

* Corresponding author Tel: +86-150-7112-0374
E-mail zlguan@hust.edu.cn (Z. Guan)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2024 Growing Science Ltd.
doi: 10.5267/j.ijiec.2023.12.011

International Journal of Industrial Engineering Computations 15 (2024) 491–502

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A multi-objective fuzzy flexible job shop scheduling problem considering the maximization of
processing quality

Jiarui Lia and Zailin Guana*

aSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
C H R O N I C L E A B S T R A C T

Article history:
Received August 24 2023
Received in Revised Format
October 18 2023
Accepted December 29 2023
Available online
December 29 2023

 This paper analyzes practical production characteristics, including customer's stringent quality
requirements and uncertain processing time in aircraft shaft parts manufacturing. Considering the
above characteristics, we propose a multi-objective fuzzy aircraft shaft parts production scheduling
problem considering the maximization of production quality. We define this problem as a multi-
objective fuzzy flexible job shop scheduling problem (MO-fFJSP) with fuzzy processing time. To
address this problem, we developed an improved multi-objective spider monkey optimization
(IMOSMO) algorithm. IMOSMO integrates strategies such as genetic operators, variable
neighborhood search and Pareto optimization theory on the framework of the conventional Spider
Monkey Optimization (SMO) framework and discretize the continuous SMO algorithm to solve
MO-fFJSP. To enhance the efficiency of the algorithm, we further adjust the sequence of the local
leader learning phase and the global leader learning phase within the proposed IMOSMO
framework. We conduct a comparative analysis between the performance of IMOSMO and NSGA-
Ⅱ using 28 cases of varying scales. The computational results demonstrate the superiority of our
algorithm over NSGA-Ⅱ in terms of both solution diversity and quality. Moreover, the performance
of the proposed algorithm upgrades as the problem scale increases.

© 2024 by the authors; licensee Growing Science, Canada

Keywords:
Fuzzy flexible job shop
scheduling problem
Multi-objective optimization
Spider monkey optimization
algorithm
Aircraft shaft parts
manufacturing systems

1. Introduction

Aviation spare parts manufacturers need to improve their capacity to adapt to market demands and emphasize customer
satisfaction in production arrangements due to the diverse changes in market demands and the swift development of the
aerospace industry. Aerospace shaft components are critical parts within aviation spare parts, The efficiency and quality of
their production significantly impact the delivery time and overall lifespan of aerospace products. Therefore, optimizing the
scheduling of the aerospace shaft production workshop is of paramount importance.

The aerospace shaft production workshop is characterized by: a) a diverse range of products; b) distinct production processes
for different shaft types; c) a multitude of intricate processing procedures; d) the non-unique allocation of machines to
processing tasks. Consequently, the production of the aerospace shaft is a typical flexible job shop scheduling problem (FJSP).

Since the FJSP is a common NP-hard problem in discrete manufacturing systems, there has been an increase in related research
recently (Sassi et al., 2022). Additionally, considering that practical scheduling problems often involve multiple optimization
objectives, an increasing number of academics have studied the multi-objective flexible job shop scheduling problem (MO-
FJSP) in-depth. Unlike single-objective optimization, MO-FJSP entails trade-offs between multiple objectives, such as
minimizing manufacturing time, delays, tardiness, flow time, machine idle time, and so on (Caldeira et al., 2020). In aerospace
shaft production workshops, different customers have varying demands for the quality of workpiece processing. To enhance
customer satisfaction, when dealing with crucial orders that demand high processing quality, priority is often given to
allocating optimal resources (machines with superior processing quality). However, this practice can result in specific

492

resources becoming bottlenecks, leading to unnecessary accumulation of work-in-progress and disruptions in production,
consequently affecting the production cycle. Therefore, the trade-off between processing time and processing quality should
be taken into account. Currently, research on the MO-FJSP with the objective of maximizing processing quality is limited
(Kong et al., 2013).

In the FJSP, the assumption of precise production processing time and fixed due dates is common (Pan et al., 2021). However,
in actual manufacturing systems, due to human factors, setup times, and other reasons, the processing times of operations may
be flexible, and due dates are not strictly fixed, making it difficult to define them as precise values. Consequently, several
scholars have proposed the Fuzzy Flexible Job Shop Scheduling Problem (fFJSP). The fFJSP represents processing times or
due dates as fuzzy values, which could be Triangular Fuzzy Numbers (TFNs) (Pan et al., 2021; García Gómez et al., 2023),
Interval Numbers (INs) (Li et al., 2019; Han et al., 2016), or random numbers following specific distributions (Joo et al.,
2018). The Flexible Job Shop Scheduling Problem with fuzzy values of processing time (FJSP-FPT) has received a lot of
attention recently. To solve the FJSP-FPT, Xu et al. (2018) presented a flower pollination algorithm to reduce the fuzzy
makespan. Gao et al. (2016) modified the artificial bee colony method while also optimizing the maximum makespan and
maximum resource load. Lin et al. (2019) solved the FJSP-FPT using a unique approach called hybrid multi-verse
optimization (HMVO).

