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 The hybrid flow shop scheduling problem (HFSP) is an extension of the classic flow shop 
scheduling problem and widely exists in real industrial production systems. In real production, 
sequence-dependent setup times (SDST) are very important and cannot be neglected. Therefore, 
this study focuses HFSP with SDST (HFSP-SDST) to minimize the makespan. To solve this 
problem, a mixed-integer linear programming (MILP) model to obtain the optimal solutions for 
small-scale instances is proposed. Given the NP-hard characteristics of HFSP-SDST, an improved 
artificial bee colony (IABC) algorithm is developed to efficiently solve large-sized instances. In 
IABC, permutation encoding is used and a hybrid representation that combines forward decoding 
and backward decoding methods is designed. To search for the solution space that is not included 
in the encoding and decoding, a problem-specific local search strategy is developed to enlarge the 
solution space. Experiments are conducted to evaluate the effectiveness of the MILP model and 
IABC. The results indicate that the proposed MILP model can find the optimal solutions for small-
scale instances. The proposed IABC performs much better than the existing algorithms and 
improves 61 current best solutions of benchmark instances. 
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1. Introduction 
 

In the current era of rapid informatization, intelligent manufacturing is advancing rapidly, becoming a key initiative driving 
high-quality development in the manufacturing industry. Manufacturing firms can enhance product quality and equipment 
utilization through scientifically effective scheduling strategies, thereby bolstering market competitiveness and realizing 
greater economic benefits. Flow shop scheduling has become one of the most crucial topics in intelligent factory technologies, 
directly influencing production efficiency and product quality. Hybrid flow shop scheduling problem (HFSP) is a prevalent 
type of production scheduling problem in industries such as textiles, steel, and metallurgy (Pan, Wang, Mao, Zhao, & Zhang, 
2012). In HFSP, multiple production stages typically exist, each stage possibly having multiple identical or different machines, 
and jobs need to be processed in a certain sequence across these stages. In fact, HFSP with even two stages has proved to be 
NP-Hard (Garey & Johnson, 1978). However, in actual production workshops, due to process constraints, certain necessary 
non-productive operations such as equipment cleaning and material loading need to be carried out in advance when the job is 
being processed. The execution of these operations results in additional time consumption, known as setup times. Based on a 
review of literature on similar problems published in recent years, there are three different types of setup times: first, the setup 
time depends on the job to be processed and is independent of the sequence; second, the setup time depends on the processing 
sequence of the jobs and is sequence-dependent; third, the setup time is determined by the order of the jobs and the machine 
on which they are processed. Setup times typically occur before job processing and are independent of processing times. The 
setup time studied in this paper is related to the job processing sequence (Jungwattanakit, Reodecha, Chaovalitwongse, & 
Werner, 2005). The setup time studied in this paper is related to the processing sequence, and its significance has been 
demonstrated (Allahverdi, 2015). References (He, Pan, Gao, Neufeld, & Gupta, 2024; Meng et al., 2022) indicated that setup 
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time is a crucial element in production scheduling. Properly arranging sequence-dependent setup times (SDST) can effectively 
reduce idle time on the production line and machine waiting times, enhance resource utilization, reduce production costs, and 
boost production efficiency. Therefore, HFSP with SDST (HFSP-SDST) is of significant research value. The research of this 
paper focuses on the HFSP-SDST (Kurz & Askin, 2003). The primary objective is to minimize the maximum makespan. The 
scheduling task of HFSP-SDST includes job sequencing and machine assignment, representing a typical combinatorial 
optimization problem.  
 
The artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm that simulates the process of 
honeybees searching for food (Dai, Pan, Miao, Suganthan, & Gao, 2023). Due to its robustness and strong global search 
capabilities, ABC has been widely applied to solve HFSP-SDST. However, ABC's limitations, such as poor local search 
capabilities and slow convergence speed, restrict the solution space and consequently affect its efficiency. Its encoding and 
decoding methods are very important and determine the solution space. This paper proposes an improved artificial bee colony 
algorithm (IABC) based on traditional ABC. In IABC, a problem-specific local search (LS) strategy and a hybrid decoding 
method are developed to better explore the solution space and enhance algorithm efficiency. Although the ABC algorithm has 
proven to be effective, it is only an approximate solution algorithm, and it cannot guarantee to obtain an optimal solution even 
for very small-scale instances. Therefore, this paper also develops a mixed-integer linear programming model (MILP) to 
obtain optimal solutions for small-scale instances. Specifically, the proposed IABC in this paper improved 61 out of 120 
benchmark instances from the reference (Pan, Gao, Li, & Gao, 2017). The contributions of this research are as follows:  
 
• A MILP model is proposed to solve the small-sized instances of HFSP-SDST to optimality. 
• A hybrid decoding representation method is introduced by combining the strengths of both forward and backward decoding 
approaches. 
• A LS process based on hybrid decoding is proposed, aiming to explore the neighborhood of the solution space more 
thoroughly. 
• The proposed IABC improves 61 current best solutions of benchmark instances. 
 
The structure of the paper is as follows: Section 2 provides an extensive literature review. In Section 3, the problem description 
along with the MILP is presented. Section 4 introduces our proposed method. Section 5 includes parameter testing for the 
proposed method, along with extensive experiments and data analysis, evaluating the effectiveness of the proposed approach 
in solving the HFSP-SDST problem. Finally, Section 6 summarizes and concludes the paper. 
 
2 Literature Review 
 
A review of some relevant literature pertaining to the problem considered in this paper is conducted. In the early stages, 
research primarily focused on relatively small-scale HFSP, and more precise algorithms were employed, such as Branch and 
Bound (B&B) (Fattahi, Hosseini, Jolai, & Tavakkoli-Moghaddam, 2014) and mixed-integer programming (MIP) (Meng, 
Zhang, Ren, Zhang, & Lv, 2020; Meng et al., 2023). As the scale of HFSP increased, these exact algorithms proved inadequate 
for the best resolution, leading to the emergence of various improved algorithms. Later on, HFSP gave rise to many more 
realistic variants, with SDST being one of them, garnering widespread attention from researchers. 
 
2.1 The literature review on HFSP 
 
The earliest research on HFSP appeared in a paper from the 1970s. The algorithm proposed in the paper has been successfully 
applied to the nylon polymerization problem (Salvador, 1973). It was demonstrated that the two-stage HFSP with multiple 
identical parallel machines in each stage is an NP-Hard problem, even when the problem comprises only two stages, with one 
stage having only a single machine (Gupta, 1986). They proposed and validated an efficient heuristic algorithm to search for 
approximate solutions. A specialized encoding scheme for the HFSP was proposed, which combines local search and 
evolutionary search based on the differential evolution algorithm (Xu & Wang, 2011). They conducted experiments to validate 
that the proposed differential Evolution-based algorithm outperformed the contemporary genetic algorithms. An effective 
discrete artificial bee colony algorithm that combines forward and backward decoding methods was introduced (Pan, Wang, 
Li, & Duan, 2014). They developed a local optimization procedure for exploring new solution spaces. An enhanced artificial 
immune system (AIS) algorithm was proposed (Engin & Döyen, 2004). One notable feature of this algorithm, in comparison 
to genetic algorithms, is the use of mutation rates as adaptive parameters. Furthermore, they improved AIS algorithm 
parameters using a multi-step experimental design approach. A novel approach to solving the HFSP with lagrangian relaxation 
(LR) algorithms aimed at minimizing the total weighted delay was introduced (Nishi, Hiranaka, & Inuiguchi, 2010). A new 
method was devised that combines particle swarm optimization (PSO) with the bottleneck heuristic algorithm (C.-J. Liao, 
Tjandradjaja, & Chung, 2012). They utilized simulated annealing with PSO to escape local optima. An improved migration 
of birds optimization (MBO) algorithm was proposed, which incorporates various techniques such as diversified initialization 
methods, hybrid neighborhood structures, jump mechanisms, problem-specific heuristics, and local search processes (Pan & 
Dong, 2014). This enhanced MBO algorithm is applied to solve HFSP with the total flow time criterion. A hybrid evolutionary 
algorithm (HEA) was presented (Fan et al., 2021). The algorithm utilizes permutation-based encoding and employs two 
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heuristic decoding methods to search the solution space. As the algorithm converges, a tabu search (TS) process is activated 
to expand the search space. 
 
