

Sc
en

ar
io

 9
 

 Order configuration 70kg 80kg 90kg 100kg 100kg 100kg 100kg 100kg 100kg 
1-item 346 124 94 86 76 89 85 - - 
2-items 169 207 149 83 94 109 89 - - 
3-items 154 184 134 123 115 100 90 - - 
4-items 409 84 86 72 84 73 92 - - 
5-items 801 4 11 22 15 23 24 - - 
Total 1879 603 474 386 384 394 380 0 0 

Sc
en

ar
io

 1
0 

 Order configuration 90kg 90kg 90kg 90kg 90kg 100kg 100kg 100kg 100kg 
1-item 116 119 130 119 117 73 72 66 88 
2-items 149 154 125 135 133 42 49 53 60 
3-items 140 128 128 141 129 52 67 61 54 
4-items 142 128 104 135 131 70 71 63 56 
5-items 113 114 100 121 110 90 77 87 88 
Total 660 643 587 651 620 327 336 330 346 

Sc
en

ar
io

 1
1 

 Order configuration 90kg 90kg 90kg 90kg 100kg 100kg 100kg 100kg 100kg 
1-item 138 127 122 122 82 76 79 79 75 
2-items 167 166 158 160 45 56 54 54 40 
3-items 181 140 144 158 58 54 57 53 55 
4-items 147 154 139 136 73 66 60 63 62 
5-items 108 123 115 118 80 85 88 88 95 
Total 741 710 678 694 338 337 338 337 327     
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(a) (b) 

  
(c) (d) 

Fig. 4. Percentage of order configuration allocated to pickers in the high-weight segment for scenarios S8-S11, (a)-(d), 
respectively 
 
Figs. 4 (a)-(d) present the percentage of order configuration allocated to pickers in the high-weight segment. 5-item orders are 
predominantly assigned to a 70kg picker, as seen in Fig. 4 (a) and Fig. 4 (b), whereas heavier pickers are mainly responsible 
for the 2- and 3-item orders. With no low-weight picker (70kg), almost similar assignment ratios per order configuration are 
observed for pickers.     

 
6.5. Value of Stochastic Solution 

In this part, we considered several different values of { }, , , , ,N 2 5 10 20 40 50= to investigate the impact of randomness on 
solution quality. For each OP time and energy expenditure scenario, five independent samples ( )M 5= are produced, and the 
true objective function ' *ˆ( )Nz y is estimated with 'N 50= . Table 9 presents the optimality gap and the variance of the 
optimality gap for each configuration. In Table 9, the standard deviation and the optimality gap decreases as the number of 
scenarios increases. Additionally, a modest sample size ( )N 5= can provide a small optimality gap (e.g., $1.44), which verifies 
that the SAA parameters used in the numerical study achieve good precision in solution derivation. 
 
Table 9  
Estimation of the true objective function 

N Optimality gap Variance of the optimality gap 
2 2.636 0.004 
5 1.440 0.003 

10 0.838 0.001 
20 0.416 0.001 
40 0.095 0.002 
50 0.011 0.002 

 
Finally, we compare objective functions of stochastic problems and their deterministic counterparts to present the benefit of 
developing a stochastic solution, which is called the value of stochastic solution ( )VSS . The idea behindVSS is to show the 
advantage of spending time by developing a stochastic programming model instead of using its deterministic counterpart, 
which is based on the mean value of uncertain parameters. The deterministic counterpart of the problem is generated by 
replacing all uncertain parameters with their mean values and is called an expected value problem ( )EV , which can be 

formalized as follows: ( )min ,
x X

EV z x ξ
∈

= whereξ represents the expected value of the uncertain OP tour time and energy 

expenditure in our model. Therefore, instead of using uncertain OP tour times that depend on item counts in the order, we 
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used the mean OP tour time (0.87 min/order), calculated by taking the overall average of OP tour time across orders. Similarly, 
for the energy expenditure, we used the mean energy expenditure of a 70kg female (3.76 Kcal/min) for picking each order in 
the EV problem. The solution of the EV problem, optimal picker assignment, is represented by ( )x ξ . Using the solution of 

the EV problem, ( )x ξ , the expected total cost EEV is calculated under different OP tour time and energy expenditure 

scenarios as follows ( )( ),EEV E z x ξ ξ =   . Last, the difference between the total cost of deterministic and stochastic models 

is calculated,VSS EEV RP= − . In the formulation, RP refers to the total cost of a stochastic program with fixed recourse 
(Birge & Louveaux, (2011). 