Taking the above requirements into consideration, this study proposes the Multi-objective Fuzzy Flexible Job Shop
Scheduling Problem (MO-fFJSP) considering the maximization of processing quality. In MO-fFJSP, each job has its own
processing quality priority. Jobs with higher priority require allocation to high- precision/high-quality processing machines
as much as possible. For the same job, downstream operations should be assigned to high-precision/high-quality processing
machines whenever possible, as downstream operations tend to have higher failure costs. By quantifying the above rules, the
objective can be formulated as the maximization of total processing quality. As mentioned earlier, the production cycle should
be considered along with the processing quality. Therefore, the objectives of this problem are minimizing the maximum
makespan while concurrently maximizing the total processing quality.

To solve the proposed MO-fFJSP, we design an Improved Multi-objective Spider Monkey Optimization (IMOSMO)
algorithm. The conventional SMO is typically designed to solve continuous optimization problems with a single objective. In
this study, we introduce genetic operators, variable neighborhood search, and other strategies into the conventional SMO
framework to replace the original position updating strategy. This discretizes the continuous SMO algorithm for solving the
combinatorial optimization problem. We further integrate Pareto optimization theory and apply the algorithm to the
optimization problems with multi objectives. To enhance the algorithm's efficiency and practicability, this study modifies the
execution sequence of the local leader learning phase and the global leader learning phase in the multi-objective discrete SMO
algorithm framework. The superior performance of the proposed IMOSMO algorithm in terms of algorithmic variety and
solution efficacy has been verified by comparing it to the standard NSGA-II algorithm using test problems of various scales.

The remainder of this paper is structured as follows: Section 2 discusses the problem description and TFN operational rules.
Section 3 introduces the IMOSMO, which is developed for the MO-fFJSP. Section 4 contains experimental results and
comparison between proposed algorithm and conventional NSGA-II algorithm. Section 5 concludes with some findings.

2. MO-fFJSP considering the maximization of processing quality

2.1 Problem description

The MO-fFJSP considering the maximization of processing quality is defined as follows: 𝑀 machines in the workshop are
used to process 𝑁 jobs. Each job 𝑛 needs to undergo a fixed sequence of operations 𝑂(𝑘 = 1,2, … ,𝑘). The machine 𝑚
processes operation 𝑂 is selected from the appropriate set of optional machines 𝑆 ∈ 𝑆. The machines within set 𝑆 are
classified into different levels based on their processing capabilities in terms of quality and precision. Machines with
heightened processing capabilities are attributed higher levels, corresponding to larger parameter values 𝐴. Similarly, the
jobs to be processed in the workshop receive varied degrees of priority based on customer demand or the production
characteristics of the products themselves. The more critical the workpiece, the greater the assigned criticality parameter,
denoted as 𝐴. Furthermore, the criticality parameters for different operations of a given job might exhibit variability. For a
given job 𝑛, the downstream operations tend to incur elevated costs in case of processing failures, therefore requiring a higher
guarantee of processing quality. To simulate this practical production characteristic, this paper introduces a specific criticality
parameter, denoted as 𝐴, for each operation 𝑘 of any job 𝑛. 𝐴 = 𝐴 + 𝛼 ∙ 𝑘, where 𝛼 is referred to as the criticality factor,
indicating the degree to which the processing criticality of operation 𝑘 is affected by the sequence of processing.

To simulate the inherent characteristic of processing time uncertainty in practical manufacturing systems, this study employs
a triangular fuzzy processing time representation for operation 𝑂 on machine 𝑚, given by 𝑡 = (𝑡ଵ , 𝑡ଶ , 𝑡ଷ). Here, 𝑡ଵ and 𝑡ଷ represent the minimum and maximum processing times respectively, while 𝑡ଶ represents the most likely
processing time. Therefore, the completion time 𝐶 of operation 𝑂 in this scheduling problem can be expressed as 𝐶 =(𝐶ଵ ,𝐶ଶ ,𝐶ଷ). The following assumptions underpin the scheduling problem discussed in this paper:

J. Li and Z. Guan / International Journal of Industrial Engineering Computations 15 (2024) 493

(1) Each operation must be completed on only one machine, and the process cannot be interrupted.
(2) No more than one operation can be processed on a single machine at any one time.
(3) The processing sequence and processing times are known in advance, ignoring setup time.
(4) The job criticality parameter 𝐴 and machine processing level 𝐴 are known and fixed.
(5) At time zero, all machines are idle, and all jobs are released.

The notations are listed in the table below.

Notation Description 𝑛, 𝑖 job (𝑛 = 1,2, … ,𝑁, 𝑖 = 1,2, … ,𝑁) 𝑚 machine (𝑚 = 1,2, … ,𝑀) 𝑘, 𝑗 operation (𝑘 = 1,2, … ,𝑘, 𝑗 = 1,2, … ,𝑘) 𝑀 the total number of machines 𝑁 the total number of jobs 𝑘 the total number of operations for job 𝑛 𝑂 the 𝑘௧ operation of job 𝑛 𝑡 the processing time on machine 𝑚 for operation 𝑂 𝑆 the set of optional machines that operate 𝑂 𝐴 the processing level of machine 𝑚 𝐴 the criticality of job 𝑛 𝛼 the criticality factor 𝐴 the criticality of operation 𝑂, 𝐴 = 𝐴 + 𝛼 ∙ 𝑘 𝑥 𝑥 = ൜1, operation 𝑂 is processed on machine 𝑚0, otherwise

𝑌 𝑌 = ቐ1, if 𝑂is the immediate preceding process of 𝑂 on machine 𝑚 −1, if 𝑂is the immediate post process of 𝑂 on machine 𝑚0, otherwise 𝐶 the completion time of operation 𝑂, 𝐶 = (𝐶ଵ ,𝐶ଶ ,𝐶ଷ)

The mathematical model of the MO-fFJSP studied in this paper is as follows: min 𝑓ଵ = maxଵஸஸே ሼ𝐶ሽ (1)

max 𝑓ଶ = (𝑥 ∙ 𝐴 ∙ 𝐴)∈ௌೖ

ୀଵ

ே
ୀଵ (2)

s.t.