2.2 The literature review on HFSP-SDST 
 
To the best of our knowledge, the earliest research on HFSP-SDST was published (Johnson, 1954). In this paper, the author 
examined a two-stage flow shop with setup times and introduced a heuristic method to address the minimization of makespan, 
which is considered an early significant contribution to the HFSP-SDST problem. A novel heuristic rule based on genetic 
algorithms was proposed (Ruiz & Maroto, 2006). Their algorithm tackled HFSP-SDST, each stage having unrelated parallel 
machines, and machine constraints. This approach was successfully applied to the tile manufacturing industry. An immune 
algorithm was proposed to solve HFSP-SDST, and it was experimentally validated that the proposed algorithm outperforms 
other algorithms (Zandieh, Ghomi, & Husseini, 2006). The HFSP-SDST with unrelated parallel machines was studied, and 
an improved genetic algorithm was proposed to minimize a convex combination of makespan and the number of tardy jobs 
(Jungwattanakit, Reodecha, Chaovalitwongse, & Werner, 2008). A hybrid simulated annealing algorithm was proposed to 
solve HFSP-SDST and transportation times (Naderi, Zandieh, Balagh, & Roshanaei, 2009). They demonstrated the 
effectiveness of the proposed algorithm through comparisons with other high-performance algorithms. A hybrid metaheuristic 
algorithm, the multiple objective genetic algorithm combined with variable neighborhood search (MOHM), was introduced 
for solving HFSP-SDST problems (Behnamian & Ghomi, 2011).An efficient algorithm consisting of independent parallel 
genetic algorithms was presented, enabling the population to search for the best solutions in different directions (Rashidi, 
Jahandar, & Zandieh, 2010).The two-stage HFSP-SDST problem was addressed, and an efficient heuristic algorithm that 
embeds the NEH process was proposed (Lee, Hong, & Choi, 2015). This approach rapidly generates solutions, which is 
beneficial for automated best-check machine operations in practical applications. The bi-objective HFSP-SDST problem, 
involving the minimization of total weighted tardiness and total setup time, was investigated (Tian, Li, & Liu, 2016). They 
introduced a pareto-based adaptive bi-objective variable neighborhood search that effectively resolved the problem under 
consideration. A population-based squirrel search algorithm (SSA) was introduced and applied to scheduling problems for the 
first time (Khare & Agrawal, 2019). Additionally, they introduced the whale optimization algorithm (WOA) and grey wolf 
optimization algorithm (GWO), which were also employed for the first time to address HFSP-SDST problems. A learning 
iterated greedy search metaheuristic was presented to minimize the maximum completion time in a hybrid flexible flow shop 
problem with sequence dependent setup times encountered at a manufacturing plant (Ozsoydan & Sağir, 2021).Problems with 
two types of SDST were explored: those dependent on job sequences and those dependent on job sequences and machine 
assignments (Y. Liao, Zhantao, Li, & Chenfeng, 2022). They proposed three heuristic algorithms and conducted comparative 
analyses. A metaheuristic algorithm based on genetic algorithms, along with three heuristic algorithms, was introduced 
(Jemmali & Hidri, 2023). They also provided three lower bounds based on relaxation methods to evaluate the efficiency of 
the algorithms. 
 

3. Problem description 
 

3.1 HFSP-SDST definition 
 

The HFSP-SDST problem addressed in this paper can be described as follows: A set of n jobs (j∈J={1,...,j,...,n}) must traverse 
through s production stages (represented as k∈S={1,...,k,...,s}) in a predefined production sequence. In other words, each job 
initially enters stage 1 for processing, subsequently moves to stage 2, and so forth, until it reaches the final stage s. At each 
stage, only one machine is available for job processing, making the selection of the right machine a critical decision. Moreover, 
the setting time 𝑠𝑡௞,௝,௝ᇱ between two consecutive jobs processed on the same machine is defined as the time required for 
processing job j in stage k before job j’ (j, j’ ∈J, j＜j’). In particular, if job j is the initial item processed on the machine at 
stage k, the setup time will be denoted as 𝑠𝑡௞,௝,௝. There are a total of m identical machines (i∈M={1,…,i,...,m}), and each stage 
k is equipped with 𝑚௞ (∑ 𝑚௞ = 𝑚௦௞ୀଵ )identical parallel machines, and at least one stage must have a machine count of 𝑚௞ ≥ 
2. Every job j can potentially be processed on any machine within stage k, and the processing time is represented as 𝑝௝,௞, 
where j∈J, k∈S. It is essential to highlight that SDST is associated with the predecessor job on the same stage, indicating 
that different predecessor jobs will result in different setup times.  
 
In practical applications, SDST can be employed to precisely define machine setup activities, such as changing machine tools 
or loading materials. The primary objective of this study is to enhance production efficiency by minimizing the makespan 
(denoted as 𝐶௠௔௫ ). It is essential to emphasize that at any given point in time, each machine can process only one job 
simultaneously, and the same job cannot be processed on multiple machines concurrently. In addition, the following 
assumptions are made: 
 

1) All machines are simultaneously available and reliable, with no breakdowns. 
2) The buffer or storage capacity between any two machines or any two stages is considered to be unlimited. 
3) Transportation times between machines are disregarded. 
4) Jobs are non-divisible, and processing in the current stage must be completed before moving to the next stage. 
5) Setup times are assumed to be asymmetric, meaning that 𝑠𝑡௞,௝,௝ᇱ and 𝑠𝑡௞,௝ᇱ,௝ are different. 
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These assumptions lay the foundation for tackling the complexities of the HFSP-SDST problem, ensuring a comprehensive 
approach for optimization. This study aims to provide valuable insights for addressing similar complex manufacturing 
scheduling problems, opening new avenues for future research in this domain. 
 

3.2 The MILP model 
 
The parameters and decision variables used are shown as follows:  
 

Parameters  
j Indexes of jobs. 
n Total number of jobs. 
i Indexes of machines. 
m Total number of machines. 
k Indexes of stages. 
s Total number of stages. 
S Set of stages and S = {1, ..., k, ..., s}. 
J Set of jobs and J = {1, ..., j, ..., n}. 
M Set of machines and M = {1, ..., i, ..., m}. 
L A large positive number. 
Decision variables  𝑝௝,௞  The processing time of job j in stage k. 𝑚௞  The number of machines in stage k. 𝑠𝑡௞,௝,௝ᇱ  The setup time for processing job j before job j’ on stage k. 𝑋௝,௞,௜  A binary decision variable, which equals 1 if job j is scheduled to be processed on machine i 

in stage k; 0 otherwise 𝑌௝,௝ᇱ,௞  A binary decision variable, which equals 1 if job j is processed directly or indirectly before job 
j’ in stage k; 0 otherwise. 𝐵௝,௞  The completion time of job j at stage k. 𝐸௝,௞  The start time of job j at stage k. 𝐶௠௔௫  The makespan. 𝑚𝑖𝑛 𝐶௠௔௫            

