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 This paper establishes a location-routing optimization model of the distribution center for 
emergency supplies with the goals of system reaction time, total cost of consumption, psychological 
fear of the populace in disaster-affected locations, and material usage rate. Where the excess time, 
demand, and penalty coefficient are the components of the penalty cost in the total consumption 
cost, and where the psychological panic of those in the affected area is represented by the 
psychological perception function of panic developed in accordance with the prospect theory. An 
improved hybrid multi-objective cuckoo-large-neighborhood search algorithm was then designed 
to introduce tent mapping, nonlinear inertia weights, elite strategies, congestion operators, and 
dynamically adjusted discovery probabilities into the standard multi-objective cuckoo optimization 
algorithm, which generates a new solution using a large-neighborhood search algorithm after 
discarding part of the solution with the discovery probability, and then accepts the current 
nondominated solution with dynamic probabilities. The paper uses the improved algorithm to solve 
Christofides69, an arithmetic example from the standard dataset of the LRP problem, and the results 
show that the solution provided by the improved algorithm outperforms the solutions provided by 
the standard multi-objective cuckoo search algorithm and the NSGA-II algorithm in terms of the 
total cost of dissipation, the level of psychological panic of the people in the affected area, the rate 
of utilization of the supplies, and the number of distribution centers open. Finally, the improved 
algorithm was used to analyze cases of different sizes separately, and it was found that the algorithm 
yielded better results and was therefore able to demonstrate its effectiveness. 
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1. Introduction 

 
Emergencies, such as natural disasters and public health emergencies, seriously infringe on the safety of people's lives and 
further socio-economic development in all countries. The outbreak of a new coronavirus (COVID-19) in 2019 caused billions 
of infections worldwide, triggering problems such as plunging crude oil prices and flash meltdowns in stock markets, leading 
to global losses of hundreds of billions of dollars per month, sharply increasing the risk of triggering a global economic crisis 
and having a major impact on international politics and economies, constantly affecting human life and the development of 
societies (McVernon et al., 2023; Ponboon et al., 2016). In the aftermath of major emergencies, victims experience significant 
physical and psychological trauma, necessitating the rapid transportation of large quantities of emergency supplies to the areas 
in need of relief assistance. Failing to deliver emergency supplies promptly and in sufficient quantities can lead to widespread 
panic among affected populations, with potentially catastrophic consequences. However, prior to the deployment of 
emergency supplies, it is imperative to establish an efficient and effective emergency supply network (Caunhye et al., 2016). 
The strategic placement of distribution centers and the optimization of supply delivery routes are critical components of such 
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a network, capable of enhancing disaster relief efforts (Feng et al., 2019). Consequently, the swift determination of distribution 
center locations and the selection of optimal delivery routes to ensure timely supply delivery to affected areas, while 
minimizing panic among victims, represent pivotal challenges within the domain of emergency logistics networks. 
 
In addressing challenges like optimizing the location and routing of emergency supply distribution centers, scholars have 
primarily focused on data analysis and research. This analytical approach has laid the groundwork for informed decision-
making by both businesses and governmental bodies (Lin et al., 2004). Numerous studies have demonstrated that the 
utilization of data has greatly enhanced scholars' capabilities in tackling such issues. Specifically, harnessing data not only 
facilitates the practical application of theoretical models and algorithms in real-world scenarios, thereby validating these 
models and algorithms (Wang et al., 2023), but it also equips governments and businesses with post-disaster solutions that 
encompass multiple objectives, offering valuable insights for managing similar events in the future (Qin et al., 2019). 
Furthermore, it provides real-time decision support in disaster-prone regions, such as those affected by droughts and floods 
(Wu et al., 2020; Elluru et al., 2019). 
 
In summary, the focus of this paper is to delve into the challenges surrounding the location and routing of distribution centers 
for emergency supplies following disaster events. Our goal is to ensure the swift and efficient delivery of emergency provisions 
to disaster-stricken areas, ultimately providing decision-makers with enhanced solutions by means of mathematical modeling. 

2. Review of the literature 

The Location Routing Problem (LRP) was initially introduced by Maranzana F.E (1965). and Webb (1968), among others. It 
gained further attention from researchers like Watson-Grandy et al. (1973), among others, who proposed a location routing 
problem tailored for logistics distribution involving multiple affected sites. Building upon this foundation, scholars have made 
substantial progress and refinements to the original LRP model over time. These advancements in location routing for logistics 
systems involved the incorporation of realistic constraints, including limitations on the number of vehicles (Dukkanci et al., 
2019), vehicle capacity (Perl et al., 1984), and time windows (Beiki et al., 2021). Moreover, scholars expanded the scope of 
objectives to encompass factors such as cost (Leng et al., 2020), carbon emissions (Zhou et al., 2023), and time (Schmidt et 
al., 2019) within the objective function. The evolution of LRP models extended from single-stage to multi-stage formulations 
(Wang & Nie, 2023) and beyond. 
  
