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 This research introduces a comprehensive scheme to tackle the Mixed-Model Assembly Line 
Balancing Problem (MALBPLW) within manufacturing contexts. The primary aim is to optimize 
assembly line task assignments by integrating both the learning effect and worker prerequisites. 
The learning effect recognizes the enhanced efficiency of workers over time due to learning and 
experience. A novel mathematical model and solution approach are proposed, encompassing 
factors like cycle time, task interdependencies, worker classifications, and the learning effect. The 
model endeavors to minimize the overall costs related to both workers and workstations while 
simultaneously maximizing production efficiency. Experimental assessments are conducted to 
evaluate the efficacy of this proposed approach. Diverse manufacturing scenarios are inspected, 
comparing and analyzing cost reductions and production efficiency. The outcomes highlight the 
effectiveness of this approach in achieving enhanced cost-effectiveness and resource utilization in 
contrast to conventional methods. This study contributes significantly to advancing assembly line 
balancing and production planning techniques by presenting a pragmatic framework for optimizing 
resource usage and reducing costs in manufacturing environments. The knowledge extracted from 
these discoveries can significantly assist professionals in the industry seeking to improve 
manufacturing processes and strengthen competitiveness. 
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1. Introduction 
 

In the realm of modern manufacturing, assembly line balancing plays a pivotal role in optimizing efficiency, productivity, and 
customer satisfaction. With the increasing complexity of production systems, the challenges associated with achieving an 
ideal assembly line balance are multifaceted. This research paper aims to address the assembly line balancing problem by 
incorporating crucial factors such as learning effects by task, worker requirements, demand variations, and the complexities 
of mixed model production lines. Assembly line balancing involves the allocation of tasks and resources across workstations 
to achieve a harmonious workflow, minimizing idle time, and maximizing output. Traditionally, assembly line balancing has 
focused on evenly distributing tasks without considering the inherent learning effects associated with each task. However, 
recognizing that workers become more proficient and efficient with repeated task performance, incorporating learning effects 
into the line balancing process becomes imperative for achieving optimal results. Worker requirements pose another 
significant challenge in assembly line balancing. Different tasks may demand varying levels of skills, qualifications, or 
physical capabilities from workers. Failing to consider these requirements can lead to productivity losses, increased error rates, 
and worker dissatisfaction. Therefore, an effective assembly line balancing approach should consider matching workers with 
tasks based on their competencies, enabling smoother operations and improved overall performance. Furthermore, assembly 
lines frequently encounter demand variations, requiring manufacturers to adapt quickly to changing market needs. 
Fluctuations in product demand necessitate a flexible production system capable of handling different product models, often 
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referred to as mixed model lines. Balancing the workload and ensuring a seamless transition between different product variants 
on the assembly line is critical for meeting customer demands efficiently and effectively. 

This research paper aims to explore and address the challenges associated with assembly line balancing by integrating learning 
effects, worker requirements, demand variations, and mixed model line complexities. By incorporating learning effects, the 
proposed methodology accounts for the improving performance of workers over time, leading to increased efficiency and 
reduced cycle times. 

Consideration of worker requirements allows for the assignment of suitable workers to tasks based on their skill sets and 
capabilities, ensuring a harmonious workflow and mitigating potential bottlenecks. The inclusion of demand variations in the 
assembly line balancing process enables manufacturers to respond dynamically to changing market demands, providing the 
necessary flexibility to adjust production rates and adapt to diverse product models. To achieve these objectives, this research 
paper will explore existing literature and empirical data to develop a comprehensive methodology that integrates learning 
effects, worker requirements, demand variations, and mixed model line complexities into the assembly line balancing 
problem. Through the analysis of real-world scenarios and the evaluation of the proposed methodology, this study aims to 
enhance the understanding of assembly line balancing practices and contribute to the advancement of manufacturing systems. 

The subsequent sections of the paper are organized in the following manner: Section 2 presents a comprehensive survey of 
the literature. Section 3 represents the learning phenomena effect Section 4 introduces the problem definition and the 
mathematical formulation of the MALBPLW. In Section 5, a solution procedure is developed and presented. The 
computational performance of the solution procedure is analyzed and compared in Section 6 and 7. Lastly, Section 8 concludes 
the paper by discussing future research directions. 

