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 Most of today's production systems are working with parallel production resources to increase 
throughput rate due to the increase in high variability in demand and product mix. Effective control 
and performance evaluation of such systems is of paramount importance to minimize production 
and inventory-related costs. We examine a production-inventory system featuring parallel 
production resources capable of producing various products. In many industries such as 
automotive, white goods, electronics, and paint, multiple/parallel production resources are widely 
used to produce the ideal amount and satisfy incoming demands for distinct products. In this study, 
shortage cost is not restricted to only one type and both lost sales and backordering cases are 
analyzed. In order to analyze the optimal production policies' behavior, we initially formulate 
dynamic programming models for both lost sales and backordering systems, treating them as 
Markov Decision Processes. Subsequently, we solve these models using the value iteration 
algorithm. Given the challenges posed by the curse of dimensionality in the value iteration 
algorithm, we suggest alternative heuristic production policies. These policies extend the existing 
ones described for multi-item single-resource make-to-stock (MTS) systems to accommodate 
multiple resources. We construct simulation models to assess the efficacy of the heuristic policies, 
conducting comparisons of their performance against both the optimal policy and among one 
another. To the best of our knowledge, there has been no exploration of scenarios involving 
multiple production resources concurrently manufacturing distinct products in a MTS environment. 
Hence, this study serves as an extension to the examination of multi-item, multi-production 
resource MTS systems. 
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1. Introduction 
 

Most production systems face randomness in different parts of the process. Two of the most common random effects are due 
to production and inter-demand times. Production planners/controllers in make-to-stock (MTS) systems aim to achieve a 
balance between holding, shortage, and production-related costs. With the growing variety of products to be produced, the 
significance of minimizing costs and implementing efficient control over production resources becomes increasingly apparent. 
Due to the increase in product variety and their demand rates, most of today`s production systems operate with parallel 
production resources to reduce production lead-time and hence response time. Effective control and performance evaluation 
of the above-mentioned multi-resource stochastic production-inventory systems are of great importance for minimizing 
production and inventory related costs. 

This paper focuses on MTS systems with a single operation, incorporating random inter-demand and production times. We 
study both lost sales and backordering cases as well as multi-resource (multi-server) and multi-item. With this broad 
perspective, we believe that a variety of real-life MTS systems are considered. To better understand the problem environment 
from the practitioners' point of view, we take an example from the electronics industry. Some television manufacturers first 
assemble the raw materials and WIP items to hold them in a common buffer stock. All products in this buffer are identical 
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and semi-finished. Upon demand from customers (end-users), products are withdrawn from the buffer and differentiated 
according to customer needs, such as screen quality, color preferences, etc. This strategy is known as Delayed Differentiation 
in the literature (Lee & Tang, 1997). The demand for products in the buffer stock (pre-differentiation) is the cumulative 
demand of all the customers. If production up to the common stock needs to be controlled and the process is modeled as a 
single operation with random operation times (due to human factors, breakdowns, etc.), this model would be a single item 
stochastic MTS model. The demand process for the common stock can be represented as a Poisson process, given that it is 
the aggregate of all customer demands. Also, some TV manufacturers might have multiple, parallel resources to feed the 
common stock. Such cases can be modelled as multi-server MTS systems. Lastly, the common stock of different customer 
groups or brands demanding TVs in different technologies, sizes, etc., might be different. Such cases are examples for multi-
item MTS systems. Moreover, a real-life example from the paint industry for a similar production-inventory system is 
explained in detail in Özkan and Bulut (2022). 

This article examines a production-inventory system featuring parallel production resources capable of manufacturing various 
products. These resources are non-preemptive and have the capability to manufacture any type of product, requiring only one 
production resource to complete the production of a product. Simultaneously, multiple products can be produced in parallel. 
The production times for each product on a production line follow independent and identically distributed exponential random 
variables. Each product undergoes a demand process with exponentially distributed interarrival times. Furthermore, shortage 
cost is not confined to a single type, and both lost sales and backordering cases are analyzed. In this study, we initially 
investigate the optimal production policy's behavior for both backordering and lost sales cases. Subsequently, alternative 
policies are proposed. Finally, we compare their performances with the optimal policy and among themselves. 

In multi-item production settings, production resources adhere to a production policy, which comprises two primary decisions: 
deciding when and how much to produce, as well as choosing the specific products for production. Existing literature on this 
topic delineates production policies into two distinct control strategies: an idleness policy that governs the on/off status of 
production, and a scheduling policy that determines the order in which products are produced (Tiemessen et al., 2017). In 
existing literature, the base stock policy (BSP) is considered optimal for single-item single-production resource MTS systems 
that do not involve start-up costs (Ha 1997a; Ha 1997b), they employ the BSP to determine when to start or stop production 
in multi-item single-production resource MTS systems. They differ only in the priority rule that determines production 
priority. In this study, as an idleness policy, we use a pre-proposed well-performing policy, the extended-two-critical-number 
policy (ETCNP), for a single-item multi-production resource system (Özkan and Bulut, 2020). ETCNP has two control 
parameters: 𝐶𝐿ଵ is the production trigger point and it also bounds the number of production lines that can be activated for 
multi-line systems. 𝐶𝐿ଶ is the produce-up-to level (the maximum inventory level) such that 𝐶𝐿ଶ > 𝐶𝐿ଵ. However, when the 
start-up cost is negligible, the optimal difference between production control levels is usually one, otherwise more than one. 
Therefore, a BSP is a near-optimal policy for single-item multi-production resource systems, and we again use the BSP to 
determine when to start or stop production even in a multi-production resource case. 

The used methodology and contribution of this study are listed as: 

• In the related literature, there are extensive works on the problem consisting of a single production resource where 
multiple products are produced (e.g., Zheng and Zipkin, 1990; Veatch and Wein, 1996; Ha, 1997c; Sanajian et al., 2010; 
Tiemessen, 2017). This study is the inaugural exploration to simultaneously address the presence of multiple non-
identical products and parallel production resources. This assumption aligns with real-life scenarios, as production 
facilities frequently have the capacity to concurrently manufacture multiple products. 

• Most of the studies on the control of multi-item MTS systems are for backordering environment (e.g., Zheng and Zipkin, 
1990; Perez and Zipkin, 1997; Ha, 1997c; Sanajian et al., 2010; Tiemessen, 2017). We relax this assumption and 
consider both lost sales and backordering cases for multi-item multi-production resource MTS systems. 

• For both scenarios involving lost sales and backordering, we formulate the dynamic programming model for the system 
as a Markov Decision Process. The models are subsequently solved using the value iteration algorithm. In light of the 
curse of dimensionality, we analyze the optimal production policy's structure using a numerical example that centers 
around a smaller problem instance. 

• Since alternative approaches become prominent for large problem instances, we propose alternative heuristic production 
policies for both lost sales and backordering cases benefiting from pre-proposed policies in the literature. We compare 
them on a wide range of problem instances. We show that most of our proposed production policies perform well with 
a broad numerical experiment. 

The rest of this paper is structured as follows: Section 2 provides a thorough literature review. Sections 3.1 and 3.2 introduce 𝑀/𝑀/𝑠 multi-item MTS queues for backordering and lost sales environments, respectively. The problem formulations are 
provided, and the optimal policy structure is discussed with numerical examples. Section 4 explains our extended scheduling 
policies applicable to multi-item multi-production line systems for both backordering and lost sales cases. In Section 5, 
experimental studies are conducted to assess the performance of the new heuristic policies. Finally, Section 6 concludes with 
remarks and suggestions for future research. 
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2. Literature Review 
 

The literature extensively explores the single-product version of make-to-stock (MTS) queue problems. Earlier studies 
predominantly focused on systems with a single production resource and a single demand class, incorporating start-up and/or 
shut-down costs. Most of these earlier studies pertain to backordering environments, as evidenced by works such as Gavish 
and Graves (1981), Lee and Srinivasan (1987), Altıok (1989), and Ha (1997b). Conversely, studies involving lost sales assume 
deterministic, Markovian, or generally distributed processing times, with examples including De Kok (1985), De Kok and 
Tijms (1985), Baek and Moon (2016), Jose and Nair (2017), Yue and Qin (2019), and Özkan and Bulut (2022). The analyses 
in these studies often rely on queueing and inventory theory techniques. In more recent investigations, the production-
inventory problem is viewed as a control problem, leading to the development of Markov Decision Process (MDP) models. 
This shift is evident in studies such as Bulut and Fadıloğlu (2011) and Özkan and Bulut (2020). 

The literature has explored the multi-product version of MTS queue problems, with attention directed towards two distinct 
issues. The first involves the optimal and/or near-optimal production control problem, while the second revolves around the 
stochastic economic lot scheduling problem (SELSP). Investigations addressing the first problem seek to delineate the optimal 
policy structure. However, confronted with the curse of dimensionality, these studies typically examine optimal policies for 
small-scale instances. As an alternative for larger instances, they introduce heuristic production policies and assess their 
performance in comparison to the optimal approach and pre-existing policies. 

Within the relevant literature, production policies typically consist of two distinct control policies: when production is active 
or idle is governed by an idleness policy, and the next product to be produced is selected by a scheduling policy. Prior research 
in this domain commonly utilizes base stock policies (BSPs) to decide when to initiate or cease production, differing only in 
the priority rule dictating production precedence. Consequently, studies in literature introduce novel approaches to scheduling 
priority and conduct comparative analyses. It is worth noting that the BSP is considered optimal for single-item single-
production resource MTS systems without startup costs. 

Zheng and Zipkin (1990) conducted one of the initial studies in literature addressing the control of multi-item MTS systems. 
They study a production system consisting of two identical products, a common production resource, and backorders. 
Demands for the products form independent Poisson processes. The production resource produces only one unit of either 
product at a time. Production times are assumed to be independent and identically distributed exponential random variables. 
Control of the entire system is achieved by deciding when and which product to produce. They employ a BSP, in short (𝐶𝐿ଶ −1,𝐶𝐿ଶ) policy, to determine when to start or stop production. To decide which product is produced, they consider a dynamic 
longest queue policy. For a specific product, when the inventory position falls below the maximum inventory level 𝐶𝐿ଶ, an 
order is placed and sent to the production resource. As demand arrives, the outstanding orders form a queue at the production. 
The production resource remains on until all orders are satisfied, i.e., until there are 𝐶𝐿ଶ units of inventory of both products. 
If there is at least one product in the queue, production occurs. However, if there is more than one type of product, the 
production resource chooses which product is produced based on the longest queue, that is, the product is chosen to have the 
lowest inventory level. In their 1990 study, Zheng and Zipkin compare the performance of the longest queue policy to the 
static FCFS for two identical products when the production is controlled with a base stock policy. They demonstrate that the 
dynamic longest queue policy surpasses the static FCFS. Subsequently, in 1995, Zipkin reevaluate the performance of the 
dynamic longest queue policy for systems with arbitrarily distributed production times and more than two products. 

Wein (1992) considers a 𝐺/𝐺/1 queue with non-identical products and develops a scheduling policy by using the heavy-
traffic approximation. He proposes a well-performing production policy composed of an aggregate BSP and a dynamic 
scheduling policy which is called the 𝑏𝜇/ℎ𝜇 rule in the literature. According to the 𝑏𝜇/ℎ𝜇 rule, when at least two products 
have backorders, the product which has the biggest value of the index 𝑏௜𝜇௜ is chosen (given priority) to produce. Here, for any 
product 𝑖, 𝑏௜ is the backordering cost rate and 𝜇௜ is the production rate. When all the products have no backorder, but their 
inventory levels are less than their base-stock (produce-up-to) levels, the product which has the smallest value of the index ℎ௜𝜇௜ is chosen to produce. ℎ௜ is the holding cost rate for product 𝑖. Veatch and Wein (1996) work on many different couples 
of scheduling and idleness policies. They demonstrate that the production policy composed of the aggregate BSP of Wein 
(1992) and the dynamic service time look-ahead policy proposed by Perez and Zipkin (1997) perform well. They also obtain 
the optimal policy for the systems with two and three products in an 𝑀/𝑀/1 queue.  

Perez and Zipkin (1997) propose a dynamic scheduling policy structure named Myopic (P). It is related to the fully myopic 
policy of using the cost rate after one transition, which is the 𝑏𝜇/ℎ𝜇 rule. The Myopic (P) rule considers the expected cost 
rate after one production time. According to Myopic (P), if a product is currently being produced, the next product is selected 
to be produced when the production of that product is completed. Production cannot be interrupted; hence this policy has a 
non-preemptive nature. Myopic (P) looks ahead one production time and calculates the cost difference between having one 
more unit of product 𝑖 and not having it. Then, it allocates the production capacity to the product that has the smallest cost 
increment (if on-hand inventory increases) or the biggest cost decrement (if the number of backorders decreases). As an 
improvement, the use of sojourn time as a look-ahead time has been suggested in the Myopic (T) policy. They demonstrate 
that the Myopic (T) policy outperforms the 𝑏𝜇/ℎ𝜇 rule and the dynamic service time look-ahead policy.  
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Ha (1997c) suggests a novel dynamic scheduling policy named the switching rule. The switching rule always awards higher 
priority to backordered products. Among the products that are backordered, priority is given to the one with the largest 𝑏௜𝜇௜. 
Let denote the base stock level of product 𝑖 by 𝐶𝐿௜. If no product is backordered, priority is given to the one with the largest 𝑏௜𝜇௜(1 − 𝑥௜ 𝐶𝐿௜⁄ ). The quantity (1 − 𝑥௜ 𝐶𝐿௜⁄ ) can be interpreted as the proportion of unfilled base stock and the larger it is, 
the closer a product will be to being backordered. Numerical findings indicate that the switching rule exhibits a negligible 
optimality gap, and it performs better than the suggested two other scheduling rules. De Vericourt et al. (2000) generalizes 
the results of Ha (1997c) on the form of the optimal policy. They indicate that the Myopic (T) policy is optimal for states with 
backorders of the product with the lowest 𝑏௜𝜇௜. 
Sanajian et al. (2010) considers a problem consisting of a repair shop. In the preemptive case, it is shown with the experimental 
results that the Myopic (T) policy is generally well-performing. In a recent study, Tiemessen et al. (2017) proposes a new 
scheduling policy, the rolling horizon scheduling policy, and compares the proposed policy’s performance with the scheduling 
policies suggested in the literature. They present that the rolling horizon scheduling policy outperforms the switching rule and 
the Myopic (T) scheduling policy. 