 𝑥ெ
ୀଵ = 1, ∀𝑛, 𝑘 (3)

C − C(ିଵ) ≥ (𝑥 ∙ t)ெୀଵ , ∀𝑛; k > 1 (4)

ቊ𝐶 − 𝐶 ≥ t, 𝑌 = 1,𝑛 ≥ 𝑖, 𝑘 > 𝑗 𝐶 − 𝐶 ≥ t, 𝑌 = −1,𝑛 ≥ 𝑖,𝑘 > 𝑗 ,∀𝑚, i, j, n, k (5)

𝑥 ∈ ሼ0,1ሽ,∀𝑛, 𝑘,𝑚 (6) 𝑌 ∈ ሼ1,0,−1ሽ,∀𝑚, 𝑖, 𝑗,𝑛,𝑘 (7) 𝐶 > 0,∀𝑛,𝑘 (8)

The objective functions corresponding to equations (1) and (2) represent the minimization of maximum completion time and
the maximization of job processing quality. Constraint (3) defines that each operation can only be completed on one machine.

494

Constraint (4) ensures that jobs are processed according to a fixed operation sequence. Constraint (5) states that a machine
can only perform one operation at a time. Constraints (6)-(8) restrict the numerical type of decision variables.

2.2 Operational rules of TFN

This section establishes the operational rules (addition, maximization, and comparison) for TFN to standardize the
computation process of solving MO-fFJSP. The addition operator calculates the completion time for each operation, the
maximization operator determines the start time for each operation, and the comparison operator compares the maximum
completion time.

For triangular fuzzy processing times 𝑡ଵ = (𝑡ଵଵ, 𝑡ଶଵ, 𝑡ଷଵ) and 𝑡ଶ = (𝑡ଵଶ, 𝑡ଶଶ, 𝑡ଷଶ), their addition operation is defined as follows: 𝑡ଵ + 𝑡ଶ = (𝑡ଵଵ + 𝑡ଵଶ, 𝑡ଶଵ + 𝑡ଶଶ, 𝑡ଷଵ + 𝑡ଷଶ) (9)

The maximization operation is defined as follows: t௫ = (max(𝑡ଵଵ, 𝑡ଵଶ) , max(𝑡ଶଵ, 𝑡ଶଶ), max(𝑡ଷଵ, 𝑡ଷଶ)) (10)

Due to the imprecise nature of fuzzy processing times, the comparison operation between two fuzzy numbers is complex. For
the triangular fuzzy processing time used in this study, the most accurate comparison method is to compare the ratio of the
overlapping region between two fuzzy numbers. However, calculating the overlap ratio rapidly is challenging in practice.
Hence, some studies have simplified the comparison operation of fuzzy numbers. A comparison method for a set of fuzzy
numbers proposed by Wang et al. (2013) has been frequently referenced in recent years. However, this method only uses a
few simplified fixed formulations for comparison and cannot adjust the fuzzy number comparison parameters according to
the manager’s preference, limiting its practical application in production. Therefore, we propose a straightforward and
adaptable weighted comparison approach for comparing the sizes of two TFNs. This comparison method considers the size
relationship between two TFNs from two aspects: the center value and the spread.

For triangular fuzzy processing times 𝑡ଵ = (𝑡ଵଵ, 𝑡ଶଵ, 𝑡ଷଵ) and 𝑡ଶ = (𝑡ଵଶ, 𝑡ଶଶ, 𝑡ଷଶ), 𝑡ଶଵ and 𝑡ଶଶ are center values, while 𝑡ଷଵ − 𝑡ଵଵ and 𝑡ଷଶ − 𝑡ଵଶ are the spread of the fuzzy numbers. We define the comparison operation as follows: 𝑡ଶଵ − 𝑡ଶଶ = 𝜌 ∗ (𝑡ଶଵ − 𝑡ଶଶ) + (1 − 𝜌) ∗ ሾ(𝑡ଷଵ − 𝑡ଷଶ) + (𝑡ଵଵ − 𝑡ଵଶ)ሿ (11)

Here, 𝜌 represents the decision-maker’s emphasis on the center values of the fuzzy numbers. A higher value of 𝜌 implies that
the differences in center values between the two fuzzy numbers are more important. The selection of the parameter ρ holds
the potential to impact the outcomes of the comparison between the two TFNs. In practical production scenarios, if there is a
high probability that the fuzzy processing times fall near the center values or if the manager considers the differences in center
values significant, it is recommended to set 𝜌 = 1. Conversely, 𝜌 can be set to 2 or 3.