In the context of emergency logistics systems, researchers have focused on optimizing the location and distribution routing of 
distribution centers while considering multiple constraints and objectives. For instance, Santoso et al. (2005) formulated the 
objective function for the entire emergency logistics system as the minimization of total costs, while ensuring that the capacity 
constraints of distribution centers and the demand at delivery points were met realistically. Özdamar et al. (2004) emphasized 
the role of dynamic time considerations in addressing traffic issues and advocated for comprehensive integration of factors 
like time window constraints, distribution routes, and truck sequencing in emergency logistics planning. Building on this prior 
work, scholars delved deeper into LRP models with time window constraints. Sahitya et al. (2019) proposed both active and 
passive LRP models with time windows for post-disaster emergency logistics systems. The active model aimed at minimizing 
fixed, transport, and risk costs, considering pre-disaster risk factors associated with each facility. The passive model aimed at 
minimizing changes in route costs, non-delivery penalties, delay penalties, and lost waiting time costs while incorporating 
disruptions caused by disasters into the model. Examples showcased that a combination of active and passive approaches in 
designing emergency logistics distribution systems could enhance overall system resilience. In a different context, Hassanpour 
et al. (2023) developed a mixed-integer linear programming model with time window constraints to address the location 
routing problem in the context of an epidemic. They defined three scenarios with varying severity levels and devised 
algorithms to solve the model. Their algorithm demonstrated superior performance in handling large-scale problems and 
exhibited a high degree of robustness. 
  
In the realm of emergency LRP, initial studies primarily concentrated on optimizing the total system response time, focusing 
on the single-objective problem. Díaz et al. (2018) constructed a post-earthquake LRP model with a time window and designed 
a memory algorithm (MA) for solving it with the objective of minimizing the total response time during evacuation to 
determine the location of emergency shelters and evacuation routes that meet the time constraints for the post-earthquake 
situation. The validity of the model and the algorithm was verified with an example. As the field of emergency LRP continued 
to evolve, scholars began to integrate cost and carbon emissions as additional objective functions within the model framework, 
tailoring them to distinct scenarios such as earthquake and epidemic situations. For instance, in their investigation of 
emergency LRP systems for post-earthquake relief efforts, Nedjati A et al. (2017) introduced a constraint on the number of 
vehicles available in the yard, with the primary goal of minimizing weighted waiting times and overall demand loss. They 
also developed two enhanced versions of the NSGA-II algorithm to address this challenge. Furthermore, Vahdani et al. (2018) 
formulated a nonlinear integer multi-objective LRP model for post-earthquake emergency scenarios. Their objectives included 
minimizing total cost, total path time, maximizing path reliability, accommodating multiple cycles, and handling multiple 
commodities. This complex problem was also considered post-earthquake road rehabilitation. To tackle this challenge, the 
researchers proposed two meta-heuristic algorithms. Zhang et al. (2018) introduced uncertainty theory into the field and 
established an emergency location-path model with time, cost, and carbon emissions as objectives. They converted the multi-
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objective problem into a single-objective one using the principal objective method and designed a hybrid intelligent algorithm 
to resolve it. The robustness of their algorithm was demonstrated through numerical examples, although it's worth noting that 
it solely considers fixed distribution center costs and vehicle travel expenses, omitting other costs like distribution center 
operation expenses. Shen et al. (2019) proposed a multi-objective emergency logistics location-path model that aimed to 
minimize delivery time, total cost, and carbon emissions. Their approach also accounted for supply point construction costs 
and operational expenses. Moreover, the uncertainty in demand was addressed by incorporating a triangular fuzzy function. 
To solve this comprehensive model, a hybrid two-stage algorithm was developed and successfully validated using classical 
databases and practical examples. 
  
In addition to the mentioned variations in the emergency LRP models, some researchers have incorporated humanitarian 
considerations, specifically addressing the psychological well-being of individuals in crisis-stricken areas. However, there are 
fewer studies on this. Sheu et al. (2014), for instance, devised an integrated and seamless centralized emergency supply 
network comprising three sub-networks: a shelter network, a medical network, and a distribution network. They developed a 
three-stage multi-objective mixed-integer linear programming model with the aims of minimizing distance, cost, and 
psychological distress experienced by those on the receiving end of aid. This innovative approach was rigorously tested and 
validated. In the context of emergency materials supply, Wang and Sun (2023) introduced three humanitarian-oriented 
objectives: efficiency, equity, and effectiveness. They crafted a multi-stage emergency supply distribution model that 
accommodated these principles. Experimental results indicated that this model could effectively scale up for large-scale 
emergency supply distribution scenarios. Based on the cumulative prospect theory, Zhu et al. (2021) comprehensively 
considered the nature of the path and the attitude of the decision maker as well as the selection behavior to establish an 
emergency material distribution network model, and finally conducted a sensitivity analysis of the parameters to derive the 
path selection strategy under different conditions. 
  
In the realm of solving LRP models, both exact and heuristic algorithms find widespread application. For instance, when 
addressing LRP models with time windows, Sattrawut et al. (2023) employed a branch-and-bound algorithm. While this 
approach efficiently computed numerous cases, it was noted to be labor-intensive and computationally demanding. 
Consequently, an increasing number of scholars turn to heuristic algorithms for tackling such models. These algorithms offer 
the advantage of swiftly generating multiple sets of Pareto optimal solutions. Raeisi and Jafarzadeh Ghoushchi (2023) for 
example, devised six algorithms, including the multi-objective invasive weed optimization algorithm, for solving LRP 
problems. Zhong et al. (2022) developed a hybrid algorithm that combined ant colony optimization with forbidden search 
techniques to address the maritime emergency material distribution location-path problem. After conducting extensive 
analysis using practical examples, they concluded that this model facilitated more informed decision-making at different 
levels, ultimately enhancing service capabilities in emergency scenarios.  
  