Table 10 presents the ,  ,  EEV RP VSS and the %VSS values for each scenario in Section 6.4. As seen in Table 10, the stochastic 
model always produces better solutions than their deterministic counterparts. VSS values range from 7.15$ to 66.58$, 
equivalent to an average improvement of 3.55% for EEV from RP in daily OP costs.  
 
Table 10  
Value of stochastic solution 

Scenario EEV  RP  VSS  %VSS  
S1 1026.11 1007.55 18.56 1.84 
S2 1045.08 1026.10 18.98 1.85 
S3 1084.98 1018.40 66.58 6.54 
S4 1160.38 1112.78 47.60 4.28 
S5 1198.67 1142.89 55.78 4.88 
S6 1254.58 1195.12 59.46 4.97 
S7 1286.44 1226.66 59.78 4.87 
S8 1274.40 1254.72 19.68 1.57 
S9 1353.53 1346.38 7.15 0.53 
S10 1587.38 1527.92 59.45 3.89 
S11 1614.50 1554.83 59.67 3.84 

Average 42.97 3.55 
 
7. Conclusion 

This paper investigates the impact of the picker’s weight on OP fatigue. Despite the existing literature that considers fatigue 
effects (e.g., Abdous et al., 2022), this paper proposes a new approach to include fatigue and RA in assigning pickers to orders 
according to the pickers’ weight and item counts in the order. Additionally, the proposed approach is inclusive to cover 
uncertainty associated with OP tour time and individual differences regarding pickers’ weight. We propose a two-stage 
stochastic programming model that aims to minimize total assignment and overtime costs for OP while avoiding 
overwhelming energy expenditure by introducing RA. The first stage of the model decides the optimal number of pickers. 
The second stage allocates orders to pickers based on their energy expenditure concerning their weight. The results highlight 
that the proposed method outperforms deterministic approaches, with an average of 3.55% reduction in total OP costs. Because 
fatigue is significantly affected by the weight of pickers, we designed several scenarios to evaluate how the required number 
of pickers and the match of order-picker assignment are impacted by weight.  
 
Given the scenarios designed, the RQ1 can be answered as follows. Case study results in Section 6.3 demonstrated that the 
picker’s weight impacts the number of required pickers and OP costs. Because the energy expenditure for the same activity is 
higher for the heavy picker on average, either more pickers were needed or more overtime occurred as additional break time 
was given to compensate for fatigue effects. The numerical study revealed 80kg as a threshold for the required number of 
pickers; thus, more pickers are needed to fulfill the exact demand with pickers above 80kg. Given that the median weight for 
the age interval of 35-39 is 78kg (PK, 2023b), warehouse managers can use the threshold for ideal human resources for OP. 
 
In response to RQ2, the ideal match between pickers and the orders was captured in Section 6.4. For heavy workers, when 
the item count is four or more, the average energy expenditure increases with less variance, resulting in higher energy 
expenditure for heavy pickers. In this regard, the numerical study in Section 6.4 demonstrated that low-weight pickers (70kg) 
were dominantly (approximately 65%) utilized to fulfill the demand of 4- and 5-item orders and secondarily to 1-item orders 
(around 20%). Similarly, heavier pickers (80kg or above) were assigned to orders of 2- and 3- items. Additionally, the benefit 
of developing a stochastic model over a deterministic one resulted in an average reduction of 3.55% in OP costs. 
 
One limitation of the proposed solution approach is the lack of fatigue accumulation in fatigue formulation. Several studies 
show that fatigue is defined as a linear function of time, e.g., Jaber and Neumann (2010) or exponential (e.g., Jaber, Givi, & 
Neumann (2013). In this manner, the fatigue of pickers considering the shifts can be recalculated considering fatigue 
accumulation with deploying dynamic approaches, such as dynamic programming. Additionally, factors that cause variation 
in fatigue accumulation can be considered. Therefore, similar to the RA approach, flexible breaks that the number and duration 
vary depending on human factors can be provided to pickers.  



E. E. Günay / International Journal of Industrial Engineering Computations 15 (2024) 701

 
Age is the other factor that has an impact on energy expenditure. The proposed model can be extended to incorporate weight 
and age as responsible factors for the OP assignment problem. As another extension, developed sensor technology can be 
deployed to calculate the energy expenditure of the picker in real time and use the data for the assignment. This study solves 
the problem under the assumption of given demand and the distribution of the energy expenditure and the OP tour time. 
However, real-time energy expenditure and uncertainty in demand can be considered in a future study. This way, an extension 
of the model can assist us in comparing and verifying if our findings still imply. 
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