There is also a vast literature that considers inventory lot sizing models such as the Economic Order Quantity (EOQ) and the 
Economic Production Quantity (EPQ). We direct the reader to the recent works of Afonso et al. (2023) and Chiu et al. (2023) 
and the related literature.  

Table 1 summarizes the milestone works in the literature on multi-item production systems. In the control literature of multi-
item MTS queues, the problem consisting of a single production resource where multiple products are produced in order has 
been extensively examined. To the best of our knowledge, no study considers multiple production resources where different 
products are produced in parallel. Therefore, this work provides an extension to the analysis of the multi-item multi-production 
resource MTS systems. The main contribution is to extend the control of multi-item MTS literature by considering multiple 
production resources for both pure lost sales and pure backordering environments. We obtain a value iteration solution of a 
Markov decision process. Insights into the optimal policy structure are revealed with the help of dynamic programming results. 
We also propose new heuristic production policies and compare their performances with the optimal one and among 
themselves for multi-item MTS systems. 

The literature review section ends with a brief discussion of the Stochastic Economic Lot Scheduling Problem (SELSP). 
SELSP considers MTS systems with different products produced on a single production resource with production set-up times 
under non-deterministic demands or production times. Studies in the SELSP literature employ production policies to decide 
whether to continue production of the current product, switch to another product, or leave the production resource idle. The 
common purpose of these policy is to minimize expected total costs consisting of set-up, holding, and shortage costs. Most 
works in the related literature consider a fixed production sequence and a dynamic cycle length (see e.g., Bourland and Yano 
(1994), Gascon et al. (1994), Markowitz (2001), Smits et al. (2004), Grasman et al. (2008). Winands et al. (2011) conduct a 
comprehensive review of the literature on SELSP. The methods devised to address the SELSP have been formulated based 
on the assumption that setup times are significant. 

Table 1  
Related literature on multi-item make-to-stock (MTS) systems 

Optimal Control of Multi-Item Production-Inventory Systems 

(Veatch & Wein, 1996; Ha, 1997; De Vericourt et al., 2000; Veatch & De Vericourt, 2003; 
Tiemessen et al., 2017) 

𝑀/𝑀/1 MTS queue with backorders 

(Veatch & Wein, 1996) 𝑀/𝑀/1 MTS queue with lost sales 

Heuristic Production Policies for Multi-Item Production-Inventory Systems 

(Zheng & Zipkin, 1990; Veatch & Wein, 1996; Pena Perez & Zipkin, 1997; Ha, 1997; 
Tiemessen et al., 2017) 

𝑀/𝑀/1 MTS queue with backorders 

(Veatch & Wein, 1996) 𝑀/𝑀/1  MTS queue with lost sales 

(Zipkin, 1995; Sanajian et al., 2010) 𝑀/𝐺/1 MTS queue with backorders 

(Wein, 1992) 𝐺/𝐺/1  MTS queue with backorders 

 
3. Dynamic Programming Formulations 

 
3.1. Backordering Case 
 

This section delves into a make-to-stock (MTS) production-inventory system employing multiple production resources to 
produce a variety of products. The production times for each product on a production line are assumed to follow independent 
and identically distributed exponential random variables. Additionally, the time between two consecutive demand arrivals for 
each product is assumed to follow an exponential distribution. In the event of a product's demand occurrence with no existing 
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backorder, the arriving demand is promptly fulfilled. Conversely, if a backorder exists for the requested product, it is placed 
on backorder and fulfilled when the on-hand inventory level becomes positive. The system is formulated as a Markov Decision 
Process (MDP) using dynamic programming, and subsequently, the model is solved utilizing the value iteration algorithm, 
enabling an in-depth exploration of the optimal production policy through a numerical study. The underlying assumptions are 
outlined as follows: 

• Production on a production resource cannot be stopped (non-preemption). All resources are capable of producing all 
products, and each production resource can handle only one item at a time. 

• Production times are assumed to follow Exponential random variables. 

• Multiple types of products are stored in their respective stocks, and each product undergoes a demand process with 
exponentially distributed interarrival times. 

• All cost types are specific to each item. There exists a rate for inventory holding costs and a rate for backordering costs. 

• Switching times and costs are negligible. 

• There are plenty of raw materials. Only production capacity is limited. 

Given these assumptions and the Markovian structure of both demand arrivals and production times, along with the presence 
of 𝑠 parallel production resources, the production-inventory system is represented as an 𝑀/𝑀/𝑠 multi-item MTS queue. We 
formulate the corresponding production control problem as a continuous-time MDP. The parameters employed in the problem 
formulation are outlined in Table 2. 

Table 2  
Parameters used in dynamic programming formulation 𝑠      Number of available production resources 𝜇௜       Production rate of item 𝑖  𝜆௜       Demand rate of item 𝑖  𝛼       Discount rate 𝑏௜       Backordering cost for item 𝑖 ℎ௜       Holding cost for item 𝑖 
 
Initially, the system state is characterized by two primary sets of variables designed to monitor events. Let 𝑥௜(𝑡), where 𝑖 =1, … , |𝐼|, be the inventory level of item 𝑖 at time 𝑡, and 𝑦௜(𝑡), where 𝑖 = 1, … , |𝐼|, denote the number of active resources 
producing item 𝑖 at time 𝑡. In multi-item single-line systems, in addition to the inventory levels, the information of which 
product is currently being produced on the line is necessary to identify the inventory replenishment rate at time 𝑡. Here, 
however, we also ought to track the number of active lines (can be more than one) producing which item to determine the 
replenishment rate at time 𝑡. Due to Exponential production times and inter-demand arrival times assumptions, the structure 
of the problem is Markovian. Markov property refers to the memoryless property of a stochastic process. Hence, the system 
state definition is applied uniformly across the time dimension. Consequently, the state space is: 
 𝑆𝑆 = ቐቀ൫𝑥ଵ. … . 𝑥|ூ|൯. ൫𝑦ଵ. … .𝑦|ூ|൯ቁ |𝑥௜ ∈ ℤ. 𝑖 ∈ 𝐼.෍𝑦௜ ≤|ூ|

௜ୀଵ 𝑠ቑ (1)

To streamline the state representation, we introduce 𝒛 = (𝒙,𝒚)  where 𝒙 = ൫𝑥ଵ, … , 𝑥|ூ|൯  and 𝒚 = (𝑦ଵ, … ,𝑦|ூ|)  as |𝐼| -
dimensional vectors. Through the Memoryless property, it is possible to only focus on an occurrence of either a production 
completion on a line or a demand arrival. As soon as any of these random events occur, the control indicates whether to keep 
the number of active lines at the same level or to activate more. The production decision is expressed as 𝑢௜, 𝑖 = 1, … , |𝐼|, 
representing the number of active resources on which item 𝑖 is produced. As preemption is not allowed, the admissible 
decisions for each state 𝒛 ∈ 𝑆𝑆 satisfy the following: 

𝑢௜ ∈ ൝𝑦௜ .𝑦௜ + 1. … .൭𝑠 −෍𝑦௜ᇲ௜ᇲஷ௜ ൱ൡ . ∀𝑖 ∈ 𝐼.෍𝑦௜ ≤|ூ|
௜ୀଵ 𝑠 (2)

Because production decision promptly alters the system state, to use a simple form, we define a new vector 𝒖 =൫𝑢ଵ, … ,𝑢|ூ|൯ which is a |𝐼|-dimensional vector. Hence, the new state will be (𝒙,𝒖) =  ቀ൫𝑥ଵ, … , 𝑥|ூ|൯, ൫𝑢ଵ, … ,𝑢|ூ|൯ቁ.  
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Under a control policy 𝜋, the original problem transforms into a production-inventory control problem in continuous time. 
Utilizing the uniformization technique introduced by Lippman (1975), we derive a discrete-time counterpart for this problem. 
The uniform transition rate can be defined as the maximum transition rate that the system can observe at any time and 
calculated as 𝑣 = 𝑠𝑚𝑎𝑥௜ ሼ𝜇௜ሽ+ ∑ 𝜆௜|ூ|௜ୀଵ .  

We now define the random events for the MDP formulation. The system's state can be altered by two distinct types of events. 
These are a production completion of an item in a production resource, and a demand arrival for an item. We furthermore 
define a new vector; 𝒆𝒊, to simplify the transitions between the states. 𝒆𝒊 is a unit vector of dimension |𝐼| with a value of 1 at 
position 𝑖. 
Building upon the provided definitions, the optimal cost-to-go function for the equivalent discrete-time problem is expressed 
in equation (3). As it is stated by Bertsekas (2000), an optimal control policy 𝜋∗ exists and can be obtained through the solution 
of the below cost-to-go function. 

𝐽(𝒙.𝒚) = 1𝑣 + 𝛼 𝑚𝑖𝑛௬೔ஸ௨೔ஸ(௦ି∑ ௬೔ᇲ)೔ᇲಯ೔∀௜ ቐ෍ℎ௜𝑥௜ା|ூ|
௜ୀଵ + ෍𝑏௜𝑥௜ି|ூ|

௜ୀଵ +  ቌ𝑠𝑚𝑎𝑥௜ ሼ𝜇௜ሽ −෍𝑢௜𝜇௜|ூ|
௜ୀଵ ቍ 𝐽(𝒙.𝒖)

+ ෍𝑇௉೔(𝒙.𝒖) + ෍𝑇஽೔(𝒙.𝒖)|ூ|
௜ୀଵ  |ூ|

௜ୀଵ ቑ 

(3)

where 𝑥௜ା = 𝑚𝑎𝑥(0,𝑥௜) 𝑥௜ି = −𝑚𝑖𝑛(0, 𝑥௜) 𝑇௉೔(𝒙,𝒖) =  𝑢௜𝜇௜𝑚𝑖𝑛 ቄ𝐽(𝒙 + 𝒆𝒊,𝒖 − 𝒆𝒊),𝑚𝑖𝑛௜ᇲఢ ூ ሼ𝒙 + 𝒆𝒊,𝒖 − 𝒆𝒊 + 𝒆𝒊ᇲሽቅ 𝑇஽೔(𝒙,𝒖) = 𝜆௜𝐽(𝑥 − 𝒆𝒊,𝒖) 

Eq. (3) minimizes the expected long-run discounted system cost by deciding how many production resources should produce 
which item at any given state. In (3), apart from the holding cost, a backordering cost is incurred for backlogged items. The 
next term is ቀ𝑠𝑚𝑎𝑥௜ ሼ𝜇௜ሽ − ∑ 𝑢௜𝜇௜|ூ|௜ୀଵ ቁ 𝐽(𝒙,𝒖) represents fictitious self-transitions introduced by uniformization. In this self-
transition term, the state is denoted as (𝒙,𝒖) instead of (𝒙,𝒚) because the production decision 𝒖 instantaneously modifies 𝒚. 
The following operators are 𝑇௉೔(𝒙,𝒖) and 𝑇஽೔(𝒙,𝒖) are for production and demand-related transitions, respectively. 𝑇௉೔(𝒙,𝒖) 
represents the transitions initiated by the completion of production for item 𝑖. The minimization operation is defined with a 
rate  𝑢௜𝜇௜, signifying the decision made at the time of production completion for item i: first, the inventory is replenished, and 
then a determination is made regarding the item to be produced on the resource that has just finished processing. The operator 𝑇஽೔(𝒙,𝒖) corresponds to the transitions triggered by demand arrivals for item 𝑖: inventory of item 𝑖 is depleted by one when 
each demand arrives. As seen in (3), there is neither a lower nor an upper limit for the inventory levels. Hence, the solutions 
are based on a truncated state space of 𝒙 = ൫𝑥ଵ, … , 𝑥|ூ|൯ such that the optimal production policy and the optimal long-run 
average cost of the system are unaffected. 

Even though the developed dynamic programming (DP) formulation is presented under the discounted cost criterion, we 
derive numerical results under the average system cost criterion. This approach is adopted to circumvent the need to determine 
the discount parameter α and to render the results independent of the initial state. To compute the average system cost, we 
employ a value iteration algorithm on the DP formulation provided in equation (3), setting the discount rate to zero. At each 
stage, we calculate the value of the cost-to-go function and divide it by the completed number of stages. To stop the value 
iteration algorithm, a termination criterion is used. The algorithm continues to run until the absolute value of the difference 
between the average costs of all states is smaller than epsilon at any step. The algorithm is coded in MATLAB. Pseudo-code 
of the value iteration algorithm is given in Fig. 1 where k is for the current stage/step.  