In summary, for the emergency LRP problem, scholars have studied the time, cost terms and environmental factors in great 
depth and applied them to specific scenarios such as earthquakes and public health emergencies. The results obtained by 
bringing data into the models and algorithms show that these models can effectively solve the distribution problem of 
emergency supplies. However, most of the previous literature have modeled the objectives of total cost spent, total response 
time, and carbon emission, and few studies have considered the total system response time, cost, panic level of the people in 
the disaster area, and material utilization rate of the distribution center at the same time. However, these objective items 
directly affect the efficiency of the emergency response system. Therefore, this paper takes the above four points as the 
research objectives and establishes a location-routing optimization model of the distribution center for emergency supplies to 
ensure the rapid and efficient delivery of supplies and at the same time alleviate the psychological panic of the people in the 
disaster-stricken areas, which in turn provides a basis for post-disaster management. In addition, this paper also designs an 
improved hybrid cuckoo-large neighborhood search algorithm based on the standard multi-objective cuckoo search algorithm 
to solve the model. 
  
The content framework of this paper is as follows: section 3 describes the location-routing optimization model for distribution 
centers of emergency supplies. Section 4 describes the IMOCS-LNS algorithm in detail. Section 5 compares the performance 
of the IMOCS-LNS algorithm with MOCS algorithm and NSGA-II through examples. Solution 6 draws the corresponding 
conclusions. 

3. Emergency supplies distribution center location - routing optimization model  

This paper mainly studies the issue of location-routing optimization of distribution centers for emergency supplies in the 
context of emergency events. A number of distribution centers are selected from the alternative distribution centers, and a 
number of vehicles are sent from these distribution centers to deliver supplies to all the affected sites. With the objectives of 
minimizing the system response time, total cost of consumption, the degree of psychological panic of the people in the disaster-
stricken places, and material utilization rate of the emergency logistics system, a model is established for the location of 
emergency supply points and the optimization of distribution routes. 
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Fig. 1. Diagram of the Emergency Material Distribution Network 

3.1 Model assumptions 

(1) The location, maximum capacity, and construction cost of the candidate distribution center are known.  
(2) The location and demand of the affected site are known.  
(3) The transport cost per unit load per unit distance travelled by the vehicle, the maximum vehicle load, and the fixed cost 
are known.  
(4) Vehicles must depart from and return to a certain supply point and return to that distribution center.  
(5) Each vehicle is activated only once. 
(6) The alternative distribution centers are all built and stocked with supplies. 

3.2  Description of symbols 𝑀 indicates the full set of alternative distribution centers, 𝑀 = ሼ1,2,3, . . . ,𝑚ሽ 𝑁 indicates the full set of affected sites, 𝑁 = ሼ1,2,3, . . . ,𝑛ሽ 𝐽 denotes a collection of alternative distribution centers and disaster sites，𝐽 = 𝑀 ∪𝑁 𝑂 indicates a collection of transport vehicles，𝑂 = ሼ1,2,3, . . . , 𝑜ሽ 𝐴𝐶denotes the cost of operating distribution center 𝑚 𝑉 indicates the speed at which vehicle 𝑜 is travelling 𝑄 denotes the capacity of the distribution center 𝑚 𝑑 denotes requirement for the affected site 𝑛 𝑄 indicates the maximum load capacity allowed for the vehicle 𝑜 𝐾 denotes the number of transport vehicles owned by distribution center 𝑚 𝐵 indicates the maximum mileage of the vehicle 𝑑 denotes the distance between point 𝑖 and point 𝑗 𝑆 indicates the speed of loading and unloading of demanded supplies 𝐿𝑇 denotes the latest time of delivery of supplies to the affected site 𝑛 𝐶 indicates the cost per unit distance travelled by the transport vehicle 𝐺 represents the fixed cost required to use a transport vehicle 
ℎ indicates the penalty factor for supplies not arriving at the affected site in the required time 𝑆𝐹 denotes the penalty cost incurred by the affected site 𝑛 for service in excess of psychological expectations of time 𝑅 indicates the level of public risk perception when 𝑇 = 𝑇′  𝑅 denotes the perceived level of risk for people at the affected site 𝑛 𝑇′  indicates the time at which the public believes the supplies should reach the affected site 𝑛 𝑇 denotes the actual time for the supplies to reach the affected site 𝑛 𝛽 indicates the risk aversion factor 𝜆  is the aversion coefficient, which indicates the degree of aversion people feel when faced with a loss, with aversion 
increasing with 𝜆 𝑋 is a decision variable, whether vehicle 𝑜 transports materials from distribution center 𝑚 to the affected site 𝑛 𝑈 is a decision variable, whether vehicle 𝑜 serves the affected site 𝑛 𝑀 is a decision variable, whether the alternate distribution center 𝑚 is selected. 

3.3 Objective function analysis 

In order to better describe the location-routing optimization model of the distribution center for emergency supplies studied 
in this paper, the individual objective functions in the model are analytically described as follows: 
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(1) Timeliness function for emergency distribution response 
 
The total response time of the emergency supply network is the most important factor to be considered in the emergency relief 
process, only when emergency supplies are in place on time can they be used to maximum effect. In this paper, we mainly 
consider the transportation time as well as the supply handling time during the distribution of emergency supplies, and the 
expressions are shown below: 
 𝑇 = 𝑑𝑉∈∈∈ை 𝑋 + 2∑ 𝑑∈ே𝑆  