     
(1) ∑ X௝,௞,௜ = 1,∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝑆௜∈௠ೖ   (2) 𝐸௝,௞ = 𝐵௝,௞ + ∑ (𝑝௝,௞𝑋௝,௞,௜)௜∈௠ೖ ,∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝑆  (3) 𝐸௝,௞ ≤ 𝐵௝,௞ାଵ,∀𝑗 ∈ 𝐽,𝑘 ∈ {1, . . . , 𝑆 − 1}  (4) 𝐸௝,௞ + 𝑠𝑡௞,௝,௝ᇱ ≤ 𝐵௝ᇱ,௞ + 𝐿(3 − 𝑌௝,௝ᇱ,௞ − 𝑋௝,௞,௜ − 𝑋௝ᇱ,௞,௜),∀𝑗 ∈ 𝐽, 𝑗′ ∈ 𝐽, 𝑗 < 𝑗′, 𝑖 ∈ 𝑚௞   (5) 𝐸௝ᇱ,௞ + 𝑠𝑡௞,௝ᇱ,௝ ≤ 𝐵௝,௞ + 𝐿(2 + 𝑌௝ᇱ,௝,௞ − 𝑋௝,௞,௜ − 𝑋௝ᇱ,௞,௜),∀𝑗 ∈ 𝐽, 𝑗′ ∈ 𝐽, 𝑗 < 𝑗′, 𝑖 ∈ 𝑚௞  (6) 𝐶௠௔௫ ≥ 𝐸௝,௦,∀𝑗 ∈ 𝐽  (7) 𝐵௝,௞ ≥ 0,∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝑆  (8) 𝑋௝,௞,௜ ∈ {0,1},∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝑆,∀𝑖 ∈ 𝑚௞  (9) 𝑌௝,௝ᇱ,௞ ∈ {0,1},∀𝑗 ∈ 𝐽,∀𝑗′ ∈ 𝐽, 𝑗 < 𝑗′,𝑘 ∈ 𝑆     (10) 

 
where, the objective function (1) is to minimize the makespan. Constraint (2) states that each job can only be processed on 
exactly one machine in any stage. Constraint (3) represents the relationship between the start and end times of a job. 
Specifically, the end time is equal to the start time plus the processing time. Constraint (4) ensures that the end time of any 
predecessor operation for a job is not greater than the start time of its successor operation. Pairwise constraints (5)-(6) are 
used to guarantee the precedence relationship between two different jobs on the same machine, ensuring that the start time of 
the later job is not less than the completion time of the earlier job plus the setup time between the two jobs. Constraint (7) is 
the maximum makespan constraint. Constraints (8)-(10) define the feasible range for decision variables. 
4. The IABC algorithm 
 

4.1 Basic ABC 
 
The ABC is a population-based swarm intelligence optimization algorithm (Karaboga, 2005; Karaboga & Basturk, 2008), 
simulating the process of honeybees searching for food. In the basic ABC, it consists of three main components: food sources, 
employed bees, unemployed bees, and two fundamental behaviors: recruiting for a food source and abandoning a food source. 
Each food source represents a potential solution to an optimization problem, and the amount of nectar of a food source 
corresponds to the fitness of a solution. Employed bees represent candidate solutions in the search space, and they collect 
information about food sources. Their main task is to discover food sources, store relevant information, and share this 
information with unemployed bees in the beehive. Unemployed bees include onlooker bees and scout bees. After employed 
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bees return information about food sources, follower bees choose better-quality food sources to explore further based on 
certain probabilities. If certain food sources remain unchanged for a certain number of consecutive iterations, they are 
abandoned, and the employed bees corresponding to those food sources become scout bees, which randomly search for new 
food sources. The ABC has been successfully applied in various fields, including optimization problems, data mining, 
machine learning, power systems, image processing, and more. It is widely regarded as a powerful optimization tool capable 
of effectively finding the best solutions to problems. The parameters in the ABC algorithm include population size (PSize), 
the number of iterations (L) after which solutions that have not been updated are discarded, and the termination criteria 
(LimitTime).  
 

4.2 IABC algorithm 
 

In this section, the IABC algorithm is described form seven parts, namely encoding and decoding, initialization of the 
population, employed bee phase, onlooker bee phase, scout bee phase, problem-specific local search and the framework.  
 

4.2.1 Encoding and decoding 
 
HFSP typically has two main encoding methods: matrix encoding and permutation encoding. Matrix encoding enumerates the 
machines used by each job in each stage and the order in which jobs are processed, providing detailed information. However, 
due to the excessive detail, this representation is cumbersome and challenging to operate and analyze effectively. In 
comparison, permutation encoding is more concise and easier to understand. Therefore, in the study of HFSP-SDST, 
permutation encoding was chosen as the encoding method used in this paper. Permutation encoding is an operation-based 
encoding method that involves randomly permuting the serial numbers of all jobs to form an individual. The length of 
everyone is equal to the number of jobs to be processed, and the position of each job in the individual represents its processing 
sequence in the first stage. The simplicity and ease of operation of this encoding method make it easier to handle and optimize 
the solution process of HFSP and better meet the needs of HFSP to directly reflect job sequencing and machine selection. 
 

Conventional flow shop scheduling problems satisfy the reversibility of processing. In other words, without changing the 
assignment of jobs to machines, applying the backward process to a forward schedule, starting from the last stage and moving 
forward to the first stage, does not alter the maximum completion time. However, HFS lacks reversibility, and using forward 
decoding and backward decoding can often yield different solutions that cannot be obtained using just one of the methods. 
Therefore, to increase the diversity of the population and obtain better solutions, this paper adopts a hybrid decoding method 
that considers SDST and randomly selects between forward and backward decoding. In other words, everyone generates a 
flag to record the decoding method it uses. A flag value of 0 indicates forward decoding, while a flag value of 1 indicates 
backward decoding. The hybrid decoding approach proposed in this section is evaluated in Section 5.3.2. The specific 
decoding process includes the following two rules: 
 

(1) Rules for job scheduling: The decoding method is chosen with equal probability based on the flag. The job sequence 
represents the order in which jobs enter the shop in the first stage. In the subsequent stages, based on the values of the jobs 
from the previous stage as given by formula (12), their start times for the next stage are determined. Forward decoding 
typically starts by scheduling the first stage, then schedules the next stage based on the completion times of jobs in the first 
stage, and so on until the final stage. In contrast to forward decoding, backward decoding begins by processing the last stage 
first, sequentially processing jobs according to the initial job sequence. Jobs from previous stages are allocated to machines 
that finish first in the next stage, based on the order of completion times. 
 

(2) Rules for machine selection: When proceeding to the stage k (k=1, 2, …, m), taking forward decoding as an example, in 
the first stage, the initial sequence generated for the first stage is used to select the machine that will process the job to be 
completed earliest, rather than choosing the machine that becomes available first. From the second stage onward, based on 
the completion time of job j in stage k-1, the processing time in stage k, and the sequence of jobs processed on the machine, 
the earliest completion time for each job on machine i is determined. Specifically, it is calculated as the maximum between 
the sum of the machine’s idle time 𝑅௠  and setup time 𝑠𝑡௞,௝ᇱ,௝  and the completion time 𝐸௜,௞ିଵ  from the previous stage, 
represented by formula (11). Then, the job j is assigned to the machine i with the minimum value as per formula (12) for job 
processing. Repeat the above steps until all jobs have completed processing in s stages. 
 max൫𝑅௠ + 𝑡௠,௝ᇲ௝ ,𝐸௝,௞ିଵ൯  (11) max൫𝑅௠ + 𝑡௠,௝ᇲ௝ ,𝐸௝,௞ିଵ൯ + 𝑃௝,௠  (12) 
 

For example, let’s consider a problem with 4 jobs and 2 stages. The first stage involves 3 machines, while the second stage 
has 2 machines. The initial processing sequence Π௟ = (1, 2, 3, 4). The processing times and setup times for the jobs are as 
follows: 

ൣ𝑝௞,௝൧ = ቄ3 2 3 43 1 2 4ቅ      ൣ𝑠𝑡ଵ,௝,௝ᇱ൧ସ∗ସ = ൞1 2 2 11 1 2 33 1 2 22 2 3 2ൢ                   ൣ𝑠𝑡ଶ,௝,௝ᇱ൧ସ∗ସ = ൞2 1 2 33 2 1 21 2 1 22 1 3 2ൢ  

The specific backward scheduling process for the above example is as follows: 
(1) First is the second stage. The processing is carried out in the order of the jobs, which are 4, 3, 2, and 1. Job 4 is assigned 



  

 

478

to machine 4. 
(2) Based on the completion times of the second stage jobs, the scheduling for the first stage is arranged. The release times 
for jobs 4, 3, 2, and 1 are 4, 2, 4, and 8, respectively. Based on the values of the formula (12), schedule job 3 to machine 1 
first. Job 4 is assigned to machine 2, job 2 is assigned to machine 3, and job 1 is assigned to machine 1. Since this instance 
assumes only two stages, the scheduling process concludes here, resulting in the backward scheduling Gantt chart as shown 
in Fig. 2. Fig. 1 is the Gantt chart for the forward scheduling of this instance. It can be observed that the makespan obtained 
from the forward scheduling is 13, while for the backward scheduling, it is 12. This further demonstrates that the proposed 
backward decoding in this paper indeed leads to solutions that cannot be achieved by a single forward decoding, validating 
its effectiveness. 
 