2. Literature review 

The workload distribution problem in the context of assembly line design is commonly known as the assembly line balancing 
problem (ALBP). The ALBP aims to optimize the assignment of tasks to workstations in an assembly line, considering factors 
such as task dependencies, cycle time, and resource allocation. The first mathematical formulation for the ALBP was 
introduced by Salveson (1955) and is known as the Simple Assembly Line Balancing Problem (SALBP). However, SALBP 
makes simplifying assumptions that limit its applicability to real-world industrial scenarios, Sternatz (2014). As a result, 
researchers have developed various extensions and enhancements to address more realistic and complex assembly line 
balancing problems. These extensions consider different aspects such as alternative line layouts (e.g., U-shaped or two-sided 
lines), diverse product mixes, varying task processing times, and resource allocation requirements. By incorporating these 
additional factors, researchers aim to develop models and algorithms that better represent real-world assembly line scenarios 
and provide more effective solutions (Battaïa & Dolgui, 2013; Battaïa & Dolgui, 2022; Boysen et al., 2022; Hazır et al., 2015; 
Boysen et al., 2007). Within the domain of assembly line balancing, the contributions made can be categorized based on the 
specific objectives they aim to achieve. These objectives typically revolve around minimizing the number of workstations, 
reducing cycle time, minimizing costs, or maximizing profit, (Boysen et al., 2008; Hazır et al., 2015). Thomopoulos (1970) 
initially introduced the mixed-model ALBP, which has since been extensively explored in various avenues. In a subsequent 
study, Gökċen and Erel (1998) enhanced the mathematical model by incorporating a shortest path reformulation. They further 
extracted specific characteristics of the MABLP to confine the solution space and devised a heuristic procedure alongside the 
mathematical model. 

Over time, the primary research in this field has expanded to incorporate various line structures, multiple objectives, and 
advanced algorithms. Vilarinho and Simaria (2002) introduced parallel workstations to the MALBP, which enhances the 
efficiency of assembly lines by enabling the simultaneous operation of the same sets of tasks at multiple stations. Chutima 
and Chimklai (2012) tackled a complex multi-objective two-sided MALBP with three objectives. The first objective aimed to 
minimize the number of Interchangeable stations, while the second objective focused on reducing the number of stations. The 
third objective encompassed two sub-objectives: work relatedness and workload smoothness. To obtain approximate Pareto 
solutions, the authors developed a particle swarm optimization algorithm. Delice et al. (2017) integrated a selection 
mechanism and a novel decoding procedure into a particle swarm optimization algorithm. Their findings demonstrated that 
this new approach could generate more distinct solutions when compared to the conventional particle swarm optimization 
algorithm. The research emphasis has shifted towards exploring innovative characteristics and objectives for the MALBP, 
driven by real-world problems. Tiacci and Mimmi (2018) employed the OCRA index, which measures occupational repetitive 
action, to evaluate the ergonomic risks faced by workers. They introduced the concepts of blocking and starvation phenomena 
to model the ergonomic risks associated with workers. The authors’ design methodologies aimed to strike a balance between 
ergonomic benefits and production profits. In a different study, Sun and Fan (2018) introduced the notion of variety-induced 
changeover complexity in mixed-model assembly lines. They proposed entropy-based methods to measure three types of 
changeover complexities. To address a car sequencing problem with the objective of minimizing changeover complexities, 
they employed a multi-objective ant colony algorithm. Chen et al. (2019) focused on a MALBP in the TFT–LCD module 
process, taking into account practical characteristics such as multi-skilled workers and operator efficiency. They developed a 
heuristic two-phase adaptive genetic algorithm (AGA) to tackle the problem. Considering energy consumption, Zhang et al. 
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(2020) incorporated an energy objective into the MALBP. The authors identified that idle state energy consumption 
constituted a significant portion of the total consumption. Battaïa et al. (2015) tackled an MALBP that took into account the 
assignment of operations and disabled workers, who are multi-skilled workers. They presented a formulation using mixed-
integer linear programming and suggested constructive heuristics as solutions for the problem. 

Delorme et al. (2019) conducted a study on a paced assembly line planning problem with the objective of minimizing the 
number of identical workers. The researchers considered multiple types of operations, as well as lower and upper bounds for 
the required workforce and a predetermined cycle time. To address this problem, they developed a mixed-integer linear 
programming model, an enumeration algorithm, and a dynamic programming algorithm. The ALBP literature has increasingly 
focused on the practical relevance of the task learning effect, Glock et al. (2019). Empirical studies have demonstrated that 
task times decrease as the number of task repetitions increases (Otto & Otto, 2014; Alhomaidi & Askin, 2022). This occurrence 
has attracted considerable focus within the field. 