Here it should be noted that optimal production control requires a decision at each possible state of the system, and this poses 
a challenge in terms of computation time due to the nature of the value iteration algorithm. The number of equations increases 
exponentially in the number of products and production resources. As a result, we can solve the value iteration algorithm for 
small problem instances in reasonable times.  
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Assign an arbitrary value for 𝐽଴ 𝑘 =  0 𝑊ℎ𝑖𝑙𝑒 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) 𝑘 =  𝑘 + 1 
Repeat for each state: 

Repeat for each possible production decision: 
Calculate 𝐽௞௖௔௡ௗ(𝐽௞ିଵ, 𝑠𝑡𝑎𝑡𝑒(𝑢)) 𝐽௞(𝑠𝑡𝑎𝑡𝑒) = 𝑚𝑖𝑛௨ ( 𝐽௞௖௔௡ௗ(𝐽௞ିଵ, 𝑠𝑡𝑎𝑡𝑒(𝑢))) 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥௦௧௔௧௘∈ௌௌ   𝑚𝑎𝑥௦௧௔௧௘ᇲ∈ௌௌ/ሼ௦௧௔௧௘ሽ ቤ𝐽௞ (𝑠𝑡𝑎𝑡𝑒)𝑘 −  𝐽௞(𝑠𝑡𝑎𝑡𝑒ᇱ)𝑘 ቤ 𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
Fig. 1. Pseudo-code of the value iteration algorithm 

In the following of this section, we examine the optimal policy structure for a multi-item MTS problem with backorders where |𝐼| = 2 , 𝑠 = 2 , (𝜆ଵ, 𝜆ଶ) = (1.40,0.35) , (𝜇ଵ,𝜇ଶ) = (2.0,0.5) , (ℎଵ,ℎଶ) = (1.0,0.5) , (𝑏ଵ, 𝑏ଶ) = (20,10) . When both 
production lines are idle, Table 3 presents a representation of all possible production decisions and Figure 2 illustrates optimal 
production policy. The optimal average system cost is calculated as 7.12. For the net inventory levels (6,6) in Fig. 2, we see 
that production ends and does not start when the inventory level of item 1 diminishes. At first glance, this might appear 
counterintuitive, as the stockout risk typically rises when the inventory level decreases for any product. However, this behavior 
is a consequence of the non-preemptive production assumption. In this context, both production lines remain idle and can be 
activated immediately when needed. For example, for the net inventory levels (3,6) in Figure 2, if a demand occurs for product 
1, the optimal policy produces product 1 on both lines. However, if a demand occurs for product 2, the optimal policy produces 
product 1 on only one line. When the inventory of product 2 is slightly reduced, product 2 is also produced. If the inventory 
level of product 1 is low regardless of the inventory level of product 2, the optimal policy produces product 1 at both 
production resources. If the inventory level of product 1 is medium and the inventory level of product 2 is low, the optimal 
policy switches a resource to produce product 2. If the inventory level of product 1 is medium but the inventory level of 
product 2 is not low, the optimal policy turns off the production lines and keeps them idle to start the production immediately 
for any product if needed. Only if the inventory level for product 1 increases further, this option is given up and the production 
for product 2 starts at both resources. 

The optimality of base stock policies is established solely for preemptive single-server MTS systems comprising two items, 
identical production rates, backorders, and discounted cost, as demonstrated by Ha (1997c). The findings of Ha (1997c) are 
expanded upon by De Vericourt et al. (2000), revealing that the Myopic (T) priority policy is optimal for states when the 
product with a smaller  𝑏௜𝜇௜  index experiences backorders. As of now, there is no knowledge of additional implications 
regarding the structure of optimal production policies for the backordering case. 

Table 3  
Production control representation of the optimal policy 

Decision Produce nothing Produce item 1 at 
both lines 

Produce only item 
1 at a time 

Produce item 1 
and item 2 

Produce only item 
2 at a line 

Produce item 2 at 
both lines 

Label 0 1 2 3 4 5 
Color       

 

 

Fig. 2. Optimal production policy for backordering case 
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3.2. Lost Sales Case 
 

In this section, we consider the same problem but this time shortages are assumed to be lost and lost sales cost 𝑐௜ is incurred 
for each unsatisfied demand of product 𝑖. In this case, the state space is expressed as in (4). In (4), the lower bound of the state 
variable 𝑥௜ is zero due to the lost sales assumption. 

𝑆𝑆 = ቐቀ൫𝑥ଵ. … . 𝑥|ூ|൯. ൫𝑦ଵ. … .𝑦|ூ|൯ቁ |𝑥௜ ∈ ℤା ∪ {0}. 𝑖 ∈ 𝐼.෍𝑦௜ ≤|ூ|
௜ୀଵ 𝑠ቑ (4)

The structure of Eq. (2) written for the backordering case holds for the lost sales case. However, the cost-to-go function in 
Eq. (3) should be modified. The lost sales version of Equation (3) is given in Equation (5) where lost sales cost is incurred for 
the shortages. In 𝑇஽೔(𝒙,𝒖), if there is an inventory on hand (𝑥௜ > 0), the inventory of item 𝑖 is depleted by one unit when 
demand arrives, otherwise (𝑥௜ = 0) it is lost, and the current state variables do not alter.  

We again obtain the numerical results under the average system cost criterion to avoid determining discount parameter 𝛼 and 
to make the results independent from the initial state. To calculate the average system cost, we apply the same value iteration 
algorithm whose pseudo-code is presented in Fig. 1. 

𝐽(𝒙.𝒚) = 1𝑣 + 𝛼 𝑚𝑖𝑛௬೔ஸ௨೔ஸ(௦ି∑ ௬೔ᇲ)೔ᇲಯ೔∀௜ ቐ෍ℎ௜𝑥௜|ூ|
௜ୀଵ +  ቌ𝑠𝑚𝑎𝑥௜ {𝜇௜} −෍𝑢௜𝜇௜|ூ|

௜ୀଵ ቍ 𝐽(𝒙.𝒖) + ෍𝑇௉೔(𝒙.𝒖) + ෍𝑇஽೔(𝒙.𝒖)|ூ|
௜ୀଵ  |ூ|

௜ୀଵ ቑ (5)

where 𝑇௉೔(𝒙,𝒖) =  𝑢௜𝜇௜𝑚𝑖𝑛 ቄ𝐽(𝒙 + 𝒆𝒊,𝒖 − 𝒆𝒊),𝑚𝑖𝑛௜ᇲఢ ூ {𝒙 + 𝒆𝒊,𝒖 − 𝒆𝒊 + 𝒆𝒊ᇲ}ቅ 
𝑇஽೔(𝒙,𝒖) = ൜ 𝜆௜𝐽(𝒙 − 𝒆𝒊,𝒖) 𝑥௜ > 0𝑐௜ + 𝐽(𝒙,𝒖) 𝑥௜ = 0 

We now investigate the structure of the optimal production policy for a multi-item MTS problem with lost sales where |𝐼| =2 , 𝑠 = 2 , (𝜆ଵ, 𝜆ଶ) = (1.40,0.35) , (𝜇ଵ,𝜇ଶ) = (2.0,0.5) , (ℎଵ,ℎଶ) = (1.0,0.5) , (𝑏ଵ, 𝑏ଶ) = (20,10) . Table 3 presents a 
representation of all possible production decisions and Figure 3 illustrates optimal production policy when all production lines 
are idle. The optimal average system cost is calculated as 5.47. As seen in Figure 3, the optimal production decisions behave 
as in the backordering case, but the inventory level terminates at the origin. 

 

Fig. 3. Optimal production policy for lost sales case 

In the context of lost sales multi-item MTS systems, various studies explore different combinations of idleness and scheduling 
policies, assessing their performance against the optimal one (Veatch and Wein, 1996). Similar to the backordering case, there 
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is no existing knowledge of additional implications concerning the structure of optimal production policies for the lost sales 
scenario. 

4. Proposed Heuristic Production Policies  
 

In this section, we introduce new eight scheduling policies for the make-to-stock (MTS) systems with a multi-production 
resource for both backordering and lost sales cases. They are explained in detail in Sections 4.1 to 4.5. 

As stated in the literature review section, where a single item is produced and production is made from only one source, the 
only decision is when to turn production on or off and the base stock policy (BSP) is optimal. Hence, in the multi-product 
version of that problem, considering the single production resource, heuristic production policies in the literature employ 
BSPs as idleness policies. However, if there exists a single product but multiple production resources at the same time, the 
optimal policy is a state-dependent base-stock type (Bulut & Fadıloğlu, 2011). As we extend the multi-item literature to a 
multi-resource case, we benefit from our pre-proposed policy for a single-item multi-production resource system. However, 
the BSP is near-optimal for a single-item multi-production resource system without start-up costs in many instances. 
Therefore, we again employ BSPs to determine when to start or stop production even in a multi-production resource case 
when the start-up costs are negligible. 

If the inventory positions of all products are equal to the base stock levels (maximum inventory levels), production is not 
activated in any production resource. If only one product’s inventory position is lower than its maximum stock level and the 
others are at their base stock levels, that product is selected to produce on an idle line. If there are at least two products whose 
inventory positions are lower than their base stock levels, one is selected to produce according to a scheduling rule, and then 
an idle production resource is activated to produce this selected product. If all production resources are busy, the new 
production starts after production is completed at a resource. Until the inventory positions of all products reach their maximum 
inventory levels, the selection rule repeats based on all the above-mentioned possible situations. Thus, according to the 
scheduling rule, the same product can be produced in more than one line at any time 𝑡. 
Let 𝑜గ(𝒙,𝒚) ∈ {1,2, … , |𝐼|} represent the selected product to produce by scheduling policy 𝜋 when the inventory level vector 
is 𝒙 and the vector of active production resources is 𝒚. Therefore, we can write scheduling policy 𝜋 as an index policy given 
in (6). 

𝑜గ(𝒙.𝒚) = 𝑎𝑟𝑔𝑚𝑎𝑥௜ 𝐺௜గ(𝒙.𝒚) (6)

where the 𝐺௜గ(𝒙,𝒚), 1 ≤ 𝑖 ≤ |𝐼|, are index functions 

4.1. Extension of 𝑏𝜇 rule (B2) 
 

The 𝑏𝜇 rule (B1) is a static policy that chooses a product based on the number of backorders and index 𝑏௜𝜇௜, where 𝑏௜ is the 
backordering cost rate of product 𝑖 and 𝜇௜ is the production rate of a product 𝑖.  
We here extend the 𝑏𝜇 rule by considering the number of active production resources for both backordering and lost sales 
cases. For the backordering case, we change the production rate 𝜇௜ with (𝑦௜ + 1)𝜇௜ . Turning to the lost sales case, we multiply (𝑦௜ + 1)𝜇௜  with a cost rate for a stock-out, 𝑐௜𝜆௜ . For the extended 𝑏𝜇  rule (B2), the index functions 𝐺௜(𝒙,𝒚)  for the 
backordering and lost sales cases are given in Eq. (7) and Eq. (8), respectively. 

𝐺௜(𝒙.𝒚) = ቊ0 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ < 0 𝑎𝑛𝑑 𝑥௜ ≥ 0𝑏௜(𝑦௜ + 1)𝜇௜ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (7)

𝐺௜(𝒙.𝒚) = ቊ0 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ = 0 𝑎𝑛𝑑 𝑥௜ > 0𝑐௜𝜆௜(𝑦௜ + 1)𝜇௜ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (8)

4.2. Extension of 𝑏𝜇/ℎ𝜇 rule (BH2) 
 

In the 𝑏𝜇/ℎ𝜇 rule (BH1), when at least two products have backorders, the product which has the biggest value of the index 𝑏௜𝜇௜ is chosen (given priority) to produce where 𝑏௜ is the backordering cost rate and 𝜇௜ is the production rate for product 𝑖. 
When all the products have no backorder, but their inventory levels are less than their base-stock (produce-up-to) levels, the 
product which has the smallest value of the index ℎ௜𝜇௜ is chosen to produce where ℎ௜ is the holding cost rate for product 𝑖. 
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We extend the 𝑏𝜇/ℎ𝜇 rule (BH1) by considering the number of active production resources. For the backordering case, we 
change the production rate 𝜇௜ with (𝑦௜ + 1)𝜇௜ . For the lost sales case, we employ the cost rate for a stock-out 𝑐௜𝜆௜ instead of 𝑏௜. For the extended 𝑏𝜇/ℎ𝜇 rule (BH2), the index functions 𝐺௜(𝒙,𝒚) for the backordering and lost sales cases are given in (9) 
and (10), respectively. 

𝐺௜(𝒙.𝒚) = ቐ−ℎ௜(𝑦௜ + 1)𝜇௜ 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ ≥ 0 𝑎𝑛𝑑 𝑥௜ ≥ 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ < 0 𝑎𝑛𝑑 𝑥௜ ≥ 0𝑏௜(𝑦௜ + 1)𝜇௜  𝑥௜ < 0  (91)

𝐺௜(𝒙.𝒚) = ቐ−ℎ௜(𝑦௜ + 1)𝜇௜ 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ > 0 𝑎𝑛𝑑 𝑥௜ > 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ = 0 𝑎𝑛𝑑 𝑥௜ > 0𝑐௜𝜆௜(𝑦௜ + 1)𝜇௜  𝑥௜ = 0  (10)

4.3. Extensions of switching rule (S2, S3, and S4) 
 

In the switching rule (S1), it always awards higher priority to backordered products. Among the products that are backordered, 
priority is given to the one with the largest 𝑏௜𝜇௜ . If no product is backordered, priority is given to the one with the 
largest 𝑏௜𝜇௜(1 − 𝑥௜ 𝐶𝐿௜⁄ )  where 𝐶𝐿௜  denotes the base stock level of product 𝑖  and (1 − 𝑥௜ 𝐶𝐿௜⁄ )  denotes the proportion of 
unfilled base stock. The larger (1 − 𝑥௜ 𝐶𝐿௜⁄ ) is, the closer a product will be to being backordered.  

We extend the switching rule (S1) in three ways. In S2, for the backordering case, we first change the production rate 𝜇௜ with (𝑦௜ + 1)𝜇௜ in the original switching rule. For the lost sales case, we multiply (𝑦௜ + 1)𝜇௜ with a cost rate for a stock-out, 𝑐௜𝜆௜. 
For the extended switching rule (S2), the index functions 𝐺௜(𝒙,𝒚) for the backordering and lost sales cases are given in (11) 
and (12), respectively. 