 
Fig. 1. The forward scheduling Gantt chart for sequence Π௟   Fig. 2. The backward scheduling Gantt chart for sequence Π௟ 

 
Fig. 3. The forward scheduling Gantt chart for sequence  Π௟′   Fig. 4. The backward scheduling Gantt chart for sequence Π௟′ 
 
When the initial sequence of the above example is 𝛱௟ = (1, 3, 2, 4), a different makespan is obtained through the same 
processing path compared to the previous one. The specific process Gantt charts are shown in Fig. 3 and Fig. 4. It can be 
observed that the makespan is different for forward decoding and backward decoding, with a makespan of 13 for forward 
decoding and 15 for backward decoding. Forward decoding is superior to backward decoding. In summary, this further 
demonstrates that the HFSP-SDST is not reversible. Using only forward decoding often cannot achieve the solution obtained 
by using only backward decoding, and vice versa. Considering the strengths and limitations of the two decoding methods, a 
hybrid decoding approach is proposed. As the name implies, hybrid decoding selects one of the two decoding methods with 
equal probability as the decoding method for the current individual. All individuals use a flag bit (0 or 1) to determine which 
decoding method to employ.  
 

4.2.2 Initialization of the population 
 
The IABC algorithm typically employs a random approach to generate PSize individuals in the initial population, denoted by Π = {Πଵ, … ,Π௟ , . . . ,Π௉ௌ௜௭௘}, where 𝛱௟ = (𝜋௟,ଵ, … ,𝜋௟,௝ , . . . ,𝜋௟,௡) and 𝛱௟ represents the l individual in the population, and 𝜋௟,௝ 
denotes the j job within the l individual. Flag bits are also randomly generated as 0 or 1. In this paper, random initialization is 
adopted to create the population, ensuring the diversity of the initial population. 
 

4.2.3 Employed bee phase 
 
In this stage, scout bees need to venture out in the vicinity of their current location to search for food sources. Two 
neighborhood structures, namely insert and pairwise exchange are used, which have proved to be very effective (Pan et al., 
2014). An insertion involves removing the job at position p within an individual and then reinserting it at another position p’. 
A pairwise exchange operation consists of r swapping the jobs at positions v and w within the sequence. The specific 
neighborhood structures are illustrated in Fig. 5 and Fig. 6. During the scout bee stage, the following process is implemented: 
A control parameter, α (representing the number of iterations in the employed bee stage), is introduced. Everyone will undergo 
α insert neighborhood operations, updating the solution if it is improved compared to the original solution. Then, they undergo 
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α pairwise exchange operations. Finally, if the neighboring solution is better than the current best solution, then update the 
current best solution. It’s important to note that the individual’s decoding method remains unchanged throughout this process 
(Pan et al., 2014). The detailed process of the employed bee phase is as shown in Algorithm 1. 
 

Algorithm1 Employed Bee Phase 
Input: a set of solution 𝛱௟ = (𝜋௟,ଵ,𝜋௟,ଶ, . . . ,𝜋௟,௡), 
      a parameter α; 
Output: a set of improved solution 𝛱௟ = (𝜋௟,ଵ,𝜋௟,ଶ, . . . ,𝜋௟,௡); 
1:  for j = 0 to 1 
2:     Cnt = j; 
3:     for rep = 1 to α 
4:        for i = 1 to PSize; 
5:           if Cnt = 0 then 
6:             𝛱௟*←insert (𝛱௟); 
7:           else 
8:             𝛱௟*←pairwise exchange (𝛱௟); 
9:           endif 
10:          if 𝐶௠௔௫(𝛱௜*) < 𝐶௠௔௫(𝛱௟) then 
11:             𝛱௟ = 𝛱௟*; 
12:          endif 
13:       endfor 
14:       j ++; 
15:    endfor 
16:  Find the best solution 𝛱௕௘௦௧; 
17:  UpdateBestSolution (𝛱௕௘௦௧); 
 

 
Fig. 5. Insert                                           Fig. 6. Pairwise exchange 

4.2.4 Onlooker bee phase 
 
In the basic ABC, the onlooker bees select higher-quality food sources in the neighborhood for further exploration with a 
certain probability. If the neighborhood solution is better than the current solution, it replaces the current solution. In this 
paper, a tournament selection strategy is used for choice, which differs from the strategy used in the basic ABC (Pan et al., 
2014). The tournament selection strategy is known for its simplicity and its ability to escape local optima, and it is widely 
used in various algorithms. In this strategy, two individuals are randomly chosen to compete, and the winner is selected 
from the two. After the selection, the onlooker bees phase uses the same method as the employed bee phase to generate a 
new neighborhood solution. If the solution obtained after the search is better than the worst individual in the population 
with the same decoding method and no other identical individuals, the neighborhood solution replaces the worst solution. 
If the neighboring solution is better than the current best solution, then update the current best solution. The detailed process 
of the onlooker bee phase is as shown in Algorithm 2. 
 

Algorithm2 Onlooker Bee Phase 
Input: a population 𝛱; 
Output: an improved solution 𝛱; 
1:   for i = 1 to PSize 
2:      Randomly select two different solutions 𝛱௣௧ଵ and 𝛱௣௧ଶ; 
3:      𝛱௣௧←BinaryTournament (𝛱௣௧ଵ,𝛱௣௧ଶ); 
4:      𝛱௜*←insert (𝛱௜); 
5:      Find the worst individual 𝛱௪௢௥௦௧ with the same flag bit as 𝛱௜*; 
6:      if 𝐶௠௔௫(𝛱௜*) < 𝐶௠௔௫(𝛱௪௢௥௦௧) then 
7:        𝛱௪௢௥௦௧ = 𝛱௜*; 
8:      endif 
9:   endfor 
10:  Find the best solution 𝛱௕௘௦௧; 
11:  UpdateBestSolution (𝛱௕௘௦௧); 

4 2 6 3 1 7 5 8Π 
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4.2.5 Scout bee phase 
 
In the basic ABC, if certain food sources have not been updated within a specified number of iterations, scout bees generate 
new food sources randomly in the solution space. However, this approach often leads to solutions that lack clear problem-
specific characteristics, causing the algorithm to become disoriented in the search space and making it difficult to find high-
quality solutions efficiently. Additionally, it may generate many unrelated or ineffective solutions during the search, 
reducing the algorithm’s efficiency. In this paper, an enhanced strategy is employed to generate new individuals (Pan et al., 
2014). Instead of conducting random searches around solutions that haven’t been updated within the specified iteration 
limit, the algorithm avoids exhaustive searching, thus improving the algorithm’s guidance and efficiency. A control 
parameter 𝜑 is introduced to prevent the algorithm from getting stuck in local optima. If the iteration count of an individual 
is greater than φ, then discard that individual. The discarded individuals undergo multiple random insertion operations to 
generate several candidate individuals. The best solution among all candidate individuals is selected as the new solution 
for the scout bee. If the neighboring solution is better than the current best solution, then update the current best solution. 
The detailed process of the scout bee phase is as shown in Algorithm 3. 
 

Algorithm3 Scout Bee Phase 
Input: a set of non updated solution 𝛱௟ = (𝜋௟,ଵ,𝜋௟,ଶ, . . . ,𝜋௟,௡), 
      a parameter L and 𝜑; 
Output: a new set of solution 𝛱௟ = (𝜋௟,ଵ,𝜋௟,ଶ, . . . ,𝜋௟,௡); 
1:   for l = 1 to PSize 
2:      if L (𝛱௟) > L then 
3:         for j = 1 to 𝜑 
4:            𝛱௧௘௠௣ = 𝛱௟; 
5:            𝛱௧௘௠௣*←insert (𝛱௧௘௠௣); 
6:            𝛱௧௘௠௣**←insert (𝛱௧௘௠௣*); 
7:            if 𝐶௠௔௫ (𝛱௧௘௠௣**) < 𝐶௠௔௫(𝛱௟) then 
8:                𝛱௟ = 𝛱௧௘௠௣**; 
9:            endif    
10:        endfor 
11:     endif 
12:   endfor 
2. 13:  Find the best solution 𝜫𝒃𝒆𝒔𝒕; 
14:  UpdateBestSolution (𝛱௕௘௦௧); 

 

4.2.6 Problem-specific local search 
 

During the encoding and decoding processes, there are instances where the completion times of multiple jobs are identical. In 
such situations, a job is randomly selected for processing as described in Section 4.2.1. However, this random selection method 
may inadvertently reduce the diversity of potential solutions, limiting the search space. To address this concern, LS that 
considers SDST has been incorporated. To illustrate this, let’s take the forward decoding process as an example. When multiple 
jobs complete processing simultaneously in the preceding stage, a random selection of a single job is not opted for. Instead, 
each pending job is individually evaluated to calculate its makespan. Subsequently, the job with the smallest makespan is 
given priority for processing. This strategy is consistently applied in subsequent stages. Conversely, the backward decoding 
process follows a similar procedure but in the opposite direction. Specifically, in each iteration, the LS is only conducted on 
the best solution of the population. Moreover, the effectiveness of the LS is evaluated in Section 5.3.1. 
 