Cohen et al. (2006) tackled a work allocation problem with the objective of minimizing the makespan of production, assuming 
homogeneous rates. They highlighted that considering task learning can lead to significant reductions in makespan, 
particularly in scenarios with low overall demand. Toksarı et al. (2008) developed a procedure for obtaining polynomial 
solutions for the ALBP with incorporated task learning effects. The authors established that the optimal solution must adhere 
to the shortest task time rule. Addressing an automated flexible ALBP with collaborative task learning, Li and Boucher (2017) 
introduced a task reassignment procedure and backward induction rules. Their approach aimed to achieve optimal efficiency 
in realtime production. In the study by Li (2017), a stochastic learning curve was proposed to account for the occasional and 
inconsistent magnitude of task time improvement. Building upon this observation, the stochastic learning effect was 
incorporated into the conventional ALBP model, and an algorithm called ENCORE was developed to solve it. To validate the 
efficiency of the proposed algorithm, statistical experiments were conducted. Examining the impact of learning on the cycle 
time in a simple assembly line, Koltai and Kalló (2017) conducted an analysis. They also performed a sensitivity analysis 
regarding learning rates and discovered that the number of bottleneck shifts increases as the learning rate decreases. 

Some key research works mentioned above have been summarized in Table 1. Previous studies have explored MALBP with 
various additional features. In practical applications, MALBP often involves mass customization processes characterized by 
low overall production volume and short makespan for each product model. It is widely recognized that task time significantly 
decreases during the initial phase of production due to learning, reaching a plateau as the production volume increases. 
Therefore, considering the learning effect can greatly enhance production efficiency, particularly in mass customization 
scenarios with low overall production volume, compared to mass production scenarios with high overall production volume. 
This paper incorporates the learning effect, worker categories, and decision-making regarding production volume into a 
comprehensive MABLP. 

Table 1: 
Literature summary 

Term Definition/Description Features/Objectives 
Thomopoulos (1970) Customized heuristic algorithm Initial study MALBP 
Dolgui et al. (2018) Conventional and randomized heuristics Minimize the number of workers 
Delorme et al. (2019) Enumeration algorithm and a dynamic programming Minimize the cycle time 
Battaïa et al. (2015) Conventional and randomized heuristics Minimize the total number of workers 

Vilarinho and  Simaria (2002) Two-stage simulated annealing Parallel workstations, MALBP 
Chutima and Chimklai (2012) Particle swarm optimization Two-sided MALBP 

Gökc˙en and Erel (1998) Binary integer programming MALBP 
Sun and Fan (2018) Ant colony optimization Changeover complexity, MALBP 
Chen et al. (2019) Adaptive genetic algorithm Multi-skilled workers, MALBP 
Zhang et al. (2020) Cellular genetic algorithm Energy consumption and sequencing, MALBP 
Li and Boucher (2017) Heuristic algorithm Stochastic learning curve 
Toksarı et al. (2008) Shortest path time rule Learning effect, U-shaped line 
Koltai and Kalló (2017) Theoretical analysis Learning effect 
Otto and Otto (2014) Priority rules-based method Learning effect 
Alhomaidi and Askin (2022) Practical analysis and mixed integer programming Learning effect and periodical demand 
Cohen et al. (2006) Theoretical analysis Learning effect and minimize makespan 
This paper Integer programing and heuristic algorithm Minimize the number of workstations, workers and 

total cost 

3. Task’s Learning Effect 

The proposed model builds upon the widely-explored SALBP (Sequential Assembly Line Balancing Problem) introduced 
by Scholl in Chapter 2 of their work Scholl (1999). The SALBP serves as the fundamental basis for the proposed model and 
has been extensively studied in various research studies related to assembly line balancing problems, as referenced in Boysen 
et al. (2008) and Becker and Scholl (2006). In this model, the production process involves the assembly of a homogeneous 
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product using k similar workstations. The task assignments to the workstations must satisfy pre-specified precedence 
constraints, ensuring the correct order of tasks where the production is carried out on a serial, paced assembly line. In order 
to incorporate the concept of learning into the model, the Yelle learning curve, as presented by Yelle (1979), is employed. 
This learning curve builds upon the research outlined in Wright (1936) and offers a structured approach to capture the impact 
of learning in production processes. The learning curve is applied to each specific repetition Θ of task i, and its mathematical 
representation is as follows: 

p୧ሺΘሻ = p୧ଵ  ⋅  ሺΘሻౢౝ൫౨൯ౢౝሺమሻ  
(1) 

In Eq. (1), pi(Θ) represents the required amount of time to process task i during repetition Θ. pi(1) denotes the processing 
time required to complete the first unit of task i. ri represents the learning rate for task i. The learning curve assumes that the 
processing time for a task decreases monotonically as the number of repetitions increases, indicating the accumulation of 
experience. In other words, for each task i, the processing time for repetition Θ + 1 is less than or equal to the processing 
time for repetition Θ, as stated in the inequality pi (Θ + 1) ≤ pi (Θ). This assumption holds for all tasks i, (i = 1,...,N) and all 
repetitions Θ, (Θ = 1,...,R). Moreover, the proposed model considers the variability of learning rates among different tasks, 
which can be influenced by factors such as task complexity, required dexterity, or the level of automation. This consideration 
provides the model with the flexibility to capture the diverse learning effects across tasks accurately. In terms of the temporal 
aspect, the model divides time into discrete periods. It also accommodates the possibility of a ramp-up phase or other variable 
factors affecting production volume. Consequently, the demand for the product may fluctuate across these periods throughout 
the planning horizon. It is important to emphasize that while demand may vary, the assignments of tasks to workstations 
remain consistent across all cycles. This consistency ensures that workers can specialize and develop specific skills related 
to their assigned tasks. 