𝐺௜(𝒙.𝒚) = ቐ𝑏௜(𝑦௜ + 1)𝜇௜(1− 𝑥௜ 𝐶𝐿௜⁄ ) 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ ≥ 0 𝑎𝑛𝑑 𝑥௜ ≥ 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ < 0 𝑎𝑛𝑑 𝑥௜ ≥ 0𝑏௜(𝑦௜ + 1)𝜇௜  𝑥௜ < 0  (11)

𝐺௜(𝒙.𝒚) = ቐ𝑐௜𝜆௜(𝑦௜ + 1)𝜇௜(1 − 𝑥௜ 𝐶𝐿௜⁄ ) 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ > 0 𝑎𝑛𝑑 𝑥௜ > 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ = 0 𝑎𝑛𝑑 𝑥௜ > 0𝑐௜𝜆௜(𝑦௜ + 1)𝜇௜  𝑥௜ = 0  (12)

In the second alternative of the extended switching rule (S3), we again use the information of active production resources by 
changing the inventory level (𝑥௜)  with the inventory position (𝑥௜ + 𝑦௜) . For S3, the index functions 𝐺௜(𝒙,𝒚)  for the 
backordering and lost sales cases are given in Eq. (13) and Eq. (14), respectively. 

𝐺௜(𝒙.𝒚) = ቐ𝑏௜𝜇௜(1 − (𝑥௜ + 𝑦௜) 𝐶𝐿௜⁄ ) 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ ≥ 0 𝑎𝑛𝑑 𝑥௜ ≥ 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ < 0 𝑎𝑛𝑑 𝑥௜ ≥ 0𝑏௜𝜇௜  𝑥௜ < 0  (13)

𝐺௜(𝒙.𝒚) = ቐ𝑐௜𝜆௜𝜇௜(1 − (𝑥௜ + 𝑦௜) 𝐶𝐿௜⁄ ) 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ > 0 𝑎𝑛𝑑 𝑥௜ > 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ = 0 𝑎𝑛𝑑 𝑥௜ > 0𝑐௜𝜆௜𝜇௜  𝑥௜ = 0  (14)

Finally, we employ our changes in S2 and S3 together in the third alternative of the extended switching rule (S4). For S4, the 
index functions 𝐺௜(𝒙,𝒚) for the backordering and lost sales cases are given in (15) and (16), respectively. 
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𝐺௜(𝒙.𝒚) = ቐ𝑏௜(𝑦௜ + 1)𝜇௜(1− (𝑥௜ + 𝑦௜) 𝐶𝐿௜⁄ ) 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ ≥ 0 𝑎𝑛𝑑 𝑥௜ ≥ 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ < 0 𝑎𝑛𝑑 𝑥௜ ≥ 0𝑏௜(𝑦௜ + 1)𝜇௜  𝑥௜ < 0  (15)

𝐺௜(𝒙.𝒚) = ቐ𝑐௜𝜆௜(𝑦௜ + 1)𝜇௜(1 − (𝑥௜ + 𝑦௜) 𝐶𝐿௜⁄ ) 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ > 0 𝑎𝑛𝑑 𝑥௜ > 00 𝑖𝑓 𝑚𝑖𝑛൫𝑥௝൯ = 0 𝑎𝑛𝑑 𝑥௜ > 0𝑐௜𝜆௜(𝑦௜ + 1)𝜇௜  𝑥௜ = 0  (16)

4.4. Extensions of myopic rules (MP2 and MT2) 
 

Myopic (P) policy (MP1) is related to the fully myopic policy of using the cost rate after one transition, which is the 𝑏𝜇/ℎ𝜇 
rule (BH1). In the BH1, if we produce product 𝑖, and ignore the effects of demands, the expected instantaneous rate of change 
in the cost is just ℎ௜ if 𝑥௜ ≥ 0  and −𝑏௜ if 𝑥௜ < 0 . The policy chooses 𝑖 to minimize this cost-change rate; it chooses the largest 
decrease if there are backorders and the smallest increase otherwise. 

Myopic (P) proposed by Zipkin (1995), considers the expected cost rate after one production time. It can be viewed as a policy 
if we represent the resource by a Poisson process that is always on, with a decision made at the end of each processing time 
as to whether to load an item or run empty. According to the Myopic (P), if a product is currently being produced, the next 
product is selected to be produced when the production of that product is completed. Production cannot be interrupted; hence 
this policy has a non-preemptive nature. Myopic (P) looks ahead one production time and calculates the cost difference 
between having one more unit of product 𝑖 and not having it. Then, it allocates the production capacity to the product that has 
the smallest cost increment (if on-hand inventory increases) or the biggest cost decrement (if the number of backorders 
decreases). 

Let 𝑃௜ଵ,𝑃௜ଶ, … ,𝑃௜௬೔ାଵ be i.i.d. exponential random variables with rate 𝜇௜. 𝐷௜(𝑃௬೔௠௜௡) is the number of demands of product 𝑖 in 
the interval [0,𝑃௬೔௠௜௡] where 𝑃௬೔௠௜௡ = 𝑚𝑖 𝑛൫𝑃௜ଵ,𝑃௜ଶ, … ,𝑃௜௬೔ାଵ൯ is exponential with a rate (𝑦௜ + 1)𝜇௜.  
If the current inventory level is 𝑥௜ and the number of active production resources is 𝑦௜, the expected cost rate of product 𝑖 after 
a minimum of (𝑦௜ + 1) production times is given by 

𝑔௜(𝑥௜ .𝑦௜) = 𝐸[𝑏௜[𝐷௜൫𝑃௬೔௠௜௡൯ − 𝑥௜]ା +  ℎ௜[𝑥௜ − 𝐷௜(𝑃௬೔௠௜௡)]ା] (17)

If the current inventory level is (𝑥௜ + 1), the expected cost rate of product 𝑖 after minimum of production times is 𝑔௜(𝑥௜ +1,𝑦௜). Thus, ∆𝑔௜(𝑥௜ , 𝑦௜) = 𝑔௜(𝑥௜ + 1, 𝑦௜) − 𝑔௜(𝑥௜ ,𝑦௜) is the rate at which having one more product 𝑖 increases (or decreases) 
the instantaneous expected cost. The myopic heuristic then selects the product 𝑖 with the maximum −(𝑦௜ + 1)𝜇௜∆𝑔௜(𝑥௜ ,𝑦௜). 
A simple calculation reveals that 

∆𝑔௜(𝑥୧.𝑦௜) = −𝑏௜𝑃൫𝐷௜൫𝑃௬೔௠௜௡൯ > 𝑥௜൯ + ℎ௜𝑃൫𝐷௜(𝑃௬೔௠௜௡) ≤ 𝑥௜൯ (182)

Each 𝐷௜(𝑃௬೔௠௜௡)  has a geometric distribution with parameter (1 − 𝑝௜) = 𝜆௜ (𝜆௜ + (𝑦௜ + 1)𝜇௜)⁄  . Then, for the backordering 
case, a formal definition of the function 𝐺௜(𝒙,𝒚) for the extended Myopic (P) rule (MP2) is given by 

𝐺௜(𝒙.𝒚) = ቊ𝑏௜(𝑦௜ + 1)𝜇௜ − (𝑏௜ + ℎ௜)(𝑦௜ + 1)𝜇௜𝑃൫𝐷௜(𝑃௬೔௠௜௡) ≤ 𝑥௜൯ 𝑖𝑓 𝑥௜ ≥ 0𝑏௜(𝑦௜ + 1)𝜇௜ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (19)

where 𝑃൫𝐷௜(𝑃௬೔௠௜௡) ≤ 𝑥௜൯ = 1 − (𝜆௜ (𝜆௜ + (𝑦௜ + 1)𝜇௜))⁄ ଵା௫೔ 
Now, consider 𝑇௜ଵ,𝑇௜ଶ, … ,𝑇௜௬೔ାଵ be i.i.d. exponential random variables with rate (𝜇௜ − 𝜆௜). 𝐷௜(𝑇௬೔௠௜௡) is the number of demands 
of product 𝑖 in the interval [0,𝑇௬೔௠௜௡] where 𝑇௬೔௠௜௡ =  𝑚𝑖 𝑛൫𝑇௜ଵ,𝑇௜ଶ, … ,𝑇௜௬೔ାଵ൯ is exponential with a rate ((𝑦௜ + 1)𝜇௜ − 𝜆௜). For 



  

 

580

the backordering case, the mathematical definition of the functions 𝐺௜(𝒙,𝒚) for the extended Myopic (T) policy (MT2) is 
given by 

𝐺௜(𝒙.𝒚) = ቊ𝑏௜(𝑦௜ + 1)𝜇௜ − (𝑏௜ + ℎ௜)(𝑦௜ + 1)𝜇௜𝑃൫𝐷௜(𝑇௬೔௠௜௡) ≤ 𝑥௜൯ 𝑖𝑓 𝑥௜ ≥ 0𝑏௜(𝑦௜ + 1)𝜇௜ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20)

where 𝑃൫𝐷௜(𝑇௬೔௠௜௡) ≤ 𝑥௜൯ = 1 − (𝜆௜ ((𝑦௜ + 1)𝜇௜⁄ )ଵା௫೔ 
Turning to the lost sales case, the expected cost rate of product 𝑖 after a minimum of (𝑦௜ + 1) production times is given by 

𝑔௜(𝑥௜ .𝑦௜) = 𝐸[𝑐௜λ௜[𝐷௜൫𝑃௬೔௠௜௡൯ − 𝑥௜]ା +  ℎ௜[𝑥௜ − 𝐷௜(𝑃௬೔௠௜௡)]ା] (21)

∆𝑔௜(𝑥୧.𝑦୧) = −𝑐௜𝜆௜𝑝௜𝑞௜௫೔ + ℎ୧𝑃൫𝐷௜൫𝑃௬೔௠௜௡൯ ≤ 𝑥௜൯ (22)

where 𝑝௜ = (𝑦௜ + 1)𝜇௜ (𝜆௜ + (𝑦௜ + 1)𝜇௜)⁄ , 𝑞௜ = 1 − 𝑝௜, 𝑃൫𝐷௜൫𝑃௬೔௠௜௡൯ ≤ 𝑥௜൯ = 1 − 𝑞௜ଵା௫೔ 
The mathematical definition of the functions 𝐺௜(𝒙,𝒚) for the extended Myopic (P) policy (MP2) for the lost sales case is 
given by 

𝐺௜(𝒙.𝒚) = ቊ𝑐௜𝜆௜𝑝௜𝑞௜௫೔(𝑦௜ + 1)𝜇௜ − ℎ୧𝑃൫𝐷௜൫𝑃௬೔௠௜௡൯ ≤ 𝑥௜൯ 𝑖𝑓 𝑥௜ ≥ 0𝑐௜𝜆௜𝑝௜𝑞௜௫೔(𝑦௜ + 1)𝜇௜ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (23)

where 𝑝௜ = (𝑦௜ + 1)𝜇௜ (𝜆௜ + (𝑦௜ + 1)𝜇௜)⁄ , 𝑞௜ = 1 − 𝑝௜,  𝑃൫𝐷௜൫𝑃௬೔௠௜௡൯ ≤ 𝑥௜൯ = 1 − 𝑞௜ଵା௫೔   
The mathematical definition of the functions 𝐺௜(𝒙,𝒚) for the extended Myopic (T) policy (MT2) for the lost sales case is 
given in  

𝐺௜(𝒙.𝒚) = ቊ𝑐௜𝜆௜𝑝௜𝑞௜௫೔(𝑦௜ + 1)𝜇௜ − ℎ୧𝑃൫𝐷௜൫𝑇௬೔௠௜௡൯ ≤ 𝑥௜൯ 𝑖𝑓 𝑥௜ ≥ 0𝑐௜𝜆௜𝑝௜𝑞௜௫೔(𝑦௜ + 1)𝜇௜ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (24)

where 𝑝௜ = ((𝑦௜ + 1)𝜇௜ − 𝜆௜) (𝑦௜ + 1)𝜇௜⁄ , 𝑞௜ = 1 − 𝑝௜,  𝑃൫𝐷௜൫𝑇௬೔௠௜௡൯ ≤ 𝑥௜൯ = 1 − 𝑞௜ଵା௫೔   
4.5. Extension of rolling horizon scheduling rule (RH2) 
 

For the systems with two different products, the rolling horizon scheduling rule makes a choice about which product will be 
produced first by looking at the expected costs of schedules. The expected cost of a schedule is described as the total expected 
cost accrued during the duration required for producing both items. To illustrate this concept, consider a hypothetical system 
involving two products identified as 𝑖 and 𝑗. If the expected cost associated with the schedule where product 𝑖 is produced 
first is lower than the expected cost linked to the schedule where product 𝑗 is produced first, prioritizing the production of 
product 𝑖 might be more pressing than that of product 𝑗. Therefore, product 𝑖 is chosen to produce first. According to the rule, 
after the production of product 𝑖 is completed, the production of product 𝑗 begins immediately in the production resource. 
Thus, the production schedule (𝑖, 𝑗) is selected for this example. 

For the multi-production resource case, the mathematical expression of ∆𝑔௜௝(𝑥௜ ,𝑦௜) is calculated as in Eq. (25) when shortages 
are backordered. 
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∆𝑔௜௝(𝑥௜ .𝑦௜) = 𝑃(𝐷௜(𝑃௬೔௠௜௡) > 𝑥௜)𝑏௜𝐸[𝑃௬ೕ௠௜௡] 
−෍ ෍ 𝑃൫𝐷௜(𝑃௬೔௠௜௡) = 𝑢൯𝑃 ቀ𝐷௜(𝑃௬ೕ௠௜௡) = 𝑤ቁ𝐸[𝑃௬ೕ௠௜௡|𝑤]ℎ௜௫೔ି௨

௪ୀ଴
௫೔
௨ୀ଴  

+෍ ෍ 𝑃൫𝐷௜(𝑃௬೔௠௜௡) = 𝑢൯𝑃 ቀ𝐷௜(𝑃௬ೕ௠௜௡) = 𝑤ቁ𝐸[𝑃௬ೕ௠௜௡|𝑤]ቆ−ℎ௜ ൬𝑥௜ − 𝑢 + 1𝑤 + 1 ൰ + 𝑏௜ ൬𝑤 − 𝑥௜ + 𝑢𝑤 + 1 ൰ቇஶ
௪ୀ௫೔ି௨ାଵ

௫೔
௨ୀ଴  , 

(25)

When shortages are lost, the mathematical expression of ∆𝑔௜௝(𝑥௜ ,𝑦௜) is calculated as in (26). 