The steps of the problem-specific local search are as follows: 
Step 1: Set k = 2. 
Step 2: Set q = 1 and generate the processing sequence Π௟ = (𝜋ଵ,𝜋ଶ, … ,𝜋௡) for this stage based on the completion times from 
the k-1 stage. 
Step 3: Use formula (12) to select machine 𝑖∗ for processing job 𝜋௤ and identify all the jobs that have been completed in the 
previous stage after 𝜋௤; add them to the set 𝐴 = (𝜋௤ାଵ,𝜋௤ାଶ, … ,𝜋௤ᇱ). If A is empty, proceed to Step 5; otherwise, continue 
with Step 4. 
Step 4: Swap job 𝜋௤ with the jobs in A to generate a new processing sequence Π∗. Calculate the completion time of sequence Π∗. Repeat Step 3 until all jobs in set A have been considered. 
Step 5: Increment q + 1. If q < n, return to Step 3. Otherwise, proceed to Step 6. 
Step 6: Increment k + 1. If k < s, return to Step 2. Otherwise, evaluate all the generated solutions and select the best solution Π௕௘௦௧. 
 
An instance with 2 stages and 5 jobs is considered, with each stage equipped with 2 identical parallel machines. The processing 
times 𝑝௞,௝ for the jobs, and the setup times ൣ𝑠𝑡௞,௝,௝ᇱ൧ହ∗ହ for the jobs in each stage are as follows: 
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𝑝௞,௝ = ቄ2  1 6 1 15 5 1 2 6ቅ                 ൣ𝑠𝑡ଵ,௝,௝ᇱ൧ହ∗ହ = ⎩⎪⎨
⎪⎧1 2 2 1 12 1 1 1 21 1 2 2 32 3 2 1 11 2 3 1 2⎭⎪⎬

⎪⎫
        ൣ𝑠𝑡ଶ,௝,௝ᇱ൧ହ∗ହ = ⎩⎪⎨

⎪⎧1 1 2 1 32 1 2 1 12 2 1 2 11 1 1 2 11 2 1 2 3⎭⎪⎬
⎪⎫

 

 
With the initial job processing sequence π = (1, 2, 3, 4, 5) and the flag bit set to 0, forward decoding is used to generate a 
complete solution. In the first stage, jobs 1, 4, and 5 are assigned to machine 1, while jobs 2 and 3 are processed on machine 
2, following the given initial sequence. In the second stage, jobs are sorted based on their release times from the first stage, 
resulting in the order (2, 1, 4, 5, 3). The processing sequence on machine 1 becomes (2, 4, 5), and on machine 2, it becomes 
(1, 3). The specific scheduling Gantt chart is shown in the Fig.7 and Fig. 8 below: 
 

 
Fig. 7. An example of the forward schedule                    Fig. 8. A neighboring solution of Fig.7 

 
4.2.7 The framework of IABC 
 
Based on the design, Fig. 9 provides the overall framework of the IABC algorithm. The detailed IABC steps are as follows: 
 

 
Fig. 9. Framework of IABC 
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Step 1: Initialize parameters and population. Set the population size (PSize), the number of iterations in the employed bee 
stage (α), the number of iterations a solution remains unchanged for an individual (L), and the number of neighborhood 
solutions generated by discarded individuals in the scout bee stage (φ). The population is initialized as {Πଵ, … ,Π௟ , . . . ,Π௉ௌ௜௭௘} using the method from Section 4.2.2.  

Step 2: Employed bee phase. For l = 1, 2, ..., PSize, the individual Π௟ undergoes insert and pairwise exchange operations to 
generate a new individual Π௟*. If Π௟*is better than Π௟, let Π௟=Π௟*. Repeat this process until the employed bee stage is 
executed α times.  

Step 3: Onlooker phase. For l=1,2, …, PSize, randomly select two individuals and use tournament selection to choose the 
better one. Generate a new individual for this selected individual using an insertion operation. If there is no identical 
individual in the population to the new individual, and the new individual is better than the worst individual in the 
population with the same flag, then replace that individual with the new one. 

Step 4: Onlooker phase. For l=1,2, …, PSize, if the individual Π௟ has not been updated in L consecutive iterations, discard 
that individual. Perform multiple insertion operations on the discarded individual to generate φ neighboring solutions and 
place the best neighboring individual back into the population. 

Step 5: Perform LS on the best individual as described in Section 4.2.6.  
Step 6: If the termination criterion is reached, output the best solution; otherwise, go to Step 3. 
 

5. Calibration and Evaluation 
 

This section aims to comprehensively evaluate the effectiveness of the MILP model and IABC algorithm through systematic 
experimental research. The instances used include two different scales. Large-scale instances are used to test the IABC 
algorithm, and the data are sourced from the test instances used by reference (Gómez-Gasquet, Andrés, & Lario, 2012). 
Unrelated parallel machines were used during the production phase. Unrelated parallel machines refer to machines that may 
exhibit variations in certain aspects, resulting in different job processing times on each machine. In this instance, the number 
of jobs, n∈{20, 50}, and the number of machines, m, is distributed in two scenarios: P13 (randomly distributed between one 
and three machines) and P3 (a constant number of three machines). The number of stages, s∈{5, 10, 20}. Processing times 
are uniformly distributed in the range [1,99]. Four variations of SDST, denoted as SSD10, SSD50, SSD100, and SSD125, 
correspond to 10%, 50%, 100%, and 125% of the job processing times. The DABC algorithm proposed by reference (Pan et 
al., 2017) in 2017 also used 240 benchmark examples from reference (Gómez-Gasquet et al., 2012) to solve related problems. 
In subsequent validation and assessment, only one load level (20 jobs) is considered as the data source to test the proposed 
algorithm, following the same generation process. Large-scale instances are used to test the MILP model, also sourced from 
the subset of the benchmark database. The number of jobs (n) is chosen from {10, 20}, the number of stages (s) from {5, 10}, 
and each stage has three machines with setup times set to 10% of the processing time. The MILP model is implemented in 
OPL language and solved using CPLEX, while the ABC algorithm is implemented in C++. Both are executed on a PC with 
an Intel i7-12700 CPU @ 2.1 GHz, Windows 10 operating system, and 16GB of memory.  

5.1 MILP model validation 
 

To validate the effectiveness of the MILP model, this section conducts verification using a subset of 20 instances from the 
benchmark library mentioned above, specifically from SSD_P3.  
 