 

4. Problem definition  

The problem being addressed in this study is a new extension of the work related to the mixed model assembly line balancing 
problem with the incorporation of the learning effect and consideration of worker-type requirements for each task. In a 
manufacturing setting, multiple product models are produced on an assembly line with a series of workstations. The goal is 
to assign tasks to workstations optimally, considering various factors such as cycle time, task dependencies, worker 
categories, and the learning effect. The learning effect applies to how workers progressively improve their task efficiency 
through experience and learning over time. As workers repeat a task, their processing time decreases, resulting in increased 
productivity. The problem also considers the worker-type requirements for each task. Different tasks may require specific 
worker capabilities or skills, and it is important to assign tasks to workers who possess the necessary qualifications. 
 

To address the problem efficiently, a novel mathematical model and a solution method are proposed, which aim at 
contributing to the development of a new framework for production planning, incorporating the learning effect in task 
assignments and worker categories, with the goal of minimizing the total cost associated with the total number of workers 
and workstations. The presented problem and proposed methods encompass the following aspects: 

• Task Learning Effect: The model considers the learning effect associated with each task, capturing the relationship 
between task time reductions and increased worker experience. By incorporating the learning effect, the framework 
optimizes task assignments, harnessing the improved efficiency gained through worker experience. 

• Worker Categories: The decision-making process involves determining the worker categories required for each task. 
This ensures that tasks are assigned to workers with the appropriate skills and expertise, facilitating an efficient 
production process. 

• Minimization of Total Cost: The proposed framework addresses the objective of minimizing the total cost associated 
with the total number of workers and workstations required for production. By optimizing task assignments based 
on the learning effect and worker categories, the framework aims to achieve an efficient allocation of resources, 
reducing overall costs and improving cost effectiveness. 

• High-Quality Solutions: The developed algorithm is designed to deliver high quality solutions. Even under real-time 
conditions, the algorithm generates effective production plans that optimize resource utilization and minimize costs. 

By incorporating the learning effect, worker categories, and the objective of minimizing the total cost associated with 
workers and workstations, the proposed framework offers an innovative approach to production planning. It optimizes task 
assignments based on worker experience, assigns tasks to appropriate worker categories, and reduces overall costs, resulting 
in improved cost-effectiveness. The algorithms provide practical solutions that can be implemented in real-time scenarios, 
enabling manufacturers to optimize their production processes while minimizing costs associated with workers and 
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workstations. The problem researched in this paper is denoted as the Mixed-Model Assembly Line Balancing Problem by 
Incorporating Task Learning Effect and Worker Requirements (MALBPLW). 
 
4.1. Exact Model 
 
Sets and Parameters 
 
i  Task number, i=1,2, … , N 𝜓  Period index, ψ = 1, 2, . . . ,R 
m  Model number, m = 1, 2, . . . ,M 
k   Workstation number, k=1,2, … , K 
e   Worker category, e=1,2, … , E 
Dm  Demand of model m 𝑑ట   Cumulative demand for all models for period ψ. 
IPm  Ordering set (g,i) of tasks such that task g must precede task i for model m (needed only for immediate 

predecessors). 
WS Predetermined depreciation cost for workstation k. 
WTe  Hiring cost for a worker with category e. 𝜁 Binary indicator equal to 1 if task i requires worker category e and 0 otherwise. 
λ  Maximum number of workers assigned within a workstation. 
Θ  Recurrence number. 
rim  Learning rate for task i belongs to model m. 
pim

1 Processing time of task i for the first unit belongs to model m. 
 

Decision variable: 𝑥 = ൜1,               𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑓𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 𝑚 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑖𝑜𝑛 𝑘   0,                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                    ∀𝑖 ∈ 𝑁,∀𝑚 ∈ 𝑀,∀𝑘 ∈ 𝐾 (2) 

𝑆   =   ൜1                𝑖𝑓 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒                         0,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                   ∀𝑘 ∈ 𝐾 (3) 