𝑔௜௝(𝑥௜ .𝑦௜) = 𝑃(𝐷௜(𝑃௬೔௠௜௡) > 𝑥௜)𝑐௜𝜆௜𝐸[𝑃௬ೕ௠௜௡] 
−෍ ෍ 𝑃൫𝐷௜(𝑃௬೔௠௜௡) = 𝑢൯𝑃 ቀ𝐷௜(𝑃௬ೕ௠௜௡) = 𝑤ቁ𝐸[𝑃௬ೕ௠௜௡|𝑤]ℎ௜௫೔ି௨

௪ୀ଴
௫೔
௨ୀ଴  

+෍ ෍ 𝑃൫𝐷௜(𝑃௬೔௠௜௡) = 𝑢൯𝑃 ቀ𝐷௜(𝑃௬ೕ௠௜௡) = 𝑤ቁ𝐸[𝑃௬ೕ௠௜௡|𝑤]ቆ−ℎ௜ ൬𝑥௜ − 𝑢 + 1𝑤 + 1 ൰ + 𝑐௜𝜆௜ ൬𝑤 − 𝑥௜ + 𝑢𝑤 + 1 ൰ቇஶ
௪ୀ௫೔ି௨ାଵ

௫೔
௨ୀ଴  

(26)

Considering the presence of Poisson arrivals occurring at a rate 𝜆 takes place over a time period distributed exponentially with 
rate 𝑦𝜇  has a geometric distribution with parameter 𝑝 = 1/(1 +  (𝜆/𝑦𝜇)) , we can compute above probabilities as 𝑃൫𝐷௜(𝑃௬೔௠௜௡) = 𝑢൯ = (1 − 𝑝)௨𝑝 , where 𝑢 ∈ ℕ଴  and 𝑝 = 1/(1 +  (𝜆௜/𝑦௜𝜇௜)) , and 𝑃(𝐷௜(𝑃௬ೕ௠௜௡) = 𝑤)) = (1 − 𝑝)௨𝑝  where 𝑢 ∈ ℕ଴  and 𝑝 = 1/(1 +  (𝜆௜/𝑦௝𝜇௝)) . It is also shown that 𝐸[𝑃௬ೕ௠௜௡|𝑤] = (𝑤 + 1)/(𝜆௜ + 𝑦௝𝜇௝) . The mathematical 
representation of the index functions 𝐺௜(𝒙,𝒚) and 𝐺௝(𝒙,𝒚) for the rolling horizon scheduling rule (RH2) is given by 

𝐺௜(𝒙.𝒚) = ∆𝑔௜௝(𝑥௜ .𝑦௜) 𝐺௝(𝒙.𝒚) = ∆𝑔௝௜൫𝑥௝ .𝑦௜൯ (27)

5. Numerical Study 
 

In this section, we aim to measure the performance of the production policies we develop for multi-resource production 
systems, with numerical experiments. To achieve this goal, we compare those developed policies among themselves and with 
the optimal one, using test beds from the most relevant studies (Perez & Zipkin, 1997; Tiemessen et al., 2017). The numerical 
study contains problem instances with two products sharing the same production resources. In line with the literature, we 
consider identical and non-identical production rates to measure the impact of the difference in production rates on the 
performance of policies. Here, we consider three different combinations for the production rates vector 𝝁 = (𝜇ଵ,𝜇ଶ):  𝝁 =(𝜇,𝜇), 𝝁 = (4𝜇,𝜇), and 𝝁 = (𝜇, 4𝜇). The biggest distinction between our test environment and theirs: we allow multiple 
production resources. 

For each problem instance, optimal long-run average costs are obtained by implementing the value iteration algorithm to the 
dynamic programming formulation. All results for the heuristic policies are obtained by computer simulation. They are 
modeled using ARENA Simulation Software. We determine the best base-stock levels through a direct search, evaluating each 
candidate policy by simulation. Our problem is a steady-state simulation model which has no natural termination time. 
However, we define a stopping criterion based on a certain number of events occurring in the system, revealing stable statistics. 
We consider a single replication and define a counter variable to keep a count of the number of times the production resource 
has seized an entity. When the terminating condition is satisfied (when the counter variable reaches a specified number), the 
replication is stopped. Lastly, the long-run average system cost is collected given the base stock level of each product. Fig. 4 
shows an example of the average cost as a function of the counter variable. We start collecting a steady-state statistic after the 
counter variable reaches 8 million for the backordering case and 3 million for the lost sales cases, in which two-digit accuracy 
in the decimal part is obtained. 
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Fig. 4. Average cost as a function of event occurrence 

This section reports the results of a numerical study comparing the heuristic policies and optimal policies. In our problem 
instances, we consider a production facility producing two different products. We assume that ఒభ௦ఓభ = ఒమ௦ఓమ = ఘଶ, i.e., 𝜌ଵ = 𝜌ଶ =ఘଶ. The inventory holding cost for product 1 consistently remains at one. The ratios 𝑏ଵ/ℎଵ (or 𝑐ଵ/ℎଵ) and 𝑏ଶ/ℎଶ (or 𝑐ଶ/ℎଶ) are 
equal to the common value 𝑏/ℎ (or 𝑐/ℎ), so cost asymmetry is measured by the ratio ℎଶ/ℎଵ. Product 2 always has the lowest 
costs, so ௛మ௛భ ≤ 1.  Three settings for the production rates vector 𝝁 are examined: 𝑖. 𝜇ଵ = 𝜇ଶ. 𝑖𝑖. 𝜇ଵ = 4𝜇ଶ. 𝑖𝑖𝑖.   4𝜇ଵ = 𝜇ଶ. Four 
values of 𝑠 (1,2,3, and 4), two values of 𝜌 (0.7 and 0.6), three of ℎଶ/ℎଵ (0.9,  0.7, and 0.5), and two of 𝑏/ℎ (or 𝑐/ℎ) (20 and 80). In total, 288 problem instances are examined to measure the performance of the various production policies for both lost 
sales and backordering cases. 

In the following of this chapter, for each 𝑠  value, we provide the optimality gap tables when either production rates are 
identical or not. For the backordering case, the optimal expected average costs and The optimality gaps for the developed 
production policies are presented in Tables 4 – 6 when 𝑠 = 1, in Tables 7 – 9 when 𝑠 = 2, in Tables 10 – 12 when 𝑠 = 3, and 
in Tables 13 – 15 when 𝑠 = 4. For the lost sales case, both are shown in Tables 16 – 18 when 𝑠 = 1, in Tables 19 – 21 when 𝑠 = 2, in Tables 22 – 24 when 𝑠 = 3, and in Tables 25 – 27 when 𝑠 = 4. 

For both backordering and lost sales cases, when the number of available production resources equals one and the production 
rates are identical, it is seen that the optimality gap of each heuristic policy is small. Specifically, the minimum optimality 
gaps of the switching rule (S1), myopic rules (MP1 and MT1), and rolling horizon rule (RH1) are no more than 1%, the 
average optimality gaps of these policies are less than 3%, and the maximum optimality gaps are at most 5%. When the 
production rates are non-identical for 𝑠 = 1, the gaps are much higher. It is seen that while the ratio between the production 
rates alters, the optimality gaps increase for all heuristic policies. Nevertheless, S1 and RH1 show better performance 
compared to the others in this respect. Larger optimality gaps are observed in cases where the production time for the 
inexpensive product exceeds that of the expensive product, i.e., 𝜇ଵ = 4𝜇ଶ. This seems to be related to the non-preemptive 
nature.  

When the number of available production resources is more than one and the production rates are identical, we see that the 
optimality gaps of B1, S3, MP2, MT2, and RH2 policies are small. While the average optimality gap remains below 4%, the 
maximum optimality gap does not exceed 8% for these policies. However, notable differences arise for non-identical 
production rates when 𝑠 > 1. However, B1, S3, MT2, and RH2 show better performance in this respect. 

 

6. Conclusion 
 

This study considers a multi-item make-to-stock (MTS) system with parallel production lines for both lost sales and 
backordering environments. Inter-demand and processing times are assumed to be independent Exponential random variables. 
We model this system as an 𝑀/𝑀/𝑠 multi-item MTS queue and aim to minimize average inventory holding and shortage 
costs. For each item of the above-described system, the controller should decide when to (re)start and stop production on the 
lines. We formulate dynamic programming models for both backordering and lost sales cases, exploring the characteristics of 
optimal production policies through the outcomes of the value iteration algorithm. Additionally, we introduce near-optimal 
alternative production policies, comprising idleness and scheduling policies. These new policies extend the multi-server 
framework of those proposed in the literature for multi-item single-server MTS systems. Through an extensive numerical 
study, we assess and compare the performances of these extended heuristic policies. The experimental results demonstrate 
that the majority of the proposed production policies perform near-optimally in various cases. 

This work might be extended by allowing non-identical production resources, batch arrivals, or batch processing settings. If 
the production resources are not identical, the number of active production resources should be tracked for each resource 
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group. For batch demand and arrival cases, random events that occur would cause an increase or decrease in inventory more 
than once. 

A compelling extension would be examining multi-item multi-production resource systems with general production times. In 
that case, the age or time-to-finish information of all ongoing production orders should be tracked. In order to yield 
approximations for the systems having general production times, multi-stage production systems can also be modeled using 
phase-type distributions such as Coxian and Erlang.  
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Appendix 

Table 4 
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (1, 1, 1) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 8.61 5.53 5.53 7.04 7.04 4.37 4.37 4.37 0.00 0.00 0.00 
0.7 0.9 80 12.26 7.36 7.36 11.32 11.32 4.77 4.77 4.77 0.00 0.00 0.00 
0.7 0.7 20 7.53 3.39 3.39 6.92 6.92 3.12 3.12 3.12 0.00 0.00 0.00 
0.7 0.7 80 10.75 5.12 5.12 13.15 13.15 2.74 2.74 2.74 0.00 0.00 0.00 
0.7 0.5 20 6.43 0.75 0.75 7.08 7.08 0.59 0.59 0.59 1.70 0.00 0.00 
0.7 0.5 80 9.14 3.21 3.21 16.84 16.84 2.04 2.04 2.04 2.60 0.00 0.00 
0.6 0.9 20 6.39 3.66 3.66 3.18 3.18 2.79 2.79 2.79 0.00 0.00 0.00 
0.6 0.9 80 9.01 7.11 7.11 9.62 9.62 5.04 5.04 5.04 0.00 0.00 0.00 
0.6 0.7 20 5.64 2.85 2.85 3.00 3.00 2.13 2.13 2.13 0.00 0.00 0.00 
0.6 0.7 80 8 4.81 4.81 10.23 10.23 3.37 3.37 3.37 0.26 0.00 0.00 
0.6 0.5 20 4.87 2.22 2.22 3.16 3.16 2.22 2.22 2.22 0.00 0.00 0.00 
0.6 0.5 80 6.96 2.27 2.27 10.96 10.96 1.51 1.51 1.51 0.07 0.00 0.00 

Minimum 0.75 0.75 3.00 3.00 0.59 0.59 0.59 0.00 0.00 0.00 
Average 4.02 4.02 8.54 8.54 2.89 2.89 2.89 0.39 0.00 0.00 

Maximum 7.36 7.36 16.84 16.84 5.04 5.04 5.04 2.60 0.00 0.00 
 
 
Table 5 
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (1, 4, 1) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.40 7.30 7.30 31.46 31.46 7.30 7.30 7.30 29.59 23.54 6.50 
0.7 0.9 80 13.46 6.53 6.53 69.84 69.84 8.13 8.13 8.13 40.64 29.73 7.33 
0.7 0.7 20 8.38 9.21 9.21 36.31 36.31 9.21 9.21 9.21 34.77 27.00 8.41 
0.7 0.7 80 12.01 8.54 8.54 77.78 77.78 9.00 9.00 9.00 48.56 35.05 8.20 
0.7 0.5 20 7.33 12.11 12.11 43.08 43.08 12.11 12.11 12.11 41.51 33.57 11.31 
0.7 0.5 80 10.53 11.42 11.42 88.43 88.43 11.42 11.42 11.42 57.84 42.07 10.73 
0.6 0.9 20 7.15 7.59 7.59 23.03 23.03 7.59 7.59 7.59 22.11 22.67 7.09 
0.6 0.9 80 10.37 9.72 9.72 43.94 43.94 10.89 10.89 10.89 35.61 29.72 10.39 
0.6 0.7 20 6.43 9.39 9.39 25.97 25.97 9.39 9.39 9.39 26.14 26.14 8.89 
0.6 0.7 80 9.32 11.77 11.77 50.53 50.53 11.77 11.77 11.77 37.53 30.10 11.27 
0.6 0.5 20 5.68 12.24 12.24 30.32 30.32 12.24 12.24 12.24 31.16 27.90 11.74 
0.6 0.5 80 8.25 14.04 14.04 59.15 59.15 14.04 14.04 14.04 43.77 36.52 13.70 

Minimum 6.53 6.53 23.03 23.03 7.30 7.30 7.30 22.11 22.67 6.50 
Average 9.99 9.99 48.32 48.32 10.26 10.26 10.26 37.44 30.34 9.63 