Table 1  
Results of MILP model for minimizing makespan consumption 

Instances  NBV NIV NC Makespan Time(s) Gap (%) 
ta002_10_5 825 101 1550 262 84.4 0 
ta004_10_5 825 101 1550 268 37.8 0 
ta006_10_5 825 101 1550 265 16.1 0 
ta008_10_5 825 101 1550 220 6.6 0 
ta010_10_5 825 101 1550 227 3.2 0 
ta012_10_5 825 101 1550 268 24.0 0 
ta014_10_5 825 101 1550 202 4.8 0 
ta016_10_5 825 101 1550 195 20.6 0 
ta018_10_5 825 101 1550 227 13.1 0 
ta020_10_5 825 101 1550 263 99.7 0 
ta012_10_10 1650 201 3100 422 600.1 6.2 
ta014_10_10 1650 201 3100 256 5.1 0 
ta016_10_10 1650 201 3100 362 600.0 1.4 
ta018_10_10 1650 201 3100 366 600.0 0.5 
ta020_10_10 1650 201 3100 459 600.0 4.6 
ta002_20_5 3150 201 6100 362 600.0 31.8 
ta004_20_5 3150 201 6100 381 604.1 40.2 
ta006_20_5 3150 201 6100 370 600.1 28.6 
ta008_20_5 3150 201 6100 369 600.3 43.4 
ta010_20_5 3150 201 6100 335 600.1 35.2 
ta012_20_10 6300 401 12200 565 600.1 29.9 
ta014_20_10 6300 401 12200 458 600.1 22.9 
ta016_20_10 6300 401 12200 548 600.1 37.0 
ta018_20_10 6300 401 12200 544 600.2 33.1 
ta020_20_10 6300 401 12200 587 600.1 28.4 
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Each instance consists of 10 stages, considering both 10 jobs and 20 jobs scenarios. The MILP model was implemented in the 
OPL language of the IBM CPLEX Studio IDE 12.7.1. The CPLEX solver used a branch-and-cut method combining the cutting 
plane and branch-and-bound methods (Meng et al., 2024). The maximum CPU runtime is set to 600 seconds, and the program 
operates in the same environment as mentioned above. Table 1 provides the results of running the model. In the table, NBV 
represents the number of binary decision variables, NIV represents the number of integer decision variables, NC represents 
the number of constraints, Times(s) represents CPU runtime, and Gap indicates the deviation from the best solution. When 
the Gap value is 0, the solution is optimal. It can be observed that the MILP model can only obtain the best solutions for small-
scale instances, such as ta002_10_5- ta020_10_5, and ta014_10_10, within a reasonable time frame. However, as the problem 
size increases, the performance of MILP deteriorates, making it difficult to find the best solution within the given time 
constraints. 
 

5.2 Parameters calibration of IABC 
 
In this section, the Taguchi experimental design method (DOE) was employed to determine the values of four key parameters 
in the IABC algorithm. These four parameters are the population size (PSize), the maximum limit of the bee stages (α), the 
maximum number of consecutive update failures (L), and the number of neighborhood solutions generated in the scout bee 
stage (φ). At the beginning of the experiments, several typical values were selected for each parameter, as shown in Table 2. 
Based on four parameters with four factor levels, an orthogonal matrix L16 was selected, generating 16 different parameter 
combinations. For each parameter combination, instances with different problem sizes were randomly selected from the 
benchmark library. The instances included 9 different problem size combinations with the number of jobs n∈{20,50,100} 
and the number of stages s∈{5, 10, 20}. For each problem size combination, 8 instances were randomly selected, covering 4 
different setup time sizes and 2 different machine distribution scenarios mentioned earlier, resulting in a total of 8×9 = 72 
instances. Each instance was independently run 10 times, with a maximum CPU time limit of 50×n×s milliseconds. Thus, 
each parameter combination was run independently 8×10×9 times, and its Relative Percentage Increase (RPI) was calculated. 
Finally, the average of the obtained RPI values (ARPI) was taken as the response result. The ARPI for 720 runs of different 
parameter combinations is presented in Table 3. 
 

RPI(c) = (c-𝑐୫୧୬) / 𝑐୫୧୬×100% (13) 
 
where c is the objective value of the same instance with the same problem scale in the current parameter combination, which 𝑐୫୧୬ is the smallest objective value of the same instance with the same problem scale among all parameter combinations. 
 
Fig. 9 displays the factor level trend. The smaller value of the ARPI, the better the performance. It is evident that PSize = 
10,20,30 has a smaller ARPI compared to PSize = 5; there is no significant difference in the impact of the number of cycles 
in the employee bee phase on the results; for the reconnaissance bee phase, the neighborhood solution quantity φ = 20, 30, 40 
performs better than PSize = 5, demonstrating the effectiveness of the reconnaissance bee phase used. Finally, based on the 
above analysis, the parameters are set as follows: PSize=20; α=10; L=90; φ=30. 
 
Table 2  
Four sets of parameter values 

Parameter Parameter level 
1 2 3 4 

PSize 20 30 40 50 
α 5 10 20 30 
L 30 50 70 100 
φ 5 20 30 40 

 
Table 3  
The ARPI values for different parameter combinations 

PSize α L φ ARPI 
5 5 30 5 13.5249 
5 10 50 20 13.0132 
5 20 70 30 12.5658 
5 30 90 40 12.3250 
10 5 50 30 10.8631 
10 10 30 40 11.5896 
10 20 90 5 11.8129 
10 30 70 20 11.4534 
20 5 70 40 11.1926 
20 10 90 30 10.8382 
20 20 30 20 11.1537 
20 30 50 5 11.6913 
30 5 90 20 11.3323 
30 10 70 5 11.4203 
30 20 50 40 11.4751 
30 30 30 30 11.5497 
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Fig. 9. The trend of the factor level 

 
5.3 Evaluation of IABC 

 
5.3.1 The evaluation of LS 
 
To substantiate the effectiveness of the proposed LS strategy, verifications were conducted from both forward decoding and 
backward decoding perspectives. 24 instances were selected from different combinations of P3, P13, SSD10, SSD50, SSD100, 
and SSD125 among the 240 benchmark instances, representing various scales. For each instance where n=20 and s∈{5, 10, 
20}, 10 executions were independently run, comparing the minimum makespan values from each run. The maximum CPU 
time limit for each run was set at 300×n×s milliseconds. The computational results are presented in Table 3 and Table 4 
(numerical values are represented as before LS/after LS). Values in bold indicate that the makespan value improved after the 
LS. From the tables, it is evident that among the randomly selected 24 test instances, forward decoding further improved 11 
instances beyond the original best solution, while 13 remained the same as before the LS. In the case of backward decoding, 
it further improved 13 instances, with 11 instances remaining unchanged from before the LS. It is evident from this data that 
the solutions after LS are either less than or equal to the original solutions. Therefore, the proposed LS strategy considering 
SDST enhances the current best-known solutions and is undeniably effective. 
 
Table 4  
Instances are based on LS with forward decoding 

Instances 
(LS before/after) 

P13 P3 
SSD10 SSD50 SSD100 SSD125 SSD10 SSD50 SSD100 SSD125 

ta006 1320/1320 1417/1414 1570/1570 1691/1689 344/344 436/436 550/550 588/588 
ta016 1354/1354 1549/1537 1836/1836 2020/2020 508/507 636/634 778/778 842/840 
ta026 1841/1829 2124/2116 2488/2488 2698/2698 818/818 994/991 1180/1176 1252/1245 

 
Table 5  
Instances are based on LS with backward decoding 

Instances 
(LS before/after) 

P13 P3 
SSD10 SSD50 SSD100 SSD125 SSD10 SSD50 SSD100 SSD125 

ta006 1314/1314 1387/1387 1530/1530 1618/1618 341/341 438/437 522/520 588/588 
ta016 1349/1347 1536/1536 1894/1882 2053/2048 506/506 627/627 774/768 847/847 
ta026 1836/1835 2126/2126 2526/2499 2716/2700 822/813 981/979 1168/1163 1260/1251 

 
5.3.2 The evaluation of decoding method 
 
In this paper, to better address the HFSP-SDST and enhance the exploration capability of the solution space, a backward 
decoding is introduced based on the original forward decoding. The feasibility of the backward decoding is demonstrated 
through an example in Section 4.2.  
 
Table 5  
Comparison of three decoding methods 

Instances SSD10 SSD50 SSD100 SSD125 Forward/ Backward/ Hybrid 

P13 
ta006 1320/1314/1314 1417/1387/1387 1570/1530/1530 1691/1618/1615 
ta016 1354/1349/1349 1569/1536/1537 1836/1894/1836 2020/2053/2020 
ta026 1841/1836/1836 2124/2128/2116 2488/2526/2488 2698/2716/2693 

P3 
ta006 344/341/340 436/439/434 550/522/522 588/588/575 
ta016 508/506/505 636/627/631 778/774/767 842/847/838 
ta026 818/822/822 994/981/981 1180/1168/1166 1252/1260/1244 
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For convenience, verifications were conducted using the instances selected in the previous section. Similarly, each instance 
was independently executed 10 times, with a maximum CPU time limit of 300×n×s milliseconds, and the minimum makespan 
value was selected from each run. The results are presented in Table 5. Values in bold are the best among all the three decoding 
methods. It can be observed that forward decoding achieved the best solution in only 4 instances, backward decoding in 9 
instances, while hybrid decoding achieved the best solution in 21 instances. The experiments demonstrate that the use of 
hybrid decoding significantly expands the solution space and outperforms using either forward or backward decoding alone. 
Therefore, the proposed hybrid decoding method holds considerable research value. 