𝑤 = ൜1,              𝑖𝑓 𝑤𝑜𝑟𝑘𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑒 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑖𝑜𝑛 𝑘0,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                              ∀𝑒 ∈ 𝐸,∀𝑘 ∈ 𝐾 (4) 𝑐௵: Cycle time during recurrence 𝛩 (5) 

Objective: min Cost = ∑ 𝑊𝑆ୀଵ ∗ 𝑠  +   ∑ ∑ 𝑊𝑇ாୀଵୀଵ ∗ 𝑤              (6) 

Constraints: 
 𝑥

ୀଵ = 1  ∀𝑖,∀𝑚 

 

 
(7) 

𝑥 −𝑥
ୀଵ ≤ 0         ∀𝑞, ሺ𝑔, 𝑖ሻ ∈ 𝐼𝑃,∀𝑚 

 

 
(8) 

ቆ𝑝ሺ1ሻ ∗ Θ మ൫ೝ൯ቇே
ୀଵ

ெ
ୀଵ ∗ 𝑥 ≤ 𝑐        ∀𝑘,  ∀Θ 

 

 
(9) 

 𝑐ௗಠశభ
ୀௗಠାଵ ≤ 𝑇  ∀𝜓 

 

 
(10) 

ζ ∗ 𝑥 ≤ 𝑤             ∀𝑖,∀𝑚,∀𝑘,  ∀𝑒 
 

(11) 



  

 

546

𝑤ா
ୀଵ ≤ λ  ∀𝑘 

 

 
(12) 

𝑥 ≤ 𝑠  ∀𝑖,   ∀𝑚,  ∀𝑘 
 

(13) 𝑥 ∈ {0,1}  ∀𝑖,   ∀𝑚,   ∀𝑘 
 

(14) 𝑠 ∈ {0,1}  ∀𝑘 
 

(15) 𝑤 ∈ {0,1}  ∀𝑒,  ∀𝑘 
 

(16) 𝑐 ≥ 0  ∀Θ (17) 
The multi-objective function (6) is to minimize the total cost associated with the total number of workstations and worker 
categories simultaneously. Constraint (7) guarantees that each task is allocated to one workstation only. Constraint (8) 
enforces the precedence constraints specified by the ordering set IPm. Constraint (9) limits the total processing time of tasks 
assigned to each workstation during the learning occurrence. This prevents any cycle time violation during any recurrence 
Θ. Constraint (10) ensures that the cumulative cycle time does not exceed the available time. Constraint (11) guarantees that 
if a task i requires a worker category e, then the worker must be assigned to the workstation where the task is assigned. In 
the case of limited space, Constraint (12) limits the number of workers assigned to each workstation to be at most λ workers. 
Constraint (13) ensures that a task is assigned to a workstation only if the workstation is constructed. Constraints (14), (15), 
and (16) define the binary nature of the decision variables. 

5. MALBPLW Solution Procedure 

The assembly line balancing problem poses a challenge in terms of its combinatorial complexity, making it difficult for 
traditional mathematical procedures or exact solution methods to handle large-scale instances of the problem (i.e., NP-Hard, 
Wee and Magazine (1982). As a solution, an algorithmic approach in the form of a heuristic is developed to provide a fast 
and efficient method for finding solutions. This heuristic algorithm aims to effectively tackle the problem and deliver 
satisfactory results within a reasonable timeframe. In order to provide a clearer understanding of the heuristic, it is beneficial 
to introduce and discuss several key concepts beforehand. This will simplify the establishment of a strong foundation and 
enable a more seamless presentation of the heuristic approach. In mixed-model assembly lines, multiple models often involve 
common tasks with similar precedence relationships. Taking advantage of this similarity, the model incorporates the shared 
precedence relations between different models. This is achieved by adopting a combined precedence diagram, as proposed 
by Thomopoulos Thomopoulos (1970), which connects the precedence relationships of multiple models on a single diagram. 
By utilizing this combined diagram, the model can effectively capture and represent the precedence connections across 
various models. Furthermore, considering that the demand for each model may differ, the utilization of workstations can be 
measured by using the weighted average task duration for each task i, This approach takes into account the varying demand 
by assigning weights corresponding to each model, resulting in a more precise assessment of workstation utilization. 
 