Maximum 14.04 14.04 88.43 88.43 14.04 14.04 14.04 57.84 42.07 13.70 
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Table 6  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (1, 1, 4) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.42 7.45 7.45 32.14 32.14 6.91 6.91 6.91 24.63 19.94 4.61 
0.7 0.9 80 13.48 8.78 8.78 65.96 65.96 9.85 9.85 9.85 38.82 28.35 6.60 
0.7 0.7 20 8.43 6.57 6.57 28.47 28.47 6.73 6.73 6.73 19.72 17.60 4.43 
0.7 0.7 80 12.05 8.21 8.21 71.59 71.59 9.97 9.97 9.97 33.62 23.86 7.67 
0.7 0.5 20 7.39 6.17 6.17 24.65 24.65 8.13 8.13 8.13 14.26 12.91 5.83 
0.7 0.5 80 10.58 7.89 7.89 61.15 61.15 9.98 9.98 9.98 24.97 17.63 7.68 
0.6 0.9 20 7.11 8.28 8.28 24.05 24.05 8.28 8.28 8.28 19.03 19.03 6.48 
0.6 0.9 80 10.31 11.22 11.22 43.75 43.75 10.77 10.77 10.77 30.70 27.45 8.50 
0.6 0.7 20 6.32 7.25 7.25 20.95 20.95 7.25 7.25 7.25 15.00 15.00 5.45 
0.6 0.7 80 9.16 10.29 10.29 38.01 38.01 9.67 9.67 9.67 24.92 22.42 7.87 
0.6 0.5 20 5.49 6.68 6.68 17.83 17.83 6.07 6.07 6.07 10.62 10.62 4.27 
0.6 0.5 80 7.95 9.77 9.77 31.60 31.60 9.99 9.99 9.99 18.39 15.91 8.19 

Minimum 6.17 6.17 17.83 17.83 6.07 6.07 6.07 10.62 10.62 4.27 
Average 8.21 8.21 38.35 38.35 8.63 8.63 8.63 22.89 19.23 6.47 

Maximum 11.22 11.22 71.59 71.59 10.77 10.77 10.77 38.82 28.35 8.54 
 
 
Table 7  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (2, 0.5, 0.5) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 8.77 5.63 13.23 7.12 11.87 13.23 4.18 11.71 1.37 1.71 1.32 
0.7 0.9 80 12.46 7.81 21.65 9.73 17.12 19.02 4.53 18.12 1.28 1.10 1.23 
0.7 0.7 20 7.76 3.35 16.20 5.95 14.82 15.76 2.33 14.65 1.47 2.04 1.42 
0.7 0.7 80 10.99 5.11 25.39 10.92 20.55 22.36 3.30 20.15 1.91 1.82 1.86 
0.7 0.5 20 6.62 2.34 2.34 6.25 3.63 2.40 1.77 2.08 0.68 2.05 0.63 
0.7 0.5 80 9.39 2.98 2.98 14.04 8.50 3.84 1.88 2.64 1.44 1.38 1.39 
0.6 0.9 20 6.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.6 0.9 80 9.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.6 0.7 20 5.85 1.25 10.67 3.20 8.51 8.87 1.32 7.95 0.03 0.56 0.00 
0.6 0.7 80 8.28 4.57 14.07 6.58 11.70 12.64 3.44 10.39 1.20 1.33 1.15 
0.6 0.5 20 5.08 0.00 0.00 2.48 1.08 0.39 0.00 0.00 0.00 0.00 0.00 
0.6 0.5 80 7.19 2.71 2.71 9.03 5.97 3.28 2.07 2.50 0.61 0.65 0.56 

Minimum 0.00 0.00 2.48 1.08 0.39 0.00 0.00 0.00 0.00 0.00 
Average 3.58 10.92 7.53 10.37 10.18 2.48 9.02 1.00 1.27 0.79 

Maximum 7.81 25.39 14.04 20.55 22.36 4.53 20.15 1.91 2.05 1.86 
 
 
Table 8 
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (2, 2, 0.5) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.23 9.34 9.34 31.74 31.74 10.86 9.34 10.91 20.20 10.24 8.80 
0.7 0.9 80 13.11 10.12 10.12 71.66 71.66 14.12 10.77 11.16 30.85 10.57 10.39 
0.7 0.7 20 8.18 11.64 11.64 38.17 38.17 13.44 11.64 13.17 27.00 12.74 11.03 
0.7 0.7 80 11.63 12.62 12.62 80.41 80.41 15.23 13.29 15.92 33.89 12.95 12.86 
0.7 0.5 20 7.12 14.78 14.78 45.70 45.70 16.21 14.78 14.78 32.50 12.99 14.07 
0.7 0.5 80 10.1 16.11 16.11 92.67 92.67 19.47 16.11 17.99 38.72 14.37 15.61 
0.6 0.9 20 7.05 7.83 7.83 18.00 18.00 11.29 7.83 7.83 16.04 9.56 7.12 
0.6 0.9 80 10.05 11.34 11.34 43.15 43.15 15.86 11.47 13.06 22.02 10.90 10.98 
0.6 0.7 20 6.30 10.17 10.17 21.68 21.68 10.17 10.17 10.17 18.79 11.14 9.38 
0.6 0.7 80 8.98 13.46 13.46 48.73 48.73 15.67 13.46 16.24 28.32 11.74 12.91 
0.6 0.5 20 5.54 13.36 13.36 25.11 25.11 13.36 13.36 13.36 21.05 13.00 12.45 
0.6 0.5 80 7.88 16.59 16.59 56.19 56.19 19.44 16.59 16.59 33.88 16.27 15.95 

Minimum 7.83 7.83 18.00 18.00 10.17 7.83 7.83 16.04 9.56 7.12 
Average 12.28 12.28 47.77 47.77 14.59 12.40 13.43 26.94 12.20 11.80 

Maximum 16.59 16.59 92.67 92.67 19.47 16.59 17.99 38.72 16.27 15.95 
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Table 9 
Optimality gap (%) for backordering case when (𝒔,𝝁𝟏,𝝁𝟐) = (𝟐,𝟎.𝟓,𝟐) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.28 8.21 8.21 28.47 28.47 10.98 8.34 9.80 15.87 8.67 6.72 
0.7 0.9 80 13.21 10.38 10.38 69.56 69.56 12.80 10.30 11.67 23.38 10.43 9.17 
0.7 0.7 20 8.34 7.40 7.40 24.51 24.51 11.69 7.70 9.06 12.49 8.91 5.90 
0.7 0.7 80 11.88 9.52 9.52 61.34 61.34 15.22 9.20 11.98 15.93 7.15 7.94 
0.7 0.5 20 7.34 7.25 32.32 20.42 35.80 25.86 8.54 24.02 14.58 11.47 6.50 
0.7 0.5 80 10.5 8.96 49.46 51.75 71.83 27.28 7.59 24.23 12.06 12.67 6.16 
0.6 0.9 20 7.06 7.83 7.83 16.08 16.08 10.21 7.83 7.83 13.03 9.33 5.71 
0.6 0.9 80 10.06 11.66 11.66 37.33 37.33 14.13 9.65 10.35 17.54 12.09 8.16 
0.6 0.7 20 6.31 6.74 6.74 13.45 13.45 8.76 6.74 6.74 9.59 8.76 4.36 
0.6 0.7 80 8.97 10.59 10.59 32.43 32.43 13.62 7.37 9.59 13.07 10.48 5.70 
0.6 0.5 20 5.53 5.91 24.68 10.74 28.84 22.39 4.32 22.48 12.48 11.95 1.61 
0.6 0.5 80 7.84 9.66 30.63 26.62 37.76 22.97 8.11 17.87 11.72 10.60 6.51 

Minimum 5.91 6.74 10.74 13.45 8.76 4.32 6.74 9.59 7.15 1.61 
Average 8.68 17.45 32.73 38.12 16.33 7.97 13.80 14.31 10.21 6.20 

Maximum 11.66 49.46 69.56 71.83 27.28 10.30 24.23 23.38 11.66 9.17 
 

 
Table 10  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (3, 0.33, 0.33) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.19 2.60 6.66 2.74 5.70 6.28 2.11 5.48 0.00 0.54 0.00 
0.7 0.9 80 12.98 5.12 15.00 6.16 9.49 13.22 1.98 10.51 0.00 0.00 0.00 
0.7 0.7 20 8.1 0.72 8.32 2.67 7.51 8.07 0.67 7.41 0.00 0.62 0.00 
0.7 0.7 80 11.45 3.14 16.88 7.83 12.36 16.79 0.66 12.67 0.00 0.00 0.00 
0.7 0.5 20 6.95 0.00 11.45 3.45 10.81 11.45 0.00 9.84 0.39 0.00 0.25 
0.7 0.5 80 9.79 1.87 20.94 10.74 17.65 18.75 0.33 15.22 0.68 0.00 0.67 
0.6 0.9 20 6.88 2.01 4.30 2.63 4.01 2.99 2.02 2.82 0.36 0.00 0.36 
0.6 0.9 80 9.69 3.44 7.05 4.50 5.88 6.78 1.93 5.72 0.13 0.00 0.12 
0.6 0.7 20 6.12 0.64 4.30 1.52 4.49 4.30 0.74 4.02 0.00 4.30 0.00 
0.6 0.7 80 8.61 2.20 7.26 5.45 7.41 7.31 1.20 5.53 0.00 3.73 0.00 
0.6 0.5 20 5.33 0.00 4.88 0.66 5.10 4.88 0.00 4.28 0.38 2.46 0.22 
0.6 0.5 80 7.50 1.00 7.96 6.11 9.07 7.33 0.40 4.91 0.01 2.93 0.02 

Minimum 0.00 4.30 0.66 4.01 2.99 0.00 2.82 0.00 0.00 0.00 
Average 1.89 9.58 4.54 8.29 9.01 1.00 7.37 0.16 1.21 0.13 

Maximum 5.12 20.94 10.74 17.65 18.75 2.11 15.22 0.68 4.30 0.67 
 
 

Table 11  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (3, 1.32, 0.33) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.54 6.87 6.87 23.31 23.31 11.14 7.32 8.32 12.64 5.62 5.57 
0.7 0.9 80 13.54 8.92 8.92 58.99 58.99 13.69 6.97 9.62 14.13 6.99 6.94 
0.7 0.7 20 8.46 9.46 9.46 28.29 28.29 9.18 9.46 9.70 14.88 6.69 6.64 
0.7 0.7 80 11.99 10.85 10.85 68.29 68.29 15.89 8.77 10.65 19.98 8.34 8.29 
0.7 0.5 20 7.35 12.94 12.94 35.27 35.27 13.86 12.94 12.94 19.05 8.68 8.63 
0.7 0.5 80 10.41 13.67 13.67 80.88 80.88 16.62 13.67 11.91 20.76 11.15 11.10 
0.6 0.9 20 7.27 5.53 5.53 9.08 9.08 7.99 5.53 5.53 9.82 5.32 5.27 
0.6 0.9 80 10.27 9.13 9.13 29.84 29.84 11.45 7.80 9.19 16.41 7.80 7.75 
0.6 0.7 20 6.50 7.08 7.08 11.40 11.40 8.62 7.08 7.08 13.54 5.80 5.75 
0.6 0.7 80 9.17 10.59 10.59 35.10 35.10 13.83 10.59 11.56 16.80 8.63 8.58 
0.6 0.5 20 5.70 9.61 9.61 14.95 14.95 11.26 9.61 9.61 12.98 7.47 7.42 
0.6 0.5 80 8.04 12.87 12.87 42.34 42.34 17.08 12.87 14.17 19.30 12.11 12.06 

Minimum 5.53 5.53 9.08 9.08 7.99 5.53 5.53 9.82 5.32 5.27 
Average 9.79 9.79 36.48 36.48 12.55 9.38 10.02 15.86 7.88 7.83 

Maximum 13.67 13.67 80.88 80.88 17.08 13.67 14.17 20.76 12.11 12.06 
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Table 12  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (3, 0.33, 1.32) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.60 3.98 3.98 18.67 18.67 11.20 4.88 5.85 10.74 1.66 4.08 
0.7 0.9 80 13.64 7.31 7.31 52.49 52.49 13.48 4.80 6.58 11.37 7.83 4.00 
0.7 0.7 20 8.64 2.88 28.53 15.58 27.15 27.07 3.01 22.67 16.11 9.66 2.21 
0.7 0.7 80 12.28 6.08 41.40 47.22 34.19 25.07 3.93 18.25 11.35 9.09 3.13 
0.7 0.5 20 7.62 2.30 20.16 12.59 19.08 23.32 4.20 18.95 12.47 8.83 3.40 
0.7 0.5 80 10.87 5.02 35.43 38.52 28.41 31.19 7.36 16.78 9.74 7.23 6.56 
0.6 0.9 20 7.26 3.90 3.90 8.55 8.55 4.26 3.90 3.90 10.41 5.17 3.10 
0.6 0.9 80 10.28 7.12 7.12 30.49 30.49 13.25 7.34 9.32 11.99 8.53 6.54 
0.6 0.7 20 6.47 3.35 23.37 8.05 23.71 23.37 2.78 18.30 13.80 10.85 1.98 
0.6 0.7 80 9.20 5.52 28.30 26.27 23.84 26.53 6.35 19.18 15.34 9.97 5.55 
0.6 0.5 20 5.67 2.84 17.39 7.62 17.71 17.39 3.37 15.63 9.52 6.77 2.57 
0.6 0.5 80 8.08 4.02 20.37 20.46 16.67 21.73 4.54 17.88 10.80 7.77 3.74 

Minimum 2.30 3.90 7.62 8.55 4.26 2.78 3.90 9.52 1.66 1.98 
Average 4.53 19.77 23.88 25.08 19.82 4.71 14.44 11.97 7.78 3.95 

Maximum 7.31 41.40 52.49 52.49 31.19 7.36 22.67 16.11 10.85 6.56 
 
 