5.4 Comparison of the IABC with the state-of-art algorithms 
 
In this section, 120 benchmark instances are used to compare the proposed IABC with DABC(Pan et al., 2017) and 
GA(Gómez-Gasquet et al., 2012). The same control parameters for the algorithm as those in Section 5.2 are employed, and 
the algorithm is run with a maximum elapsed CPU time limit of 300×n×s milliseconds. Table 6 displays the best-known values 
corresponding to the instances used in the experimental phase of this study. In 120 benchmark instances, the proposed IABC 
algorithm improved the known the best makespan for 61 instances. Among them, values in bold represent the best makespan 
achieved by IABC, and the other values indicate the currently known best makespan. Moreover, the improved solutions for 
61 instances are given in Appendix. 
 
Table 6  
Best-known solutions for the benchmark instances 

Instances P13 P3 
SSD10 SSD50 SSD100 SSD125 SSD10 SSD50 SSD100 SSD125 

ta002 1025 1185 1374 1463 346 447 547 599 
ta004 1178 1245 1338 1386 349 455 560 604 
ta006 1314 1387 1530 1615 340 434 520 569 
ta008 1067 1146 1230 1281 334 428 540 582 
ta010 1031 1160 1323 1386 305 401 493 549 
ta012 1439 1567 1818 1983 525 647 792 858 
ta014 1325 1493 1704 1790 443 580 720 755 
ta016 1344 1515 1804 1945 497 629 767 827 
ta018 1406 1636 1949 2118 502 617 763 829 
ta020 1315 1477 1677 1788 527 639 780 839 
ta022 1871 2193 2564 2733 757 910 1105 1201 
ta024 1845 2087 2471 2652 759 915 1095 1193 
ta026 1835 2115 2474 2665 813 979 1166 1239 
ta028 1842 2137 2490 2699 840 1002 1199 1289 
ta030 1691 1977 2340 2521 839 1005 1185 1262 

 
5.5 Comparisons of the IABC and MILP 
 

In this section, the proposed MILP model is validated by using instances of four scales, namely 10×5、10×10、20×5 and 
20×10. The instances used were derived from the benchmarks mentioned earlier.  
 

Table 7  
Comparison of IABC algorithm and MILP mode  

Instances MILP IABC 
ta002_10_5 262* 263 
ta004_10_5 268* 273 
ta006_10_5 265* 265* 
ta008_10_5 220* 227 
ta010_10_5 227* 229 
ta012_10_5 268* 279 
ta014_10_5 202* 216 
ta016_10_5 195* 201 
ta018_10_5 227* 230 
ta020_10_5 263* 279 
ta012_10_10 422* 449 
ta014_10_10 356* 365 
ta016_10_10 362* 382 
ta018_10_10 366* 380 
ta020_10_10 459* 467 
ta002_20_5 362 346 
ta004_20_5 381 349 
ta006_20_5 370 340 
ta008_20_5 369 334 
ta010_20_5 335 305 
ta012_20_10 565 525 
ta014_20_10 458 443 
ta016_20_10 548 497 
ta018_20_10 544 502 
ta020_20_10 587 527 
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The maximum CPU runtime limit is 300×n×s milliseconds. The operating environment remains consistent with the 
aforementioned. To evaluate the performance of the IABC, a comparison was made with the MILP model. The validation 
instances and operating environment remain consistent with the aforementioned. The results obtained are shown in Table 7, 
where values marked with * represent the optimal solution. From Table 7, it can be observed that the MILP model can the 
optimal solutions for 15 small-sized instances. However, as the problem size increases, the MILP model fails to reach the 
optimal solution. As shown in the graph, when n = 20, the MILP model cannot achieve the optimal solutions within the 
specified time, and this is determined by the NP-hard nature of the problem. With regard to IABC algorithm, it cannot obtain 
the optimal solutions even for very small-sized instances. Obviously, 14 solutions of IABC are worse than that obtained by 
MILP model for small-sized instances. For example, IABC can only obtain 263 for instance ta002_10_5 instead of the optimal 
solution 262. With regard to the relatively large-sized instances, the obtained solutions of IABC are better than MILP model, 
which shows its efficiency for large-sized instances. 
6. Conclusion 
 

This paper studies HFSP-SDST to minimize the makespan. A MILP model is proposed for obtaining the optimal solutions for 
small-scale instances, and the CPLEX solver is used to validate its effectiveness. Given the NP-hard characteristics of HFSP-
SDST, an IABC is also presented. In IABC, a hybrid decoding method is proposed that combines the strengths of both forward 
and backward decoding methods. Furthermore, an effective LS procedure is introduced to enlarge the solution space. 
Experiment results show that the hybrid decoding method outperforms single decoding methods in obtaining superior 
solutions, and the LS procedure is effective in enlarging the solution space. Specifically, the proposed IABC outperforms the 
existing algorithms and improves 61 current best solutions of benchmark instances. 
 
In future work, more efficient neighborhood search methods and problem-specific optimization techniques will be explored. 
The research can be extended to multi-objective problems, and real-world manufacturing constraints, such as energy 
consumption and distributed shop scheduling in large-scale production, will be considered. Additionally, the algorithm will 
be applied to other optimization problems, including batch hybrid flow shop scheduling, blocking flow shop problems, and 
more. 
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Appendix 
 
The improved best solutions are given as follows: 
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SSD10_P13 ta018: 
makespan:1406 
operation sequence: 
6  8  14  17  4  7  1  11  5  3  13  18  9  15  10  19  0  2  16  12 
SSD10_P13 ta022: 
makespan:1871 
operation sequence: 
4  18  14  7  16  12  17  8  11  0  6  9  5  15  10  13  2  19  3  1 
SSD10_P13 ta026: 
makespan:1835 
operation sequence: 
10  0  18  3  19  5  11  2  7  17  12  6  4  13  9  1  14  15  8  16 
SSD10_P13 ta030: 
makespan:1691 
operation sequence: 
13  12  2  8  10  14  18  4  1  3  9  6  19  7  17  0  5  11  15  16 
SSD50_P13 ta002: 
makespan:1185 
operation sequence: 
14  7  3  19  18  17  4  1  11  6  13  16  2  8  15  10  5  9  0  12 
SSD50_P13 ta006: 
makespan:1387 
operation sequence: 
16  0  14  7  19  11  6  9  17  1  2  10  8  15  13  3  18  12  4  5 
SSD50_P13 ta010: 
makespan:1160 
operation sequence: 
9  15  12  14  5  6  7  16  19  2  11  4  1  13  10  8  18  0  3  17 
SSD50_P13 ta014: 
makespan:1493 
operation sequence: 
2  5  0  11  10  17  15  8  9  19  1  16  13  7  6  12  3  4  14  18 
SSD50_P13 ta018: 
makespan:1636 
operation sequence: 
4  8  14  11  5  6  13  18  16  1  7  17  2  9  15  10  3  0  19  12 
SSD50_P13 ta024: 
makespan:2087 
operation sequence: 
12  19  16  4  5  13  6  9  3  7  18  1  11  14  0  10  2  17  15  8 
SSD100_P13 ta002: 
makespan:1374 
operation sequence: 
6  3  2  1  13  4  18  17  5  9  7  8  19  0  14  16  11  15  10  12 
SSD100_P13 ta006: 
makespan:1530 
operation sequence: 
8  0  10  13  18  14  16  7  3  19  9  11  6  12  17  1  4  15  5  2 
SSD100_P13 ta010: 
makespan:1323 
operation sequence: 
9  10  4  1  13  8  18  0  15  12  14  5  6  7  16  19  2  11  3  17 
SSD100_P13 ta018: 
makespan:1949 
operation sequence: 
14  7  17  8  9  15  18  16  1  11  5  6  13  3  2  4  10  0  19  12 
SSD100_P13 ta022: 
makespan:2564 
operation sequence: 
7  12  4  16  10  11  18  9  2  6  0  5  15  13  1  14  17  19  8  3 
SSD100_P13 ta030: 
makespan:2340 
operation sequence: 
12  4  6  13  10  14  16  8  17  11  18  2  19  9  1  7  0  3  5  15 
SSD125_P13 ta002: 
makespan:1463 
operation sequence: 
3  9  7  8  13  4  18  17  5  19  0  14  16  11  6  2  1  15  10  12 
SSD125_P13 ta006: 
makespan:1615 
operation sequence: 
4  16  0  13  3  18  14  7  19  11  6  9  10  2  5  15  8  1  12  17 
SSD125_P13 ta020: 
makespan:1788 
operation sequence: 
2  17  18  5  6  10  3  1  15  16  14  12  8  0  19  13  7  9  11  4 
SSD125_P13 ta022: 