 
(2) The economic function of emergency distribution 
 
The costs involved in this model include location costs and transportation costs. Location selection costs generally include 
construction costs and operating costs, i.e., the cost of human and material resources used in the construction process and the 
operating costs of utilities, maintenance, etc. required after completion. However, as it has been assumed in the model 
assumptions that the alternative distribution centers have been built, the construction costs are not considered, and only the 
operational costs are considered. Route costs generally include the transport costs of the transport vehicle, which are related 
to the distance traveled, and the fixed costs, which are the fixed costs incurred in using the vehicle. In addition to this, penalty 
costs are incurred if supplies do not reach the affected site in the required time. Therefore, the economic function established 
in this paper includes the following three aspects: (i) the transportation and fixed costs of the vehicles used to transport 
emergency supplies from the distribution center to the point of demand; (ii) the operating costs of the distribution center once 
it is opened; and (iii) the penalty costs arising from the arrival time of supplies exceeding the public expectation time at the 
point of demand. 
 𝐶 =  𝐴𝐶𝑀∈ + 𝐶∈∈∈ை 𝑑𝑋 + 𝑆𝐹 +   𝐺∈ே∈ெ∈ை 𝑋∈ே  

 
where the penalty costs arising from the arrival of supplies in excess of the public expectation of arrival times at the point of 
demand are as follows: 
 𝑆𝐹 = ൜ℎ𝑑(𝑇 − 𝑇ᇱ),𝑇ᇱ < 𝑇 ≤ 𝐿𝑇0,𝑇 ≤ 𝑇ᇱ  

 
When the actual time of arrival of emergency supplies at the affected site does not exceed the public's psychological 
expectation of the arrival of supplies, the penalty cost is 0. If the actual time of arrival of emergency supplies at the affected 
site exceeds the public's psychological expectation of the arrival of supplies, the penalty cost is related to the product of the 
excess time and the amount of supplies required at the affected site. 
 
(3) The perception function of people's panic at the point of demand 
 
This paper considers the psychology of the public at the point of need and proposes a psychological risk perception function 
based on prospect theory to quantify the risk perception of disaster victims regarding the arrival time of supplies after an 
emergency event. The public will be informed through various sources of the time it takes for emergency supplies to reach 
each point of need, i.e., the time taken to deliver supplies from the nearest distribution center to the point of need, by the 
following formula: 
 𝑇ᇱ = 𝑚𝑖𝑛 ൬𝑑𝑉 ൰ ,∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 

 
Using the public's psychological expectation of when supplies will arrive at the point of need as a reference point, the degree 
of perceived psychological risk is greater than 0. The reason for this is that when an emergency occurs, disaster victims at the 
point of need will immediately become psychologically upset. According to prospect theory, the public's psychological risk 
perception is relatively small when 𝑇 < 𝑇ᇱ. That means the time for emergency supplies to arrive at the point of need is small 
compared to the public's psychologically expected time. When 𝑇 = 𝑇ᇱ, the degree of risk perception is 𝑅.It is a suitably 
large number. And when𝑇 > 𝑇′ , the degree of public psychological risk perception is large (Wang et al., 2013). However, in 
this thesis, the time for emergency supplies to arrive at the point of demand is necessarily greater than or equal to the public's 
psychological expectation because the time for supplies to arrive at the point of demand is not less than the time for supplies 
to be delivered from the nearest alternative distribution center to the point of demand. The public perception of risk at the 
point of need is therefore as follows: 
 𝑅 = 𝜆(𝑇 − 𝑇ᇱ)ఉ + 𝑅 
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(4) Material utilization rate of distribution centers 
 
When delivery vehicles are loaded from distribution centers and delivered to affected sites, the volume delivered is the sum 
of the demand at each affected site. During this phase, not all the material in each distribution center may be used to support 
the affected site, so surplus material is created. 

𝑌 =  𝑑𝑋∈ே∈ை∈ெ  𝑄𝑀∈ெ൘ ,∀𝑚 ∈ 𝑀 

3.4 Model construction 

The objective functions of the model in this paper include the timeliness function of the emergency supply, the economy 
function, the psychological perception function of the code in the affected places, and the utilization rate of the materials, and 
the constraints that can be considered include the time-window constraints, the capacity constraints, the capacity constraints 
of the vehicle, and the mileage constraints of the vehicle. In summary, the site-path optimization model for the emergency 
supply distribution center established in this paper is shown below: 
 
Objective function: 
 𝑚𝑖𝑛 𝑇 = 𝑑𝑉∈∈∈ை 𝑋 + 2∑ 𝑑∈ே𝑆  (1) 𝑚𝑖𝑛 𝐶 =  𝐴𝐶𝑀∈ + 𝐶∈∈∈ை 𝑑𝑋 + 𝑆𝐹 +   𝐺∈ே∈ெ∈ை 𝑋∈ே  

(2) 

𝑚𝑖𝑛 𝑅 = 𝑅∈ே  (3) 𝑚𝑖𝑛 𝑌 =  𝑑𝑋∈ே∈ை∈ெ  𝑄𝑀∈ெ൘ ,∀𝑚 ∈ 𝑀 (4) 

Constraints:  𝑄∈ெ ≥ 𝑑∈ே  (5) 𝑑∈ே∈ை 𝑋 ≤ 𝑄,∀𝑚 ∈ 𝑀 (6) 𝑑∈ே∈ 𝑋 ≤ 𝑄 ,∀𝑜 ∈ 𝑂 (7) 𝑈∈ை = 1,∀𝑛 ∈ 𝑁 (8) 𝑋 =∈ே 𝑋∈ே ,∀𝑚 ∈ 𝑀, 𝑜 ∈ 𝑂 (9) 𝑋∈ = 𝑋∈ ,∀𝑖 ∈ 𝐽, 𝑜 ∈ 𝑂 (10) 𝑋 = 0,∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 (11) 𝑋 ≤ 𝐾,∀𝑚 ∈∈ை∈ே 𝑀 (12) 𝑑∈∈ 𝑋 ≤ 𝐵 ,∀𝑜 ∈ 𝑂 (13) 𝑇௭ = 𝑑௭𝑉 𝑋௭ ≤ 𝐿𝑇௭,∀𝑧 ∈ 𝑁, 𝑜 ∈ 𝑂,𝑚 ∈ 𝑀 (14) 𝑇 = ൬𝑑𝑉 + 𝑑𝑠 + 𝑇൰∈ே∈ை 𝑋, +∀𝑛 ∈ 𝑁 (15) 𝑇 ≤ 𝐿𝑇,∀𝑛 ∈ 𝑁 (16) 𝑆𝐹 = ቊℎ𝑑(𝑇 − 𝑇′ ),𝑇′ < 𝑇 ≤ 𝐿𝑇0,𝑇 ≤ 𝑇′  (17) 𝑅 = 𝜆(𝑇 − 𝑇ᇱ)ఉ + 𝑅 (18) 