Table 13  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (4, 0.25, 0.25) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.12 3.30 8.42 4.57 7.64 8.29 2.65 7.11 0.55 3.63 0.49 
0.7 0.9 80 12.84 4.60 14.22 5.33 11.02 13.22 1.58 10.28 0.00 3.69 0.00 
0.7 0.7 20 8.07 1.91 10.74 3.85 10.01 10.45 1.54 9.54 1.04 3.26 0.98 
0.7 0.7 80 11.37 2.45 16.85 6.70 13.47 15.38 1.04 12.58 0.00 3.24 0.00 
0.7 0.5 20 6.95 1.12 6.91 3.94 8.24 7.12 0.88 5.64 1.50 2.78 1.44 
0.7 0.5 80 9.76 1.07 12.02 10.04 13.59 12.55 0.97 9.48 0.12 4.45 0.06 
0.6 0.9 20 6.95 2.30 3.19 2.22 3.27 3.19 2.19 3.05 0.40 1.08 0.34 
0.6 0.9 80 9.74 4.48 7.94 5.74 7.43 7.76 3.94 6.47 1.75 3.84 1.69 
0.6 0.7 20 6.2 1.31 3.61 1.42 3.68 3.61 1.24 3.42 0.92 1.18 0.86 
0.6 0.7 80 8.68 3.04 8.62 5.94 8.13 7.93 2.75 7.02 1.67 3.31 1.61 
0.6 0.5 20 5.41 0.78 2.11 1.15 2.51 2.13 0.78 2.11 1.13 1.66 1.07 
0.6 0.5 80 7.57 1.86 5.02 6.02 8.08 5.20 1.65 4.07 1.40 2.99 1.34 

Minimum 0.78 2.11 1.15 2.51 2.13 0.78 2.11 0.00 1.08 0.00 
Average 2.35 8.30 4.74 8.09 8.07 1.77 6.73 0.87 2.92 0.82 

Maximum 4.60 16.85 10.04 13.59 15.38 3.94 12.58 1.75 4.45 1.61 
 

 
Table 14  
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (4, 1,0.25) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.48 9.81 9.81 25.69 25.69 13.72 8.69 10.72 16.13 6.95 6.10 
0.7 0.9 80 13.44 9.84 9.84 57.51 57.51 18.42 10.87 13.32 16.58 8.64 7.79 
0.7 0.7 20 8.42 11.65 11.65 29.48 29.48 15.48 11.65 10.86 17.24 9.55 8.70 
0.7 0.7 80 11.91 12.07 12.07 67.32 67.32 19.24 11.49 14.90 21.23 10.46 9.61 
0.7 0.5 20 7.33 14.50 14.50 34.91 34.91 16.41 14.50 13.75 19.50 9.35 8.50 
0.7 0.5 80 10.36 15.19 15.19 79.78 79.78 20.41 15.19 15.07 25.42 11.52 10.67 
0.6 0.9 20 7.29 7.06 7.06 11.37 11.37 7.06 7.06 7.06 11.93 4.97 4.12 
0.6 0.9 80 10.25 9.23 9.23 28.66 28.66 13.62 9.51 11.35 15.54 9.14 8.29 
0.6 0.7 20 6.52 8.90 8.90 13.39 13.39 8.90 8.90 8.90 13.63 5.08 4.23 
0.6 0.7 80 9.16 10.97 10.97 33.42 33.42 17.40 11.02 11.53 16.90 8.02 7.17 
0.6 0.5 20 5.73 11.36 11.36 16.35 16.35 11.36 11.36 11.36 12.67 6.82 5.97 
0.6 0.5 80 8.04 13.50 13.50 38.30 38.30 18.93 13.50 13.86 19.55 11.73 10.88 

Minimum 7.06 7.06 11.37 11.37 7.06 7.06 7.06 11.93 4.97 4.23 
Average 11.17 11.17 36.35 36.35 15.08 11.14 11.89 17.20 8.52 7.66 

Maximum 15.19 15.19 79.78 79.78 20.41 15.19 15.07 25.42 11.73 10.88 
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Table 15 
Optimality gap (%) for backordering case when (𝑠, 𝜇ଵ,𝜇ଶ) = (4, 0.25, 1) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑏/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 9.53 7.31 32.28 17.41 35.25 32.26 5.93 25.10 23.39 10.22 5.11 
0.7 0.9 80 13.52 8.11 39.08 48.31 47.62 29.97 8.98 18.84 19.43 9.60 8.16 
0.7 0.7 20 8.56 6.54 27.04 16.14 29.72 28.17 5.34 21.54 18.77 9.17 4.52 
0.7 0.7 80 12.15 7.47 33.06 41.72 39.42 30.30 5.44 18.27 17.05 12.23 4.62 
0.7 0.5 20 7.54 6.27 21.26 13.70 22.48 20.37 5.08 17.76 15.37 10.17 4.26 
0.7 0.5 80 10.74 7.08 25.98 33.96 29.63 29.10 6.02 18.32 13.11 4.99 5.20 
0.6 0.9 20 7.29 4.06 23.98 6.52 25.91 23.98 4.06 22.76 16.74 9.53 3.24 
0.6 0.9 80 10.25 6.43 31.92 24.58 31.19 27.72 6.79 19.59 18.41 10.99 5.97 
0.6 0.7 20 6.50 3.55 21.09 5.37 23.25 21.55 3.55 19.91 14.91 11.25 2.73 
0.6 0.7 80 9.16 5.62 27.10 20.91 26.46 28.30 6.46 20.87 14.89 9.87 5.64 
0.6 0.5 20 5.69 3.27 15.71 4.27 17.52 17.10 2.09 15.71 9.89 7.89 1.27 
0.6 0.5 80 8.04 4.99 21.42 16.68 20.90 21.50 5.97 17.64 12.81 6.77 5.15 

Minimum 3.27 15.71 4.27 17.52 17.10 2.09 15.71 9.89 4.99 1.27 
Average 5.89 26.66 20.80 29.11 25.86 5.48 19.69 16.23 9.39 4.66 

Maximum 8.11 39.08 48.31 47.62 32.26 8.98 25.10 23.39 12.23 8.16 
 
 

Table 16  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (1, 1, 1) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 4.72 4.53 4.53 4.30 4.30 4.53 4.53 4.53 3.60 3.60 4.28 
0.7 0.9 80 7.55 1.10 1.10 2.11 2.11 0.05 0.05 0.05 1.72 1.72 0.00 
0.7 0.7 20 4.21 4.49 4.49 3.78 3.78 4.49 4.49 4.49 3.23 3.23 4.24 
0.7 0.7 80 6.71 0.69 0.69 3.89 3.89 0.19 0.19 0.19 0.24 0.24 0.00 
0.7 0.5 20 3.70 4.41 4.41 3.11 3.11 4.41 4.41 4.41 4.41 4.41 4.16 
0.7 0.5 80 5.87 0.15 0.15 6.18 6.18 0.31 0.31 0.31 0.31 0.31 0.06 
0.6 0.9 20 4.16 2.38 2.38 2.28 2.28 2.38 2.38 2.38 1.78 1.78 2.13 
0.6 0.9 80 6.63 2.22 2.22 1.63 1.63 3.63 3.63 3.63 1.66 1.66 3.38 
0.6 0.7 20 3.72 2.45 2.45 2.10 2.10 2.45 2.45 2.45 1.69 1.69 2.20 
0.6 0.7 80 5.91 2.52 2.52 0.61 0.61 3.59 3.59 3.59 3.20 3.20 3.34 
0.6 0.5 20 3.28 2.53 2.53 1.86 1.86 2.53 2.53 2.53 2.53 2.53 2.28 
0.6 0.5 80 5.18 2.70 2.70 0.91 0.91 2.70 2.70 2.70 2.59 2.59 2.45 

Minimum  0.15   0.15   0.61   0.61   0.05   0.05   0.05   0.24   0.24   0.00   
Average  2.51   2.51   2.73   2.73   2.61   2.61   2.61   2.25   2.25   2.38  

Maximum  4.53   4.53   6.18   6.18   4.53   4.53   4.53   4.41   4.41   4.28  
 

 
Table 17  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (1, 4, 1) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.61 5.37 5.37 11.16 11.16 5.37 5.37 5.37 8.41 8.41 4.97 
0.7 0.9 80 10.28 7.15 7.15 37.68 37.68 7.15 7.15 7.15 21.25 21.25 6.75 
0.7 0.7 20 6.10 6.72 6.72 11.69 11.69 6.72 6.72 6.72 10.08 10.08 6.32 
0.7 0.7 80 9.43 8.32 8.32 41.36 41.36 8.32 8.32 8.32 24.72 24.72 7.92 
0.7 0.5 20 5.59 8.32 8.32 12.29 12.29 8.32 8.32 8.32 10.50 10.50 7.92 
0.7 0.5 80 8.56 9.99 9.99 46.11 46.11 9.99 9.99 9.99 28.46 28.46 9.59 
0.6 0.9 20 5.76 6.20 6.20 7.81 7.81 6.20 6.20 6.20 6.25 6.25 5.80 
0.6 0.9 80 8.73 7.00 7.00 28.64 28.64 7.00 7.00 7.00 18.36 18.36 6.60 
0.6 0.7 20 5.33 6.98 6.98 8.14 8.14 6.98 6.98 6.98 6.38 6.38 6.58 
0.6 0.7 80 8.01 8.48 8.48 32.78 32.78 8.48 8.48 8.48 20.47 20.47 8.08 
0.6 0.5 20 4.88 8.34 8.34 9.00 9.00 8.34 8.34 8.34 6.97 6.97 7.94 
0.6 0.5 80 7.30 10.10 10.10 35.66 35.66 10.10 10.10 10.10 22.84 22.84 9.70 

Minimum 5.37 5.37 7.81 7.81 5.37 5.37 5.37 6.25 6.25  4.97  
Average 7.75 7.75 23.53 23.53 7.75 7.75 7.75 15.39 15.39  7.35  

Maximum 10.10 10.10 46.11 46.11 10.10 10.10 10.10 28.46 28.46  9.70  
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Table 18  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (1, 1, 4) 

Parameters Optimal 
Average 

Cost 

 Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.41 2.81 2.81 7.58 7.58 2.81 2.81 2.81 5.96 5.96 2.41 
0.7 0.9 80 10.05 5.66 5.66 32.47 32.47 5.66 5.66 5.66 16.83 16.83 5.26 
0.7 0.7 20 5.53 2.08 2.08 8.34 8.34 2.08 2.08 2.08 4.79 4.79 1.68 
0.7 0.7 80 8.73 5.04 5.04 37.08 37.08 5.04 5.04 5.04 16.03 16.03 4.64 
0.7 0.5 20 4.65 1.05 1.05 9.35 9.35 1.05 1.05 1.05 3.20 3.20 0.65 
0.7 0.5 80 7.39 4.48 4.48 32.41 32.41 4.48 4.48 4.48 12.45 12.45 4.08 
0.6 0.9 20 5.59 4.35 4.35 4.54 4.54 4.35 4.35 4.35 4.54 4.54 3.95 
0.6 0.9 80 8.53 5.23 5.23 25.71 25.71 5.23 5.23 5.23 16.18 16.18 4.83 
0.6 0.7 20 4.83 3.54 3.54 4.64 4.64 3.54 3.54 3.54 4.64 4.64 3.14 
0.6 0.7 80 7.40 4.32 4.32 23.01 23.01 4.32 4.32 4.32 13.81 13.81 3.92 
0.6 0.5 20 4.05 16.02 16.02 25.56 25.56 16.02 16.02 16.02 18.49 18.49 15.62 
0.6 0.5 80 6.26 3.26 3.26 19.54 19.54 3.26 3.26 3.26 10.72 10.72 2.86 

Minimum 1.05 1.05 4.54 4.54 1.05 1.05 1.05 3.20 3.20  0.65  
Average 4.82 4.82 19.19 19.19 4.82 4.82 4.82 10.64 10.64  4.42  

Maximum 16.02 16.02 37.08 37.08 16.02 16.02 16.02 18.49 18.49  15.62  
 

 
Table 19  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (2, 0.5, 0.5) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 4.86 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.35 2.95 
0.7 0.9 80 7.75 0.77 1.60 1.38 1.38 1.60 0.95 0.19 0.10 0.10 0.55 
0.7 0.7 20 4.34 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 2.76 
0.7 0.7 80 6.93 0.04 1.92 2.24 1.56 1.13 1.13 0.30 0.42 0.29 0.73 
0.7 0.5 20 3.83 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 2.79 
0.7 0.5 80 6.08 0.39 0.39 3.70 1.51 0.67 0.63 0.77 0.12 0.87 0.23 
0.6 0.9 20 4.36 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.39 
0.6 0.9 80 6.76 1.42 1.04 1.12 0.84 1.04 1.66 1.30 1.04 1.04 1.26 
0.6 0.7 20 3.90 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.37 
0.6 0.7 80 6.05 1.82 0.98 0.78 0.78 0.98 1.90 1.42 1.42 0.98 1.50 
0.6 0.5 20 3.44 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.37 
0.6 0.5 80 5.33 2.12 2.12 0.17 1.03 2.05 2.12 2.12 1.37 1.37 1.72 

Minimum  0.04   0.39   0.17   0.78   0.67   0.63   0.19   0.10   0.10  0.23 
Average  2.55   2.67   2.78   2.59   2.62   2.70   2.51   2.37   2.39  2.30 

Maximum  4.79   4.79   4.79   4.79   4.79   4.79   4.79   4.79   4.79  4.39  
 

 
Table 20  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (2, 2, 0.5) 

Parameters Optimal 
Average 

Cost 

 Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.55 6.52 6.52 7.44 7.44 6.52 6.52 6.52 4.72 2.37 6.02 
0.7 0.9 80 10.03 8.69 8.69 29.67 29.67 8.69 8.69 8.69 14.29 7.74 8.19 
0.7 0.7 20 6.02 7.03 7.03 7.03 7.03 7.03 7.03 7.03 6.00 3.34 6.53 
0.7 0.7 80 9.15 10.52 10.52 30.39 30.39 10.52 10.52 10.52 15.26 8.30 10.02 
0.7 0.5 20 5.47 5.01 5.01 5.01 5.01 5.01 5.01 5.01 4.66 3.13 4.51 
0.7 0.5 80 8.24 13.16 13.16 31.74 31.74 13.16 13.16 13.16 19.04 9.61 12.66 
0.6 0.9 20 5.69 5.62 5.62 6.22 6.22 5.62 5.62 5.62 4.09 4.09 5.12 
0.6 0.9 80 8.56 7.09 7.09 20.63 20.63 7.09 7.09 7.09 9.68 5.27 6.59 
0.6 0.7 20 5.25 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.29 2.69 4.24 
0.6 0.7 80 7.80 8.99 8.99 21.71 21.71 8.99 8.99 8.99 11.46 6.86 8.49 
0.6 0.5 20 4.75 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.03 3.03 3.06 
0.6 0.5 80 7.04 11.28 11.28 23.00 23.00 11.28 11.28 11.28 12.50 7.67 10.78 