SSD10_P3 ta026: 
makespan:813 
operation sequence: 
3  10  16  12  18  2  13  5  14  1  19  17  0  7  4  15  6  8  11  9 
SSD10_P3 ta028: 
makespan:840 
operation sequence: 
14  19  15  10  0  5  8  16  6  11  17  3  7  12  13  1  4  2  18  9 
SSD10_P3 ta030: 
makespan:839 
operation sequence: 
13  12  4  16  19  8  15  14  6  5  1  2  7  10  9  11  3  0  17  18 
SSD50_P3 ta002: 
makespan:447 
operation sequence: 
17  9  14  18  0  1  15  10  19  2  7  4  16  3  13  5  8  12  11  6 
SSD50_P3 ta006: 
makespan:434 
operation sequence: 
15  9  13  8  19  4  16  7  2  12  17  0  14  5  1  18  6  11  3  10 
SSD50_P3 ta008: 
makespan:428 
operation sequence: 
9  5  4  8  11  19  14  2  12  15  17  3  16  18  10  6  13  7  0  1 
SSD50_P3 ta016: 
makespan:629 
operation sequence: 
7  18  1  10  13  4  11  15  3  17  9  16  2  0  12  8  14  6  19  5 
SSD50_P3 ta020: 
makespan:639 
operation sequence: 
11  1  15  17  13  4  3  18  6  12  16  2  19  14  0  9  5  8  10  7 
SSD50_P3 ta022: 
makespan:910 
operation sequence: 
16  6  12  13  14  10  0  19  5  18  8  17  2  11  9  3  1  15  4  7 
SSD50_P3 ta024: 
makespan:915 
operation sequence: 
15  13  17  4  3  2  12  9  19  8  11  16  7  1  6  14  18  10  5  0 
SSD50_P3 ta026: 
makespan:979 
operation sequence: 
2  15  14  13  18  17  10  5  9  1  7  19  12  11  3  8  16  6  0  4 
SSD50_P3 ta030: 
makespan:1005 
operation sequence: 
15  16  14  5  12  19  17  13  6  2  4  8  9  10  18  3  1  7  0  11 
SSD100_P3 ta002: 
makespan:547 
operation sequence: 
5  13  16  4  3  7  18  9  2  19  10  17  0  8  11  12  1  6  15  14 
SSD100_P3 ta004: 
makespan:560 
operation sequence: 
12  9  8  15  14  0  16  13  18  19  2  5  7  6  1  11  4  3  10  17 
SSD100_P3 ta006: 
makespan:520 
operation sequence: 
5  15  13  16  2  17  3  19  0  8  4  9  1  6  12  7  18  11  10  14 
SSD100_P3 ta010: 
makespan:493 
operation sequence: 
6  3  15  14  12  16  5  8  18  19  11  13  0  4  10  1  7  17  2  9 
SSD100_P3 ta012: 
makespan:792 
operation sequence: 
7  3  16  9  19  1  17  5  14  15  4  13  0  2  8  6  10  11  18  12 
SSD100_P3 ta016: 
makespan:767 
operation sequence: 
12  19  7  10  4  2  0  6  13  1  18  17  8  14  3  15  9  5  11  16 
SSD100_P3 ta020: 
makespan:780 
operation sequence: 
11  2  15  17  12  18  6  13  19  3  4  1  14  7  9  0  16  10  8  5 
SSD100_P3 ta022: 
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makespan:2733 
operation sequence: 
7  12  4  16  10  11  18  9  2  6  0  5  13  1  15  14  17  19  8  3 
SSD10_P3 ta002: 
makespan:346 
operation sequence: 
5  0  18  13  3  16  9  17  14  19  8  7  1  10  4  11  2  6  12  15 
SSD10_P3 ta004: 
makespan:349 
operation sequence: 
15  17  12  16  18  8  9  13  7  2  10  14  5  4  1  19  11  3  0  6 
SSD10_P3 ta006: 
makespan:340 
operation sequence: 
19  17  15  9  4  2  5  16  13  6  12  8  7  0  3  10  18  1  14  11 
SSD10_P3 ta008: 
makespan:334 
operation sequence: 
9  8  2  0  4  16  11  12  19  6  18  3  14  15  13  7  10  17  5  1 
SSD10_P3 ta012: 
makespan:525 
operation sequence: 
6  18  7  3  8  4  12  15  11  1  16  0  19  13  14  10  17  5  9  2 
SSD10_P3 ta014: 
makespan:443 
operation sequence: 
12  15  18  2  0  11  14  16  9  7  10  17  5  6  1  4  8  19  3  13 
SSD10_P3 ta016: 
makespan:497 
operation sequence: 
8  19  4  3  17  7  13  12  14  10  9  2  1  0  6  18  11  16  5  15 
SSD10_P3 ta018: 
makespan:502 
operation sequence: 
13  12  5  15  3  10  4  7  1  14  8  0  17  2  18  16  11  19  9  6 
SSD10_P3 ta020: 
makespan:527 
operation sequence: 
11  13  17  3  2  1  18  6  12  15  0  14  4  19  5  7  16  9  10  8 
SSD10_P3 ta022: 
makespan:757 
operation sequence: 
0  16  7  11  10  17  4  6  19  8  18  15  3  5  2  14  1  13  12  9 
SSD10_P3 ta024: 
makespan:759 
operation sequence: 
17  3  1  19  9  16  12  10  14  4  2  15  6  8  18  0  5  13  11  7 

makespan:1105 
operation sequence: 
10  0  13  12  16  8  11  4  14  5  19  18  3  2  7  1  9  17  15  6 
SSD100_P3 ta024: 
makespan:1095 
operation sequence: 
17  19  12  4  10  7  15  1  11  3  2  8  9  14  16  13  6  5  18  0 
SSD100_P3 ta026: 
makespan:1166 
operation sequence: 
14  16  2  13  15  17  18  0  19  5  3  10  12  1  8  11  6  9  4  7 
SSD100_P3 ta028: 
makespan:1199 
operation sequence: 
19  15  2  0  14  9  12  6  5  8  11  1  13  17  16  3  10  7  18  4 
SSD125_P3 ta004: 
makespan:604 
operation sequence: 
18  9  16  17  12  19  15  1  14  8  10  6  11  13  7  3  4  5  0  2 
SSD125_P3 ta008: 
makespan:582 
operation sequence: 
4  11  9  2  16  8  15  3  13  0  18  14  6  12  19  17  7  5  10  1 
SSD125_P3 ta018: 
makespan:829 
operation sequence: 
5  9  15  18  16  1  8  3  4  10  12  11  13  7  0  2  14  19  6  17 
SSD125_P3 ta020: 
makespan:839 
operation sequence: 
11  15  13  12  18  6  2  17  7  1  3  4  0  14  19  16  9  10  5  8 
SSD125_P3 ta022: 
makespan:1201 
operation sequence: 
4  12  8  13  17  19  2  0  18  16  11  3  10  7  1  5  14  9  15  6 
SSD125_P3 ta024: 
makespan:1193 
operation sequence: 
13  2  19  10  17  4  1  12  9  3  15  6  8  14  7  11  0  18  5  16 
SSD125_P3 ta026: 
makespan:1239 
operation sequence: 
14  10  13  3  4  17  18  16  0  15  9  19  1  5  8  7  2  12  11  6 
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