5.1. Heuristic Description 
 
At the onset of the algorithm, various notations and variables are introduced to establish a consistent framework for the 
subsequent steps. These defined notations and variables are utilized throughout the algorithm to ensure clear and consistent 
representation of the problem and its solution. Notation: 
 
 𝑝           Weighted average task time for task i. Model type, m = 1,2,...,M, 
 𝑐               Cycle time, 
 𝐿               List of unassigned tasks, 
 𝑒              Worker category required for task I, 
 𝑑            Demand model m, 
 𝑑               Cumulative demand for all models, 
 𝑊          Worker categories set assigned to workstation k, 
 𝑓              Remaining available time per cycle for each workstation k, 
 𝑄               Prioritized tasks list, 
 Θm             Recurrence number for each model, 
 rim             Learning rate for task i belongs to model m, 
 pim

1                  Processing time of task i for the first unit belongs to model m, 
WTe                 Hiring cost for a worker with category e, 
WS            Predetermined depreciation cost for workstation k. 
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Algorithm 1 MALBPLW Algorithm 
1:   Procedure Construction (Q, pim, Θm, rim, dm, c, ei)  
2:          for each model’s individual task do 
 

3: Calculate the learning curve:  𝑝ሺ1ሻ ∗ Θ మ൫ೝ൯ where Θm = dm 
4: end for 
5: for each task i do 
6: Compute the weighted average task time 
7: end for 
8: Prioritize the tasks based on the positional weight Q 
9: Set Wek = ∅, fk = ch, and k = 1 

10: while Q ̸= ∅ do 
11: Select next qi from Q and update Q = Q − {qi} 
12: Assign task qi: 
13: if pq(i) ≤ fk and all predecessors are met then 
14: Assign qi to the current workstation 
15: if required worker ei is not already assigned then 
16: Assign worker category e 
17: end if 
18: Update Wk = Wk ∪ e(i), fk = fk − pq(i), and i = i + 1 
19: else 
20: Find the next first fitable task qf in Q 
21: Exchange qi with qf in Q 
22: end if 
23: if time capacity violation in current workstation then 
24: Find a task switching pair (i,h) in U 
25: if ph − pi ≤ fk and ei requirements are satisfied then 
26: Switch i with h 
27: Update Q, fk, and U = U − {(i,h)} 
28: else 
29: Create a new workstation 
30: Set k = k + 1 and fk = c 
31: end if 
32: end if 
33: end while 
34: Calculate the Total construction cost: WTe * Wek + k * WS 
35: end procedure 

 
The following steps outline the general process of assigning tasks and workers to workstations at a high level. 

•For each individual task of each model, the algorithm calculates the learning 

curve using the formula ( 𝑝ሺ1ሻ ∗ Θ మ൫ೝ൯ ), where Θm = dm. This step helps estimate the processing time for 
each task based on the learning rate and recurrence number. 
•The algorithm computes the weighted average task time for each task i. This is done to determine the average time 
required to complete each task, considering the variability in task duration across different models. 

•The algorithm prioritizes the tasks based on their positional weight. The prioritized task list is denoted as Q. 

•The algorithm initializes the variables Wek (the set of worker categories assigned to each workstation), fk (the 
remaining available time per cycle for each workstation k), and k (the workstation index). 

•The algorithm iterates in a loop until the task list Q becomes empty. 
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•In each iteration of the loop, the algorithm selects the next task qi from the list Q and removes it from the list. 

•The task qi is assigned to a workstation based on certain conditions: 

•If the processing time pq(i) of task qi is less than or equal to the remaining available time fk of the current workstation 
and all its predecessors are met, the task is assigned to the workstation. If the required worker category ei is not already 
assigned to the workstation, it is assigned. The variables Wk, fk, and i are updated accordingly. 

•If the time capacity of the current workstation is violated (i.e., the processing time of the task exceeds the remaining 
available time), the algorithm searches for the next first fitable task qf in the list Q. The task qi is then exchanged with 
qf in the list Q to ensure the precedence and worker category requirements are met. 

•If the current workstation cannot accommodate any additional tasks from Q due to time capacity violation, the 
algorithm enters a nested loop: 

•It looks for a task switching pair (i,h) in the task switching set U. 

•If there is a pair (i,h) where the time difference ph−pi is less than or equal to the remaining available time fk of the 
current workstation, and the required worker ei is either already assigned or will not be required again, and all 
predecessors of h are met, the algorithm switches task i with h. The task switching set U, the remaining available time 
fk, and the task list Q are updated accordingly. 

•If no suitable task switching pair is found, the algorithm creates a new workstation by incrementing the workstation 
index k, sets the remaining available time fk to the cycle time c, and goes back to the original list. 

•Once all the tasks are assigned to workstations, the algorithm calculates the total construction cost by multiplying 
the hiring cost WTe with the set of assigned worker categories Wek, and adding the product to the product of the 
workstation count k and the predetermined depreciation cost per workstation WS. 