Minimum 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.03 2.37 3.06 
Average 7.68 7.68 15.93 15.93 7.68 7.68 7.68 9.08 5.34 7.18 

Maximum 13.16 13.16 31.74 31.74 13.16 13.16 13.16 19.04 9.61 12.66 
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Table 21  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (2, 0.5, 2) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.40 0.41 0.41 1.77 1.77 0.41 0.41 0.41 0.41 0.41 0.31 
0.7 0.9 80 9.85 4.77 4.77 23.36 23.36 4.77 4.77 4.77 10.15 5.24 5.14 
0.7 0.7 20 5.55 0.00 0.00 1.19 1.19 0.00 0.00 0.00 0.00 0.00 0.00 
0.7 0.7 80 8.60 3.88 3.88 25.19 25.19 3.88 3.88 3.88 8.33 4.28 4.18 
0.7 0.5 20 4.65 0.28 0.28 1.25 1.25 0.28 0.28 0.28 0.28 0.28 0.18 
0.7 0.5 80 7.33 2.97 2.97 21.21 21.21 3.33 2.97 2.97 8.14 4.08 3.98 
0.6 0.9 20 5.55 1.91 1.91 2.34 2.34 1.91 1.91 1.91 1.91 1.91 1.81 
0.6 0.9 80 8.41 3.02 3.02 14.46 14.46 3.02 3.02 3.02 6.30 3.02 2.92 
0.6 0.7 20 4.83 0.99 0.99 1.39 1.39 0.99 0.99 0.99 0.99 0.99 0.00 
0.6 0.7 80 7.36 1.93 1.93 14.04 14.04 1.93 1.93 1.93 6.96 2.32 2.22 
0.6 0.5 20 4.08 0.49 0.49 0.83 0.83 0.49 0.49 0.49 0.49 0.49 0.39 
0.6 0.5 80 6.31 0.48 0.48 9.68 9.68 0.48 0.48 0.48 4.28 1.54 1.44 

Minimum 0.00 0.00 0.83 0.83 0.00 0.00 0.00 0.00 0.00 0.00 
Average 1.76 1.76 9.73 9.73 1.79 1.76 1.76 4.02 2.05  1.88  

Maximum 4.77 4.77 25.19 25.19 4.77 4.77 4.77 10.15 5.24  5.14  
 
 

Table 22  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (3, 0.33, 0.33) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 4.98 0.18 0.18 0.16 0.16 0.18 0.18 0.18 0.34 0.34 0.24 
0.7 0.9 80 7.94 0.23 0.09 0.40 0.57 0.57 0.73 0.58 0.13 0.13 0.03 
0.7 0.7 20 4.45 0.27 0.27 0.31 0.31 0.27 0.27 0.27 0.49 0.49 0.39 
0.7 0.7 80 7.08 0.44 0.00 1.29 1.26 0.30 0.61 0.42 0.30 0.30 0.20 
0.7 0.5 20 3.92 0.38 0.38 0.54 0.54 0.38 0.38 0.38 0.38 0.71 0.61 
0.7 0.5 80 6.21 0.53 0.29 2.58 2.29 0.29 0.47 0.53 0.21 0.98 0.88 
0.6 0.9 20 4.52 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.09 
0.6 0.9 80 6.94 0.59 0.50 0.75 0.97 0.20 0.20 0.17 0.53 0.53 0.43 
0.6 0.7 20 4.05 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 0.00 
0.6 0.7 80 6.20 0.52 0.55 1.13 1.26 0.29 0.26 0.24 0.73 0.73 0.63 
0.6 0.5 20 3.57 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.13 
0.6 0.5 80 5.46 0.42 0.59 1.61 1.61 0.59 0.42 0.38 0.31 0.57 0.47 

Minimum  0.18   0.00     0.16   0.16   0.18   0.18   0.17   0.13   0.13  0.00 
Average  0.61   0.55   1.04   1.06   0.57   0.61   0.58   0.60   0.71   0.51  

Maximum  1.33   1.33   2.58   2.29   1.33   1.33   1.33   1.33   1.33   1.13  
 
 

Table 23  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (3, 1.32, 0.33) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.63 2.11 2.11 2.26 2.26 2.11 2.11 2.11 1.58 1.01 0.71 
0.7 0.9 80 10.11 8.89 8.89 20.94 20.94 8.89 8.89 8.89 12.22 14.91 14.61 
0.7 0.7 20 6.07 2.60 2.60 2.82 2.82 2.60 2.60 2.60 1.32 1.32 1.02 
0.7 0.7 80 9.22 10.41 10.41 23.42 23.42 10.41 10.41 10.41 12.39 15.38 11.58 
0.7 0.5 20 5.50 3.40 3.40 3.67 3.67 3.40 3.40 3.40 1.87 1.87 1.57 
0.7 0.5 80 8.31 12.25 12.25 23.31 23.31 12.25 12.25 12.25 14.30 17.18 16.18 
0.6 0.9 20 5.83 0.86 0.86 1.03 1.03 0.86 0.86 0.86 0.48 0.38 0.08 
0.6 0.9 80 8.63 7.08 7.08 12.07 12.07 7.08 7.08 7.08 7.98 8.46 8.16 
0.6 0.7 20 5.35 1.18 1.18 1.36 1.36 1.18 1.18 1.18 0.77 0.58 0.28 
0.6 0.7 80 7.88 8.20 8.20 13.82 13.82 8.20 8.20 8.20 9.10 9.72 9.42 
0.6 0.5 20 4.86 1.77 1.77 1.98 1.98 1.77 1.77 1.77 1.34 1.05 0.75 
0.6 0.5 80 7.10 10.01 10.01 16.44 16.44 10.01 10.01 10.01 8.89 11.41 11.11 

Minimum 0.86 0.86 1.03 1.03 0.86 0.86 0.86 0.48 0.38  0.08  
Average 5.73 5.73 10.26 10.26 5.73 5.73 5.73 6.02 6.94  6.29  

Maximum 12.25 12.25 23.42 23.42 12.25 12.25 12.25 14.30 17.18  16.18  
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Table 24 
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (3, 0.33, 1.32) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.48 1.03 1.03 1.25 1.25 1.03 1.03 1.03 1.03 1.03 0.93 
0.7 0.9 80 9.94 3.65 3.65 13.45 13.45 4.11 3.65 3.65 8.80 9.00 8.70 
0.7 0.7 20 5.63 1.26 1.26 1.42 1.42 1.26 1.26 1.26 1.26 1.26 1.16 
0.7 0.7 80 8.71 2.72 2.72 12.34 9.94 3.35 2.72 2.72 6.83 9.06 6.73 
0.7 0.5 20 4.77 1.78 1.78 1.87 1.87 1.78 1.78 1.78 1.78 1.78 1.68 
0.7 0.5 80 7.43 2.18 2.18 11.63 7.47 2.54 2.18 2.18 6.30 7.91 6.20 
0.6 0.9 20 5.71 0.16 0.16 0.35 0.35 0.16 0.16 0.16 0.16 0.16 0.06 
0.6 0.9 80 8.47 4.43 4.43 7.10 7.10 4.43 4.43 4.43 4.57 4.43 4.47 
0.6 0.7 20 4.97 0.04 0.04 0.22 0.22 0.04 0.04 0.04 0.04 0.04 0.00 
0.6 0.7 80 7.41 3.78 3.78 6.17 6.17 4.04 3.78 3.78 4.05 3.82 3.95 
0.6 0.5 20 4.22 0.12 0.12 0.26 0.26 0.12 0.12 0.12 0.12 0.12 0.02 
0.6 0.5 80 6.34 3.08 3.08 5.08 5.08 3.61 3.08 3.08 3.50 3.68 3.40 

Minimum 0.04 0.04 0.22 0.22 0.04 0.04 0.04 0.04 0.04  0.00    
Average 2.02 2.02 5.09 4.55 2.21 2.02 2.02 3.20 3.52  3.11  

Maximum 4.43 4.43 13.45 13.45 4.43 4.43 4.43 8.80 9.06  8.70  
 
 

Table 25 
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (4, 0.25, 0.25) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 5.10 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.31 0.31 0.16 
0.7 0.9 80 8.08 1.72 2.02 2.00 2.57 2.02 1.35 1.32 1.61 1.79 1.46 
0.7 0.7 20 4.56 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.20 0.22 
0.7 0.7 80 7.22 1.63 2.19 2.31 2.74 1.91 1.36 1.41 1.51 1.87 1.36 
0.7 0.5 20 4.02 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.15 
0.7 0.5 80 6.34 1.61 1.62 3.04 3.04 1.69 1.70 1.42 1.91 2.16 1.76 
0.6 0.9 20 4.69 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.53 0.53 0.38 
0.6 0.9 80 7.09 0.48 0.51 0.37 0.25 0.51 0.47 0.55 0.51 0.17 0.36 
0.6 0.7 20 4.20 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.21 
0.6 0.7 80 6.35 0.71 0.58 0.33 0.31 0.58 0.65 0.65 0.65 0.58 0.50 
0.6 0.5 20 3.70 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.36 
0.6 0.5 80 5.59 0.64 0.64 0.05 0.05 0.55 0.64 0.64 0.47 0.47 0.32 

Minimum  0.30   0.30   0.05   0.05   0.30   0.30   0.30   0.30   0.17   0.15  
Average  0.77   0.83   0.88   0.95   0.81   0.71   0.70   0.75   0.77   0.60  

Maximum  1.72   2.19   3.04   3.04   2.02   1.70   1.42   1.91   2.16   1.76  
 
 

Table 26  
Optimality gap (%) for lost sales case when (𝑠,𝜇ଵ,𝜇ଶ) = (4, 1,0.25) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.71 3.11 3.11 3.93 3.93 3.11 3.11 3.11 2.56 2.15 1.65 
0.7 0.9 80 10.21 7.82 7.82 15.85 15.85 8.19 7.82 7.82 9.03 7.62 7.12 
0.7 0.7 20 6.15 3.76 3.76 3.76 3.76 3.76 3.76 3.76 2.78 2.18 1.68 
0.7 0.7 80 9.31 9.05 9.05 14.73 14.73 9.05 9.05 9.05 10.38 7.87 7.37 
0.7 0.5 20 5.59 3.26 3.26 3.26 3.26 3.26 3.26 3.26 2.88 2.86 2.36 
0.7 0.5 80 8.4 11.14 11.14 15.62 15.62 11.14 11.14 11.14 11.74 9.73 9.23 
0.6 0.9 20 5.94 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.18 1.18 0.68 
0.6 0.9 80 8.76 5.70 5.70 8.54 8.54 5.70 5.70 5.70 4.93 4.86 4.36 
0.6 0.7 20 5.44 1.19 1.19 1.19 1.19 1.19 1.19 1.19 0.99 0.99 0.49 
0.6 0.7 80 7.99 6.86 6.86 8.56 8.56 6.86 6.86 6.86 5.88 5.43 4.93 
0.6 0.5 20 4.94 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.75 0.75 0.25 
0.6 0.5 80 7.21 7.88 7.88 8.75 8.75 7.88 7.88 7.88 6.46 5.95 5.45 

Minimum 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.75 0.75  0.25  
Average 5.17 5.17 7.21 7.21 5.21 5.17 5.17 4.96 4.30  3.80  

Maximum 11.14 11.14 15.85 15.85 11.14 11.14 11.14 11.74 9.73  9.23  
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Table 27  
Optimality gap (%) for lost sales case when (𝑠, 𝜇ଵ,𝜇ଶ) = (4, 0.25, 1) 

Parameters Optimal 
Average 

Cost 

Gap (%) 𝜌 ℎଶ/ℎଵ 𝑐/ℎ B1 B2 BH1 BH2 S2 S3 S4 MP2 MT2 RH2 

0.7 0.9 20 6.56 1.34 1.34 1.88 1.88 1.34 1.34 1.34 1.34 1.34 0.84 
0.7 0.9 80 10.04 3.18 3.18 11.11 11.11 3.18 3.18 3.18 4.41 3.18 2.68 
0.7 0.7 20 5.71 0.96 0.96 1.40 1.40 0.96 0.96 0.96 0.96 0.96 0.46 
0.7 0.7 80 8.78 2.81 2.81 9.31 9.31 2.81 2.81 2.81 3.69 2.81 2.31 
0.7 0.5 20 4.85 0.68 0.68 0.97 0.97 0.68 0.68 0.68 0.68 0.68 0.18 
0.7 0.5 80 7.50 2.61 2.61 7.19 7.19 2.61 2.61 2.61 3.35 2.61 2.11 
0.6 0.9 20 5.81 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 0.93 
0.6 0.9 80 8.62 1.77 1.77 5.58 5.58 1.77 1.77 1.77 2.16 1.77 1.27 
0.6 0.7 20 5.06 1.68 1.68 1.92 1.92 1.68 1.68 1.68 1.68 1.68 1.18 
0.6 0.7 80 7.54 1.39 1.39 4.56 4.56 1.39 1.39 1.39 1.66 1.39 0.89 
0.6 0.5 20 4.31 1.65 1.65 1.97 1.97 1.65 1.65 1.65 1.65 1.65 1.15 
0.6 0.5 80 6.45 1.04 1.04 3.35 3.35 1.04 1.04 1.04 1.53 1.04 0.54 

Minimum 0.68 0.68 0.97 0.97 0.68 0.68 0.68 0.68 0.68  0.18  
Average 3.18 3.18 11.11 11.11 3.18 3.18 3.18 4.41 3.18  1.21  

Maximum 3.18 3.18 11.11 11.11 3.18 3.18 3.18 4.41 3.18  2.68  
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