3. IMOSMO for solving MO-fFJSP

The SMO algorithm is a population-based intelligent optimization algorithm that models spider monkeys' distinctive fission-
fusion social structure (FFSS). FFSS is characterized by periodically splitting a large population into multiple smaller groups,
which are then merged back into a larger population. By separating the group into smaller groups, this social structure
successfully decreases direct competition among group members. The SMO method is suitable for tackling complex flexible
job-shop scheduling problems because it can successfully balance the trade-off between exploration and exploitation (Bansal
et al., 2014).

The conventional SMO was developed to address single-objective continuous optimization problems (Bansal et al., 2014). In
this paper, genetic operators and variable neighborhood search are introduced into the SMO framework, and combined with
Pareto optimization theory, an improved multi-objective spider monkey optimization algorithm (IMOSMO) is devised to
address the MO-fFJSP.

3.1 Encoding and decoding

The key to the flexible job shop scheduling problem is to optimize two subproblems: machine selection and operation
sequencing. Therefore, this study adopts a two-layer coding method. As shown in Figure 1, the first layer represents the
selection of machines, where "3-2-4" are the machines selected for each of the three processes of job 1, "2-1-1-2" are the
machines selected for each of the four processes of job 2, "3-1" are the machines selected for each of the two processes of job
3, and “1-2-4” are the machines selected for each of the three processes of job 4. The second layer represents the sequence of
operations, where the first "4" in the sequence indicates the first processing operation of job 4, the second "4" indicates the
second processing operation of job 4, the third "4" indicates the third processing operation of job 4, and so on. When these

J. Li and Z. Guan / International Journal of Industrial Engineering Computations 15 (2024) 495

two layers are integrated, it becomes evident that the first processing operation of job 3 will be performed on machine 3. The
decoding method used is the insertion-based greedy decoding algorithm (Chaoyong et al., 2007), which ensures that an active
schedule is obtained after decoding.

Fig. 1. Case of Encoding Scheme
3.2 Population initialization

Randomly generate an initial population. Generate a machine coding sequence by selecting one machine from the candidate
machines set for operation 𝑘 of job 𝑚 randomly. Generate an operation coding sequence randomly. To ensure fair comparison
in the comparative experiments in Section 4, different algorithms use completely identical settings for the initial population
selection for the same instance.

3.3 Local leader phase

A crossover operator is introduced to replace the strategies for location updates within the conventional SMO algorithm in
this phase. At the machine coding layer, a multi-point crossover operator is used, while at the operation coding layer, a
precedence operation crossover (POX) operator is used. The crossover operator for machine coding layer works as shown in
Figure 2: first, generate a random sequence 𝑟𝑎𝑛𝑑_𝑠𝑒𝑞 consisting of 1 and 2 of the same length as the machine coding layer.
The positions where 𝑟𝑎𝑛𝑑_𝑠𝑒𝑞 has 2 are indexed as 𝑖𝑛𝑑𝑒𝑥2. Then, the segments in the machine coding layers of 𝑆𝑀ଵand 𝑆𝑀ଶ at the positions indexed by 𝑖𝑛𝑑𝑒𝑥2 are swapped, resulting in two new positions, 𝑆𝑀௪ଵ and 𝑆𝑀௪ଶ. The crossover
operator for operation coding layer works as shown in Figure 3: first, the jobs are separated into two distinct sets, 𝑆ଵ and 𝑆ଶ,
randomly. Then, in 𝑆𝑀௪ଵ, the segments that correspond to jobs in 𝑆ଵ are preserved, while the remaining segments are filled
in order by the segments from 𝑆𝑀ଶ that correspond to jobs in 𝑆ଶ. In 𝑆𝑀௪ଶ, the segments that correspond to jobs in 𝑆ଶ are
preserved, while the remaining segments are filled in order by the segments from 𝑆𝑀ଵ that correspond to jobs in 𝑆ଵ.

Fig. 2. Crossover operator for machine layer Fig. 3. Crossover operator for operation layer

The algorithm for LLP is shown in algorithm 1.

Algorithm 1 LLP
for 𝑘 = 1:𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 // for each group
 Get 𝑘௧ group 𝑔𝑟𝑜𝑢𝑝 and its size 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒;
 for 𝑖 = 1: 2:𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒 − 1
 if 𝑟𝑎𝑛𝑑 ≥ 𝑝𝑟
 Perform cross operations on 𝑆𝑀 and 𝑆𝑀ାଵ in 𝑔𝑟𝑜𝑢𝑝;
 end if
 end for
end for

496

3.4 Global leader phase

This phase introduces the mutation operator to replace the position updating strategy in the global leader phase of the
conventional SMO. Specifically, a single-point mutation operator is used at the machine coding layer and an insertion
mutation operator is applied at the operation coding layer. The mutation process at the machine coding layer involves
randomly selecting a position within the sequence of machine coding and then replacing the chosen machine with another
machine from the set of candidate machines for that operation. On the other hand, the mutation process at the operation coding
layer is to randomly select a position within the sequence of operation coding and insert the operation at that position into
another randomly selected position distinct from the current one. In addition to this, the strategy of updating the spider monkey
position based on probability 𝑝𝑟𝑜𝑏 in the conventional SMO is hardly applicable to multi-objective problems, therefore, in
this paper, we introduce a binary tournament selection strategy to improve the algorithm and make it more applicable in
solving multi-objective problems.