X. Ren et al.  / International Journal of Industrial Engineering Computations 15 (2024) 75𝑇′ = 𝑚𝑖𝑛 ൬𝑑𝑉 ൰ ,∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 (19) 𝑌 = 𝑄 −𝑑∈ே∈ை 𝑋,∀𝑚 ∈ 𝑀 (20) 𝑋 ≤ 𝑀,𝑚 ∈ 𝑀 (21) 𝑋 ≤ 𝑈,∀𝑚 ∈ 𝐽,𝑛 ∈ 𝐽 (22) 𝑋,𝑈 ,𝑀 = ሼ0,1ሽ (23) 
 
Eqs. (1-4) are all objective functions; Eq (5) indicates that the storage of emergency supplies distribution center can meet the 
demand at the point of demand; Eq (6) indicates that the volume of supplies shipped from the distribution center to each 
affected site must not exceed its upper limit; Eq (7) represents the capacity constraint for distribution vehicles; Eq (8) indicates 
that a affected site is served by only one transport vehicle; Eq (9) indicates that each vehicle starts at the distribution center 
and returns to that distribution center when it has completed its task; Eq (10) expresses the guarantee of continuity and closure 
of distribution vehicle routes, i.e. the transport entering each node must leave from that node; Eq (11) indicates that a transport 
vehicle may not be transported from one distribution center to another; Eq (12) indicates that the number of transport vehicles 
issued from a distribution center must not exceed the number of transport vehicles owned by that distribution center; Eq (13) 
represents the transport vehicle mileage constraint; Eq (14) indicates the time of arrival of a transport vehicle from a 
distribution center at the first point of demand; Eq (15) indicates the time of arrival of the transported supplies at the point of 
demand; Eq (16) represents the time window constraint for the arrival of the transported supplies at the point of demand; Eq 
(17) represents the penalty cost of not delivering emergency supplies to the point of need in a timely manner; Eq (18) indicates 
the level of public psychological panic at the point of demand; Eq (19) indicates the time when the public learns through 
various channels that emergency supplies have arrived at each point of need, i.e. the public's psychological expectation time; 
Eq (20) indicates the quantity of supplies remaining in the distribution center; Eqs (21)-( 22) represent the relationships 
between variables; Eq (23) represents the variables. 

4. Solution of the emergency supplies distribution center location-routing optimization model 

The multi-objective optimization problem studied in this paper is an NP-Hard problem that is commonly solved by heuristic 
algorithms (Mara et al., 2021). Among others, the multi-objective cuckoo search algorithm has the advantages of fewer 
parameters, less susceptibility to falling into local optima, better global search capability, and more satisfactory feasible 
solutions within an acceptable time frame (Peng et al., 2020, 2021). However, it has the disadvantage of slow convergence, 
and after the solution is discarded new solutions are generated randomly, and the quality of the new solutions is not well 
controlled. Therefore, in this paper, we improve the standard multi-objective cuckoo algorithm and use a large-scale 
neighborhood search algorithm when a new solution is generated after the solution is discarded, which is enough to help jump 
out of the local optimal solution and expand the search space. Therefore, this paper proposes a hybrid multi-objective cuckoo-
large neighborhood search algorithm. 

4.1 Standard Multi-objective cuckoo search algorithm 

In 2009, Yang and Deb proposed the cuckoo search algorithm, a biomimetic meta-heuristic intelligent optimization algorithm 
that simulates the cuckoo's breeding behavior and flight patterns (Yang et al., 2009). The flight mode of the cuckoo search 
algorithm is the Lévy flight mode, which is quite common among other animals such as birds and insects. As shown in Fig. 
2, the Lévy flight is a combination of high-frequency short-distance walks, low-frequency long-distance walks, and 90° turns. 
This is a randomized wandering mode, where the long-distance walk facilitates jumping out of the local optimum to improve 
the global search and the short-distance walk facilitates the local search, the combination of which enables the algorithm to 
traverse all solutions in the solution space better than other algorithms. 
 

 
Fig. 2. Map of Lévy flight path 
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In practice, however, many problems cannot have a single objective; there are usually multiple objectives, which are often in 
conflict with each other, so that sometimes the true optimal solution may not exist. Compared to single-objective optimization 
problems, multi-objective optimization problems are more difficult and complex to solve, and their solutions form Pareto 
fronts, for which the better Pareto fronts should have uniformly distributed solutions. 
 
In 2010, Yang and Deb (2013) extended the cuckoo search algorithm by proposing the multi-objective cuckoo search 
algorithm (MOCS) to solve multi-objective optimization problems. In the multi-objective cuckoo search algorithm, population 
size 𝑛, discard probability 𝑝, step size 𝛼 and the parameters 𝛽 in the Lévy flight are configurable parameters.  
 