6. Computational Experiment 

The proposed method’s efficiency is evaluated using a well-known dataset referenced as Gökçen et al. (2006) in the 
literature. The experiment encompasses different instance sizes, namely small, medium, and large, including the datasets 
named Jackson − 11, LUTZ − 32, Tong − 68, WEEMAG − 75, and ARC − 111. Each dataset is subjected to various cycle 
times. In this experiment, three models with diverse demands are considered. The learning rate for each task is randomly 
assigned from a uniform distribution, U ∼ [85%,100%]. Additionally, four categories of workers are employed, with three 
being professionals and the remaining one being regular workers who possess minimal skills to process most of the tasks. 
The task requirements are distributed randomly. The hiring costs for each worker type, workstation installation expenses, 
and other relevant parameters can be found in Table 2. 
 
Table 2 
Parameters values 
Parameter Value 

rim U∼ [85%,100%] 
Hiring cost Category A (regular): $60, category B: $80; category C: $160; category D: $240 
WS Cost $3000 
Number of models 3 
Demand 35, 46 and 70 
 
To handle the randomness involved in the algorithm, each test combination is run 10 times with a total of 250 runs. To assess 
and compare the heuristic for larger problems, it is necessary to first establish a strong lower bound to find the theoretical 
minimum number of workstations, denoted as Kmin, needed to fulfill the customer’s demand (cycle time constraint). This is 
in addition to a total cost lower bound that includes labor hiring cost and workstation installation cost. Through computation, 
the theoretical lower bound for the number of workstations is determined. 
 𝐿𝐵 = අ൭ 𝑝𝑐ே

ୀଵ∈ெ ൱ඉ (18) 
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Thus, the lower bound for the total cost, which considers workstation installation costs and labor hiring costs, is determined 
by the following expression: 
 𝐿𝐵 = 𝐿𝐵൫𝑊𝑆 + 𝑊𝑇௧௬൯ +  𝑊𝑇∀ ಯಲ

 (19) 

 
The first term represents the cost associated with the workstation cost plus the loading of one regular worker within each of 
them. The latter reports one worker only from each category other than the regular worker within the whole line. The 
presented model is scripted in Python, subsequently executed and resolved on a computer featuring an Intel i7-4790 CPU 
operating at 3.60GHz and equipped with 16 GB RAM. 
 
7. Computational Results 

The experiment utilizes four main criteria to evaluate the effectiveness of the heuristic. These criteria include the count of 
workstations, the overall cost throughout a specific time, the variation between the heuristic’s outcome and the lower bound 
of total cost, and the execution time of the CPU. Table 3 and Fig. 1 provide an overview of the outcomes achieved by a 
heuristic algorithm for different instances. It consists of several columns, including Instance information, cycle time value, 
execution time in seconds, number of workstations, Labor cost, and Total Cost. Each row corresponds to a specific instance 
and displays the corresponding values for these metrics. By examining the table, certain patterns are observed. For example, 
as the parameter value “c” increases for a given instance, a decrease in the CPU time taken by the algorithm is obtained. 
This suggests that higher values of “c” result in more efficient computations. Additionally, an increase in “c” tends to lead 
to a reduction in the number of workstations required, as indicated by the “K” column. This implies that higher parameter 
values allow for more effective utilization of existing resources. Furthermore, the result reveals a consistent relationship 
between “c” and the associated labor and total cost. As the parameter value increases, both labor and total cost tend to 
decrease. This suggests that higher values of “c” contribute to improved efficiency and cost-effectiveness in terms of labor 
requirements and overall expenses. To further examine the presented heuristic, a comparison is made between the obtained 
results and the total cost and theoretical workstation lower bound. As seen from Fig. 2 and Table 4, the total cost shortfalls 
between both outcomes are in the range of 3% and 9% in most cases, diminished within an average of 6.68% as observed in 
the last column. Additionally, the heuristic attains the theoretical number of workstations in most cases. Table 5 clearly 
demonstrates the advantage of incorporating learning in the design, with savings reaching as high as 51.2%. On average, the 
savings amount to around 32%. This reduction in cost is primarily attributed to the decreased number of workstations 
required and the resulting labor cost savings, which stem from the acquired skills during the manufacturing process. 
 
Table 3 
Heuristic outcomes 

Instance c CPU Time (sec) K Labor Total Cost 
Jackson11 7 0.470 5 1,180 16,180 

 9 0.421 4 1,120 13,120 
 10 0.377 4 1,120 13,120 
 12 0.338 3 1,060 10,060 
 16 0.303 2 840 6,840 

LUTZ32 115 0.563 7 2,020 23,020 
 129 0.520 6 1,960 19,960 
 140 0.480 5 1,840 16,840 
 154 0.443 5 1,760 16,760 
 175 0.409 4 1,720 13,720 

Tong68 110 0.607 11 3,020 36,020 
 125 0.579 9 2,960 29,960 
 134 0.552 10 2,200 32,200 
 150 0.526 8 2,760 26,760 
 165 0.502 7 2,640 23,640 
WEE-MAG75 121 2.270 11 3,460 36,460 
 139 2.142 9 3,140 30,140 
 145 2.021 9 3,360 30,360 
 153 1.907 8 3,660 27,660 
 166 1.800 8 3,160 27,160 