The algorithm for GLP is shown in algorithm 2.

Algorithm 2 GLP
Calculate the fitness of each population and perform non-dominated sorting;
for 𝑘 = 1:𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 // for each group
 Get 𝑘௧ group 𝑔𝑟𝑜𝑢𝑝 and its size 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒;
 Perform a binary tournament selection operation on 𝑔𝑟𝑜𝑢𝑝 to get 𝑔𝑟𝑜𝑢𝑝௪;
 for 𝑖 = 1:𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒
 if 𝑟𝑎𝑛𝑑 < 𝑝𝑟

Perform mutation operation on 𝑆𝑀 in 𝑔𝑟𝑜𝑢𝑝;
 end if
 end for
 Merge 𝑔𝑟𝑜𝑢𝑝 and 𝑔𝑟𝑜𝑢𝑝௪, and update 𝑔𝑟𝑜𝑢𝑝 using an elitism preservation strategy;
end for

3.5 Local leader learning phase

In the conventional SMO algorithm, the local leader learning phase commences following the completion of the global leader
learning phase. However, if we use the same order when solving discrete optimization problems with multi objectives, it will
result in a situation where both the entire population needs to undergo non-dominated sorting for updating the global leaders,
and each subgroup needs to undergo separate non-dominated sorting for updating the local leaders. This would create an
unnecessary computational burden. Hence, the proposed algorithm moves the local leader learning phase to occur before the
global leader learning phase.

The algorithm for LLLP is shown in algorithm 3.

Algorithm 3 LLLP
for 𝑘 = 1:𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 // for each group
 Get 𝑘௧ group 𝑔𝑟𝑜𝑢𝑝 and the local leader of the 𝑘௧ group 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟;
 perform non-dominated sorting on 𝑔𝑟𝑜𝑢𝑝;
 The individual with the highest non-dominance rank is selected as the set 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
 if 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 is same as 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
 The 𝑙𝑜𝑐𝑎𝑙_𝑙𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 is increased by 1;
 else
 Update the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
 Reset local_limit_count୩ to 0;
 end if
end for

3.6 Global leader learning phase

After the update of local leaders, perform non-dominated sorting on the current global leader along with the updated local
leaders from all subgroups in order to update the global leader.

The algorithm for GLLP is shown in algorithm 4.

J. Li and Z. Guan / International Journal of Industrial Engineering Computations 15 (2024) 497

Algorithm 4 GLLP
Merge the 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 with all 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 into a set 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
Remove duplicate individuals from the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
Perform non-dominated sorting on the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
Update the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to the individual with the highest non-domination rank;
if 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 is same as 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 is increased by 1；
else
 Update 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
 Reset 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 to 0;
end if

3.7 Local leader decision phase

In this phase, a variable neighborhood search is introduced to replace the position updating strategy of the local leader decision
stage in the conventional SMO algorithm. The machine coding layer's variable neighborhood search process (Wang et al.,
2013) is as follows: a random integer 𝐼 is generated from 1 to 𝐿, where 𝐿 is half of the length of the machine coding layer.
Select 𝐼 distinct positions randomly from the machine coding layer sequence. For each selected position, a machine different
from the one at that position, taken from the candidate machine set at that position, replaces the current machine (if there is
only one candidate machine, the position is skipped).

The variable neighborhood search process for the operation coding layer involves the following steps: select two different
jobs randomly. For these two jobs, identify all operations indexed as 𝑖𝑛𝑑𝑒𝑥 and their corresponding values 𝑗𝑜𝑏𝑠 within the
operation coding layer. The 𝑗𝑜𝑏𝑠 are then randomly placed in the positions indexed by 𝑖𝑛𝑑𝑒𝑥 . By repeating these two
procedures 𝑁௩௦ times, a neighborhood is obtained. Finally using a greedy strategy to update the position after non-dominated
ordering of the resultant neighborhood.

A case of variable neighborhood search is depicted in Fig. 4.

Fig. 4. Case of variable neighborhood search

The algorithm for LLDP is shown in algorithm 5.

Algorithm 5 LLDP
for 𝑘 = 1: group_num // for each group
 if 𝑙𝑜𝑐𝑎𝑙_𝑙𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 > 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟_𝑙𝑖𝑚𝑖𝑡
 Reset local_limit_count୩ to 0;
 Get group_size୩;
 for 𝑖 = 1:𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒
 if 𝑟𝑎𝑛𝑑 ≥ 𝑝𝑟
 Updating 𝑆𝑀 of 𝑔𝑟𝑜𝑢𝑝 using random initialization method;
 else
 Updating 𝑆𝑀 of 𝑔𝑟𝑜𝑢𝑝 using variable neighborhood search algorithm;
 end if
 end for
 Calculate the fitness value of updated 𝑔𝑟𝑜𝑢𝑝;
 Perform non-dominated sorting on 𝑔𝑟𝑜𝑢𝑝;
 Update the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 of 𝑔𝑟𝑜𝑢𝑝;
 Remove duplicate individuals from the 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟;
end for

498

3.8 Global leader decision phase

The algorithm for GLDP is shown in algorithm 6.