For optimization problems with multiple objectives, the multi-objective cuckoo search algorithm modifies the three ideal rules 
in the single-objective cuckoo algorithm, which are modified as follows (Nguyen et al., 2017): 
 
(1) Each cuckoo lays K eggs at a time and places them in a randomly chosen nest, with the kth egg corresponding to the 
solution of the kth objective. 
 
(2) Among randomly selected nests, the nest with the better egg quality is passed on to the next generation. 
 
(3) Each nest has a probability of being discovered by the host bird based on the similarity or difference of the eggs, and a 
new nest containing K eggs is created, increasing the diversity of eggs by random mixing. 

4.2 Large Neighborhood Search Algorithm 

The Large Neighborhood Search (LNS) algorithm, first proposed by Shaw in 1998, embodies good applicability for solving 
LRP, and many modern heuristic algorithms refer to the idea of neighborhood search in their design (Shaw, 1998). In the 
process of neighborhood search, a variety of neighborhood search operators successfully extend the search range. The 
algorithm uses the destroy operator and the repair operator for the initial solution, searches its domain based on the 
neighborhood of the solution, determines whether there exists a neighborhood solution that is better than the current solution, 
if so, the neighborhood solution replaces the current solution, if not, the current solution is retained, and repeats the process 
until it obtains the optimal solution. There are many kinds of destroy operators and repair operators in the large neighborhood 
search algorithm, and different operators can be designed according to different problems, so according to the model of this 
paper, four kinds of destroy operators and one kind of repair operator are proposed. 

4.3 Improved Multi-objective Cuckoo-Large Neighborhood Search Hybrid Algorithm 

In order to be able to make the algorithm converge faster and improve the algorithm's search performance, this paper proposes 
an improved multi-objective cuckoo-large neighborhood search hybrid algorithm (IMOCS-LNS), which improves the original 
algorithm in the following five aspects: 
 
(ⅰ) Chaotic initialization of populations helps to ensure the diversity and homogeneity of the initial population and provides a 
better basis for subsequent population iterations; 
(ⅱ) The introduction of non-linear inertia weights, which facilitate the global convergence of the algorithm; 
(ⅲ) Improved orientation of the bird's nest location when updating, where an elite strategy is introduced to move in the 
direction of the more optimal solution when updating; 
(ⅳ)The fixed discovery probability in the original algorithm is changed to a dynamically adjusted discovery probability, which 
facilitates traversing more solutions in the solution space; 
(ⅴ) Optimized the way a bird's nest is generated when a new bird's nest is discovered by choosing a large neighborhood search 
algorithm to update the solution and produce a random solution. 
(ⅵ) An acceptance criterion for random solutions that cannot dominate the old solution is added, using the probability of 
accepting a poor solution in the simulated annealing algorithm as the acceptance probability. 

4.3.1 Encoding and decoding of solutions 

In this paper, we use natural number coding to represent the feasible solution individuals. Each individual contains one or 
more paths; each path consists of a set of affected sites and a distribution center, indicating that a distribution vehicle departs 
from that distribution center and completes emergency supplies distribution tasks in the order in which the affected sites are 
arranged. Assume that 𝑚  affected sites are numbered as follows:1,2,3, . . . ,𝑚 ; The first alternative distribution center has 𝑛ଵvehicles; the second alternative distribution center has 𝑛ଶvehicles; and the nth alternative distribution center has 𝑛 vehicles. 
Then an individual feasible solution is represented by a sequence of 𝑚  affected sites and (𝑛ଵ + 𝑛ଶ+. . . +𝑛)  vehicle 
permutations. If there is no affected site number in front of a distribution center, it means that a vehicle will not be activated; 
if there are affected sites in front of a distribution center, it means that a vehicle will be activated to deliver emergency supplies 
to the previous affected sites in sequence. For example, given 9 affected sites and 3 alternative distribution centers, the labels 
1-9 denote affected sites and 10-12 denote alternative distribution centers; alternative distribution center 10 has 2 vehicles; 
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alternative distribution center 11 has 1 vehicle; and alternative distribution center 12 has 2 vehicles. A feasible solution to the 
problem is given in Table 1. This feasible solution consists of three paths. Route 1 is followed by vehicle 1 from distribution 
center 10, which returns to distribution center 10 after completing the emergency supply distribution tasks for affected site 5, 
affected site 7, affected site 4, and affected site 1 in that order. Route 2 is a route from which the vehicle 1 of the distribution 
center 12 departs from the point and returns to the point after completing the distribution tasks of the emergency supplies for 
the disaster-stricken place 2, the disaster-stricken place 6, and the disaster-stricken place 8 in turn. Route 3 is followed by the 
vehicle 2 of distribution center 12 from this point to complete the task of distributing emergency supplies to affected site 3 
and return to distribution center 12. From Table 1, we can also learn that ① no vehicle has been activated at distribution center 
11, indicating that this distribution center is not open; ②only one of the two vehicles at distribution center 10 has been 
activated, and both vehicles at distribution center 12 have been activated.  