ARC111 65 3.969 20 4,160 64,160 
 73 3.492 18 4,360 58,360 
 80 3.073 16 4,480 52,480 
 86 2.705 15 4,360 49,360 
 90 2.380 14 4,220 46,220 
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Table 4 
Heuristic performance and efficiency 

Name C Theoretical K LB Dev. % 
Jackson11 7                                       5 15,780 2.53% 
 9                       4 12,720 3.14% 
 10                       4 12,720 3.14% 
 12                       3 9,660 4.14% 
 16                        2 6,600 3.64% 
LUTZ32 115               7 21,900 5.11% 
 129 6 18,840 5.94% 
 140 5 15,780 6.72% 
 154 5 15,780 6.21% 
 175 4 12,720 7.86% 
Tong68 110                11 34,140 5.51% 
 125 9 28,020 6.92% 
 134 9 28,020 14.92% 
 150 8 24,960 7.21% 
 165 7 21,900 7.95% 
WEE-MAG75 121 11 34,140 6.80% 
 139 9 28,020 7.57% 
 145 9 28,020 8.35% 
 153 8 24,960 10.82% 
 166 8 24,960 8.81% 
ARC111 65               19 58,620 9.45% 
 73 18 55,560 5.04% 
 80 16 49,440 6.15% 
 86 15 46,380 6.43% 
 90 14 43,320 6.69% 

 

  
Fig. 1. Heuristic’s total cost for different cycle time Fig. 2. Heuristic Vs lower bound total cost 

 
Table 5 
Learning advantage analysis 

Instance C K Labor Total Cost Saving dev. % 
Jackson11 7 8 1,040 24,410 50.9% 

 9 6 880 18,260 39.2% 
 10 6 880 18,260 39.2% 
 12 5 880 15,210 51.2% 
 16 3 720 9,120 33.3% 

LUTZ32 115 9 1,840 27,590 19.9% 
 129 9 2,000 27,610 38.3% 
 140 8 2,080 24,540 45.7% 
 154 7 2,320 21,500 28.3% 
 175 6 2,160 18,420 34.3% 

Tong68 110 15 4,000 46,550 29.2% 
 125 13 3,760 40,250 34.3% 
 134 12 3,280 37,070 15.1% 
 150 11 3,440 33,980 27.0% 
 165 10 3,280 30,860 30.5% 
WEE-MAG75 121 15 3,920 46,540 27.6% 
 139 13 4,000 40,280 33.6% 
 145 13 3,440 40,210 32.4% 
 153 12 3,760 37,130 34.2% 
 166 11 3,520 33,990 25.1% 

ARC111 65 27 5,680 85,220 32.8% 
 73 24 5,040 75,390 29.2% 
 80 22 5,040 68,940 31.4% 
 86 20 4,720 62,490 26.6% 
 90 19 4,240 59,240 28.2% 
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8. Conclusion and Future Research 

This study addresses the mixed-model assembly line balancing problem by incorporating the learning effect and considering 
worker-type requirements for each task. The proposed approach, based on integer programming and heuristic techniques, 
offers an innovative solution to production planning by optimizing task assignments based on worker experience, assigning 
tasks to appropriate worker categories, and minimizing overall costs associated with workers and workstations. The study 
contributes to the development of a new methodology for production planning by formulating the problem as an integer 
programming model. The model captures the learning effect and worker-type requirements, allowing for the optimization of 
task assignments. Additionally, a heuristic technique is employed to tackle the computational complexity of the problem and 
provide efficient solutions. The computational performance of the proposed algorithm is designed to deliver high-quality 
solutions, even under real-time conditions. It generates effective production plans that optimize resource utilization and 
minimize costs, providing practical solutions for manufacturers. However, there are several avenues for future research to 
further advance assembly line balancing in manufacturing. Firstly, investigating advanced machine learning and artificial 
intelligence techniques may enhance the accuracy of predicting the learning effect and optimizing task assignments. Deep 
learning models and reinforcement learning algorithms could be explored to handle more complex assembly line scenarios 
and achieve even better performance. Additionally, extending the research to include other factors such as machine 
breakdowns, maintenance schedules, and production uncertainties would provide a more comprehensive framework for 
production planning. By considering these factors, the proposed approach can be made more robust and adaptable to real-
world manufacturing settings. Lastly, further empirical studies and collaborations with industry partners are necessary to 
validate the proposed framework in real-world manufacturing environments. The integration of Industry 4.0 technologies 
and exploring the implications for the broader supply chain can also provide valuable insights. 
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