Algorithm 6 GLDP
if 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 > 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟_𝑙𝑖𝑚𝑖𝑡
 Reset 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 to 0;
 if 𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 < 𝑀𝐺 // 𝑀𝐺 is the given number of maximum group
 𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 = 𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 + 1;
 Update 𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 groups;
 Update 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟;
 else
 𝑔𝑟𝑜𝑢𝑝_𝑛𝑢𝑚 = 1;
 Update group to the whole population;
 Update 𝑙𝑜𝑐𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟 to 𝑔𝑙𝑜𝑏𝑎𝑙_𝑙𝑒𝑎𝑑𝑒𝑟;
 end if
 Reset local_limit_count to 0;
end if

4. Experiment results and algorithm performance analysis

This study designed 28 sets of MO-fFJSP test problems with varying scales for evaluating the performance of IMOSMO
algorithm and conduct a comparation with the classical NSGA-II algorithm.

4.1 Test instances

The experiment divides the test instances into moderate-scale (denoted as Group A) and large-scale (denoted as Group B).
Group A contains 12 (3*4) test instances and Group B contains 16 (4*4) test instances. Table 1 presents the characteristics of
the instances.

Table 1
Characteristics of the instances

parameter Group A Group B
The number of jobs {6,8,10} {12,14,16,18}
The number of machines {4,6,8,10} {10,12,14,16}
The number of operations [2,8] [5,20]
Processing time ([3,4],[4,6],[5,8])
Machine processing quality level [1,4]
Criticality of jobs [1,5]，obey the normal distribution
Critical factor 5/ average number of jobs

4.2 Performance evaluation metrics

In this paper, we use the Inverted Generational Distance (IGD) (Czyzżak and Jaszkiewicz, 1998) and the Hypervolume (HV)
(Zitzler & Thiele, 1999) indicators to evaluate algorithm performance. Specifically, IGD quantifies the average distance
between all individuals in the true Pareto frontier and the obtained algorithmic Pareto frontier. A smaller IGD value signifies
improved convergence and dispersion of the algorithm. On the other hand, HV measures the hypervolume enclosed by the
Pareto frontier generated by the algorithm and a reference point. A larger HV value indicates superior overall algorithmic
performance.

4.3 Parameter selection

The performance of an algorithm is closely tied to the selection of parameters; hence, parameter tuning holds paramount
importance. The SMO algorithm involves four key parameters: 𝐿𝐿𝐿, 𝐺𝐿𝐿, 𝑀𝐺, and 𝑝𝑟 (Bansal et al., 2014). In this study, 𝐿𝐿𝐿 is set at twice the value of 𝐺𝐿𝐿, and the population size for all test instances is fixed at 300. A table of 𝐿ଵ(4ଷ) orthogonal
experimental designed for the three parameters 𝐺𝐿𝐿, 𝑀𝐺, and 𝑝𝑟 is shown in Table 2. Among the test instances with equal
numbers of jobs, one is randomly selected for parameter tuning experiment (total of 7 test instances).

J. Li and Z. Guan / International Journal of Industrial Engineering Computations 15 (2024) 499

Table 2
Parameter and level

Parameter Level
1 2 3 4 𝐺𝐿𝐿 10 20 30 40 𝑀𝐺 3 4 5 6 𝑝𝑟 0.1 0.2 0.3 0.4

Given the inherent stochastic nature of the algorithm, this study conducted 10 independent experiments for each parameter
set. The performance metrics for each parameter set were the normalized average values of IGD and HV. Table 3 presents the
orthogonal table and the corresponding performance index for the B11 instance within the set of 7 test instances. Meanwhile,
the parameter response values for instance B11 are displayed in Table 4. Table 5 provides the parameter settings for all test
instances.

Table 3
Orthogonal table and performance index

Experiment No. Parameter Performance index 𝐺𝐿𝐿 𝑀𝐺 𝑝𝑟
1 1 1 3 0.6547
2 1 2 4 0.9023
3 1 3 2 0.6146
4 1 4 1 0.2126
5 2 1 4 0.3893
6 2 2 3 0.7717
7 2 3 2 0.2572
8 2 4 1 0.2400
9 3 1 2 0.2949
10 3 2 4 0.8058
11 3 3 3 0.6867
12 3 4 1 0.6876
13 4 1 1 0.6148
14 4 2 4 0.8403
15 4 3 2 0.5806
16 4 4 3 0.2201

Table 4
Response value for parameters

Level Parameter 𝐺𝐿𝐿 𝑀𝐺 𝑝𝑟
1 0.4394 0.3859 0.7447
2 0.3280 0.0846 0.5526
3 0.3750 0.5071 0.2001
4 0.4149 0.5798 0.0601

Table 5
Parameters setting for test instances

Instance Parameter 𝐺𝐿𝐿 𝑀𝐺 𝑝𝑟 𝑡
A01-A04 20 4 0.4 90s
A05-A08 20 5 0.4 120s
A09-A12 20 4 0.4 150s
B01-B04 20 4 0.4 180s
B05-B08 20 4 0.4 210s
B09-B12 20 4 0.4 240s
B13-B16 10 4 0.4 270s

4.4 Experiment results

All the algorithms and experimental tests detailed in this study were executed through MATLAB 2019b, conducted on a
computer with an “Intel Core i5-3450” CPU@3.1GHz and 12 GB RAM. Much like the parameter-tuning experiments, each
test instance was iterated 10 times to ensure statistical robustness. Table 6 presents the experimental results of various
algorithms after 10 iterations under the parameter settings shown in Table 5.