 
Table 1  
Coding table 

Route 1：10-5-7-4-1-10 None Route 2：12-2-6-8-12 Route 3：12-3-12 None 
5 7 4 1 10 11 2 6 8 12 3 9 12 10 

 

4.3.2 Chaos initialization 

In the MOCS algorithm, the initial population is generated in a random way, which may lead to an uneven distribution of the 
population and may produce many inferior solutions, resulting in slow convergence and affecting the performance of the 
algorithm. Chaos is a state of motion with randomness obtained from deterministic equations, a non-linear phenomenon with 
the advantages of randomness, ergodicity, regularity, and sensitivity to initial conditions (Yu et al., 2022). Incorporating 
features of the chaos principle can effectively improve population diversity without losing individual randomness, providing 
a basis for further effective global search. In this paper, the Tent map function is used to initialize the population with chaos, 
and its function expression is as follows: 
 

𝑥௧ାଵ = ൜2𝑥௧ ,2(1 − 𝑥௧), 0 ≤ 𝑥௧ ≤ 1212 < 𝑥௧ ≤ 1 (24) 

 
According to the Tent map, the bird's nest 𝑖 generates a column of chaotic points in the feasible domain according to the 
following steps: 
 
Step1: Generate a random bird's nest 𝑥 according to the above coding method (Lai et al., 2019). 
Step2: Map each dimension 𝑥, 𝑘 = 1,2, . . . ,𝑛 on the location 𝑥 of the nest to the interval [0,1] by the following formula 
(Shen et al., 2022): 
 𝑐𝑥 = 𝑥 − 𝑎𝑏 − 𝑎  (25) 

 
whereሾ𝑎, 𝑏ሿis the domain of definition of the kth dimensional variable 𝑥. 
 
Step3: Use the above equation to iterate M times to generate the chaotic sequence 𝑐𝑥ଵ , 𝑐𝑥ଶ , . . . , 𝑐𝑥ெ   (Zhang et al., 2020a). 
Step4: Map the points of the chaotic sequence back to the original space according to the following equation (Ai et al., 2023): 
 𝑥௦ = 𝑎 + 𝑐𝑥௦ (𝑏 − 𝑎) (26) 
 
Step5: From these chaotic sequences we can obtain the column of chaotic points of 𝑥 after the Tent mapping (Zhang et al., 
2020b): 
 𝑥௦ = ൫𝑥,ଵ௦ , 𝑥,ଶ௦ , … , 𝑥,௦ ൯், 𝑠 = 1,2, … ,𝑀 (27) 

4.3.3 Non-linear inertia weights 

In the MOCS algorithm, the algorithm's optimization route is based on a combination of short-distance search and occasional 
long-distance exploitation in the search space by Lévy flights. Inertia weights can effectively balance the relationship between 
global exploration and local search so that the exploration ability in the first iteration of the algorithm and the development 
ability in the later iteration can be enhanced, thus improving the overall optimization-seeking ability of the algorithm. This 
paper invokes a non-linear inertia-decreasing strategy. 
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where 𝑡 denotes the current number of iterations, 𝑘 is the expansion constant used to adjust the curve, and 𝑇 denotes the total 
number of iterations. 

4.3.4 Undominated ordering 

For multi-objective optimization problems, in general, the algorithm finds a Pareto optimal set of solutions rather than a single 
solution. No one solution in the Pareto optimal solution set can be said to be better than another, and the process is as follows: 
 
(1) For each individual 𝑝 set the following two parameters: the number of solutions 𝑛 that dominate 𝑝 and the set of solutions 𝑆 that are dominated by 𝑝; 
(2) Set 𝑖 = 1 and find the individuals with 𝑛 = 0, which are the individuals that are not currently dominated by any other 
solution, and classify them as the first level of non-dominated individuals in 𝐹ଵ; 
(3) For each individual 𝑗  in 𝐹ଵ , visit the set  𝑆  where 𝑗  is able to dominate individuals, and subtract 𝑛  from 1 for each 
solution 𝑘 in 𝑆, i.e., subtract 𝑛 from 1 for the number of individuals dominating 𝑘; 
(4) If 𝑛 − 1 = 0, deposit k as the second level of non-dominating individuals in the set 𝐹ଶ; 
(5) Repeat steps 3 and 4 until all the solutions in the solution set are grouped in some 𝐹. 
4.3.5 Crowing distance calculation 

After the non-possession sort, the allocation of crowding distances begins. Individuals in each tier are assigned to the crowding 
distances, which is calculated as follows (Yue et al., 2021): 
 
(i) For the m-th objective function 𝑓 on the i-th layer frontier, 𝑛 is the number of individuals on that frontier. Initializing the 
distance of all individuals 𝑑 = 0, where j denotes the j-th individual of the i-th frontier and 𝑑  denotes the distances of the 
m-th objective function for the j-th individual in the i-th frontier (Sheikholeslami et al., 2017); 
 
(ii) Sort all individuals in the i-th frontier by the value of the m-th objective function from the smallest to the largest (Zhao et 
al., 2022); 
 
(iii) Assign the distance between the two individuals of the sorted boundary to infinity (Li et al., 2022), i.e., 𝑑ଵ = +∞ and 𝑑 = +∞; 

 
(iv) For an individual from 𝑗 = 2 to 𝑗 = 𝑛 − 1 its distance equation is as follows (Cui et al., 2023): 
 𝑑 = 𝑑 + 𝑥ାଵ − 𝑥ିଵ𝑓௫ − 𝑓 (29) 

where 𝑥ାଵ  denotes the m-th objective function’s value for the j+1st individual, 𝑥ିଵ  denotes the m-th objective 
function’s value for the j-1st individual, 𝑓௫ and 𝑓 denote the maximum and minimum values in the m-th objective 
function, respectively. 

 
(v)Sum the distance of the j-th individual in each objective function is the crowding degree of the j-th individual, as follows 
(Luo et al., 2023): 
 𝐷 =  𝑑∈ெ  (30) 

 
where 𝑀 denotes the number of objective functions. 
 
The meaning behind crowding distance is based on computing the Euclidean distance between individuals in each layer of 
the pareto frontier in an m-dimensional space of m objective functions, where two individuals at the boundary of each layer 
are assigned an infinite distance, so that the two solutions are always selected. 
 