As depicted in Table 6, IMOSMO significantly outperforms NSGA-II in the number of victories in both IGD and HV
performance metrics. In terms of mean performance, IMOSMO exhibits optimization superiority rates of 59.53% and 3.62%
for the average IGD and HV metrics, respectively, in the large-scale test instances (Group B). These values are higher than
the respective rates of 36.47% and 1.37% observed in the moderate-scale test instances (Group A). This suggests that

500

IMOSMO's algorithmic performance improves with increasing test instance scales. Regarding standard deviation, for the
majority of test instances, IMOSMO exhibits lower standard deviations in both IGD and HV metrics compared to NSGA-II,
implying that the stability of the IMOSMO algorithm surpasses that of NSGA-II.

Overall, IMOSMO outperforms NSGA-II notably in both moderate-scale and large-scale test instances, thereby confirming
the efficacy of the IMOSMO algorithm. The impressive algorithmic performance of IMOSMO stems from its fission-fusion
structure, which effectively addresses issues like local convergence and premature convergence, ensuring population
diversity. Furthermore, the introduction of variable neighborhood search enhances the algorithm's local search capability and
improves population quality.

Table 6
Results of experiments for algorithms

Instance
IMOSMO NSGA-II

IGD HV IGD HV
Mean ± Standard Deviation

A01 0.0031±0.0015 0.5478±0.0044 0.0032±0.0015 0.5475±0.0050
A02 0.0156±0.0086 0.4502±0.0245 0.0158±0.0084 0.4509±0.0194
A03 0.0024±0.0022 0.4149±0.0090 0.0036±0.0040 0.4144±0.0091
A04 0.0016±0.0033 0.4278±0.0269 0.0099±0.0061 0.4192±0.0226
A05 0.0037±0.0024 0.5355±0.0109 0.0133±0.0144 0.5190±0.0233
A06 0.0045±0.0029 0.4809±0.0155 0.0097±0.0056 0.4644±0.0243
A07 0.0120±0.0145 0.3338±0.0391 0.0124±0.0200 0.3337±0.0401
A08 0.0021±0.0026 0.3613±0.0079 0.0050±0.0067 0.3602±0.0079
A09 0.0044±0.0015 0.5245±0.0106 0.0052±0.0019 0.5179±0.0163
A10 0.0069±0.0031 0.5233±0.0154 0.0099±0.0051 0.5152±0.0181
A11 0.0133±0.0179 0.4061±0.0433 0.0169±0.0186 0.3979±0.0406
A12 0.0062±0.0044 0.4751±0.0287 0.0158±0.0082 0.4640±0.0283
B01 0.0066±0.0060 0.5145±0.0182 0.0169±0.0104 0.4916±0.0210
B02 0.0026±0.0019 0.5697±0.0186 0.0080±0.0044 0.5542±0.0184
B03 0.0078±0.0098 0.5303±0.0345 0.0099±0.0081 0.5203±0.0479
B04 0.0154±0.0112 0.4424±0.0240 0.0252±0.0105 0.4287±0.0369
B05 0.0029±0.0015 0.5626±0.0284 0.0151±0.0049 0.5430±0.0271
B06 0.0048±0.0032 0.5507±0.0153 0.0144±0.0081 0.5283±0.0246
B07 0.0049±0.0067 0.5363±0.0174 0.0267±0.0135 0.5137±0.0277
B08 0.0151±0.0130 0.4497±0.0443 0.0187±0.0144 0.4387±0.0325
B09 0.0040±0.0040 0.5570±0.0279 0.0166±0.0088 0.5316±0.0303
B10 0.0022±0.0012 0.5046±0.0145 0.0107±0.0060 0.4775±0.0208
B11 0.0068±0.0052 0.5586±0.0117 0.0151±0.0064 0.5430±0.0186
B12 0.0049±0.0037 0.5197±0.0247 0.0148±0.0089 0.5057±0.0242
B13 0.0015±0.0014 0.5684±0.0072 0.0100±0.0051 0.5525±0.0147
B14 0.0028±0.0022 0.5536±0.0251 0.0132±0.0063 0.5321±0.0287
B15 0.0048±0.0046 0.5317±0.0323 0.0159±0.0068 0.5101±0.0408
B16 0.0069±0.0070 0.5397±0.0306 0.0218±0.0113 0.5131±0.0268
Ratio 27/28 27/28 0/28 1/28

Fig. 5 depicts an illustrative example of the Pareto front for test instance A01. Due to the characteristics of maximizing
triangular fuzzy numbers, the Pareto fronts for the minimum completion time, the most likely completion time, and the
maximum completion time all contain individuals with dominance relationships. However, it should be noted that all solutions
shown in the graph are non-dominated. For instance, solution S1 in the graph dominates solution S2 in terms of the minimum
completion time, maximum completion time, and processing quality. Nevertheless, according to the triangular fuzzy number
maximization operation proposed in this paper, S2 dominates S1 with respect to the completion time. As a result, solutions
S1 and S2 are mutually non-dominated.

Fig. 5. Pareto front for A01

J. Li and Z. Guan / International Journal of Industrial Engineering Computations 15 (2024) 501

Fig. 6 presents a detailed scheduling Gantt chart for the non-dominated solution S3 from Fig. 5.

Fig. 6. The scheduling Gantt chart for S3

5. Conclusions

The fFJSP is a typical NP-hard problem and is a common category of production scheduling models in manufacturing systems.
Therefore, this problem holds significant research significance and attracts substantial attention. Addressing the practical
manufacturing characteristic of fuzzy processing times in the aerospace shaft production workshop, this paper introduces a
fFJP with fuzzy processing times in the context of aerospace shaft manufacturing.

In practical production scenarios, scheduling problems often involve multiple objectives. Given the pronounced focus on
customer satisfaction within aerospace shaft production workshops, this paper quantifies customer demand (termed as job
quality levels) and processing resource capacities to construct a maximization objective for total processing quality. Alongside
minimizing the maximum completion time, a MO-fFJSP is formulated to reflect the real-world aerospace shaft production
context.

To tackle this problem, the IMOSMO algorithm is devised. The conventional SMO algorithm is traditionally applied to single-
objective continuous optimization problems. This paper incorporates genetic operators and variable neighborhood search into
the SMO framework. By integrating Pareto optimization theory, IMOSMO is tailored for solving discrete combinatorial
optimization problems. To enhance computational efficiency, this paper also adjusts the execution sequence of the local leader
learning phase and the global leader learning phase within the multi-objective discrete SMO algorithm framework, thus
reducing the computational burden of individual evaluation and sorting.

To verify the algorithm's performance, two sets of test instances with different scales are designed: a large-scale problem set
consisting of 16 instances and a moderate-scale problem set containing 12 instances. The classic NSGA-II algorithm is
adopted as a benchmark for comparison, and experiments are conducted on all 28 instances. In terms of the number of victories
in both IGD and HV metrics, the results show that IMOSMO surpasses NSGA-II. Through comparative analysis of algorithm
performance, it is observed that IMOSMO's performance improves with larger problem scales, and its stability surpasses that
of NSGA-II, thus confirming the efficacy of the proposed algorithm.

References

Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider monkey optimization algorithm for numerical
optimization. Memetic computing, 6, 31-47.

Caldeira, R. H., Gnanavelbabu, A., & Vaidyanathan, T. (2020). An effective backtracking search algorithm for multi-objective
flexible job shop scheduling considering new job arrivals and energy consumption. Computers & Industrial
Engineering, 149, 106863.

Chaoyong, Z., Yunqing, R., Peigen, L., & Xinyu, S. (2007). Bilevel genetic algorithm for the flexible job-shop scheduling
problem. Journal of mechanical engineering, 43(4), 119-124.

Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective
combinatorial optimization. Journal of multi‐criteria decision analysis, 7(1), 34-47.

502

Gao, K. Z., Suganthan, P. N., Pan, Q. K., Chua, T. J., Chong, C. S., & Cai, T. X. (2016). An improved artificial bee colony
algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Systems with Applications, 65, 52-
67.

García Gómez, P., González-Rodríguez, I., & Vela, C. R. (2023). Enhanced memetic search for reducing energy consumption
in fuzzy flexible job shops. Integrated Computer-Aided Engineering, 30(2), 151-167.

Han, Y., Gong, D., Jin, Y., & Pan, Q. K. (2016). Evolutionary multi-objective blocking lot-streaming flow shop scheduling
with interval processing time. Applied Soft Computing, 42, 229-245.

Joo, B. J., Shim, S. O., Chua, T. J., & Cai, T. X. (2018). Multi-level job scheduling under processing time
uncertainty. Computers & Industrial Engineering, 120, 480-487.

Kong, W., Ding, J., Chai, T., Zheng, X., & Yang, S. (2013, April). A multiobjective particle swarm optimization algorithm
for load scheduling in electric smelting furnaces. In 2013 IEEE Symposium on Computational Intelligence for Engineering
Solutions (CIES) (pp. 188-195). IEEE.

Li, X., Gao, L., Wang, W., Wang, C., & Wen, L. (2019). Particle swarm optimization hybridized with genetic algorithm for
uncertain integrated process planning and scheduling with interval processing time. Computers & Industrial
Engineering, 135, 1036-1046.

Lin, J., Zhu, L., & Wang, Z. J. (2019). A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling
problem. Computers & Industrial Engineering, 127, 1089-1100.

Pan, Z., Lei, D., & Wang, L. (2021). A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible
job shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(8), 5295-5307.

Sassi, J., Alaya, I., Borne, P., & Tagina, M. (2022). A decomposition-based artificial bee colony algorithm for the multi-
objective flexible jobshop scheduling problem. Engineering Optimization, 54(3), 524-538.

Wang, L., Zhou, G., Xu, Y., & Liu, M. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop
scheduling problem. International Journal of Production Research, 51(12), 3593-3608.

Xu, W., Ji, Z., & Wang, Y. (2018). A flower pollination algorithm for flexible job shop scheduling with fuzzy processing
time. Modern Physics Letters B, 32(34n36), 1840113.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto
approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