With the introduction of crowding distance, everyone in the set has two properties, one being the crowding distance 𝐷 and 
the other being the non-dominance hierarchy 𝐹 . Then there is the following definition: if the conditions  𝐹 < 𝐹 or 𝐹 = 𝐹 
and 𝐷 > 𝐷 are satisfied, then the i-th individual is better than the j-th individual (Meng et al., 2019). This means that when 
the levels are different, the solution at the lower level is preferred; if the levels are the same, the solution with the greater 
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crowding is preferred. Since solutions with small crowding distances indicate a denser distribution of solutions, and conversely, 
solutions with large crowding distances indicate a more dispersed distribution of solutions, introducing this can eliminate the 
relatively dense set of solutions, increase the diversity of solutions and the uniformity of their distribution, and obtain a 
uniformly distributed set of pareto-optimal solutions. 

4.3.6 Step control 

In the MOCS algorithm, 𝛼 denotes the step size, which is composed of a step control factor and the difference between a 
random solution in the solution space and the current solution. The aim is to accommodate the difference between the qualities 
of the solutions and to simulate the characteristic that similar solutions are not easily found, so that its step size is also 
proportional to the difference between the two solutions. In order to be able to bring the solution closer to the solution of good 
quality, the IMOCS-LNS algorithm designed in this paper uses an elite strategy in terms of step size, i.e., when randomly 
selecting a solution, the solution in the pareto frontier is selected for learning, and thus a good direction is obtained, so that 
the step size 𝛼 can be expressed as: 
 𝛼 = 𝛼൫𝑥(௧) − 𝑥(௧)൯ (31) 
 
where 𝑥(௧) denotes the solution with the largest crowding in the solution set of the t-th pareto frontier of the iteration 𝑡, and 𝑥(௧) denotes the current solution at iteration 𝑡. Therefore, in the IMOCS-LNS algorithm, the search path of the algorithm and 
the nest location update strategy are as follows: 
 𝑥(௧ାଵ) = 𝜔(௧)𝑥(௧) + 𝛼 ⊕ 𝐿é𝑣𝑦(𝛽), 𝑖 = 1,2,3, … ,𝑛 (32) 𝜔(௧) = 𝜔 + (𝜔௫ − 𝜔)𝑒𝑥𝑝 ቈ− 𝑡ଶ(𝑘𝑇)ଶ (33) 𝛼 = 𝛼൫𝑥(௧) − 𝑥(௧)൯ (34) 
 
where 𝛼 is the step control variable and 𝐿é𝑣𝑦(𝛽) is the random step size obeying the distribution of 𝐿é𝑣𝑦, i.e: 
 𝐿é𝑣𝑦 ∼ 𝑢 = 𝑡ିଵିఉ , 0 ≤ 𝛽 ≤ 2 (35) 
 
In the IMOCS-LNS algorithm, the complete Lévy flight formula is as follows (Sankararao & Yoo, 2011): 
 𝑠 = 𝛼൫𝑥(௧) − 𝑥(௧)൯⊕ 𝐿é𝑣𝑦(𝛽)~0.01 𝑢𝑣భഁ ൫𝑥(௧) − 𝑥(௧)൯ (36) 

where 𝑢 and 𝑣 follow a normal distribution and satisfy 𝑢 ∼ 𝑁(0,𝜎௨ଶ),𝑣 ∼ 𝑁(0,𝜎௩ଶ), 𝛤 is the standard cardinal distribution. 

𝜎௨ଶ = ൜ Γ(1 + 𝛽)sin (𝜋𝛽/2)Γ[(1 + 𝛽)/2]𝛽2(ఉିଵ)/ଶൠଵ/ఉ ,𝜎௩ଶ = 1 (37) 

4.3.7 Probability of discovery 

In the MOCS algorithm, the discovery probability 𝑝 is a very important parameter. An appropriate discovery probability is 
conducive to increasing the diversity of solutions and thus finding the global optimal solution quickly. However, in the MOCS 
algorithm, the value of 𝑝 is often taken as a fixed value of 0.25, which is obviously not conducive to global search, so this 
paper replaces the fixed discovery probability with a dynamically adjusted probability, as in Eq. (38) ： 
 𝑝௧ = 𝑝௫ − 𝛽(𝑝௫ − 𝑝) log் 𝑡 (38) 
 
where 𝑝௧  is the probability that the i-th egg is found, and 𝑝and 𝑝௫ are the lower and upper bounds of the probability of 
discovery, respectively. A random number 𝑟 ∈ [0,1] is generated and if 𝑝௧ ≥ 𝑟, the nest position is changed as in the next 
section, otherwise, the nest position is not changed. 

4.3.8 Stochastic solution generation 

In constituting the stochastic solution, this paper adopts the large neighborhood search algorithm to improve the current 
solution by expanding the search space through the destruction operator and the repair operator. The destruction operator is 
randomly selected when choosing the operator to destroy the current solution to form the destruction pool, and then the repair 
operator is subsequently selected to insert the nodes in the destruction pool into the current solution as it goes to form the new 
solution. 
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(1) Destroy operator 
 
Remove φ nodes from the current solution and put them into the destruction pool. The size of φ affects the degree of 
brokenness of the solution; too big or too small will make the algorithm less efficient in finding the best. In general, φ is taken 
according to Eq. (39). The destroy operator used in this paper is as follows: 
 𝜑 = 𝑁8 :𝑁4൨ (39) 

 ①  Distribution Center Shutdown 
 

Among the selected distribution centers, one is randomly selected to be closed, and all demand points that are under the 
responsibility of this distribution center will be eliminated and put into the destruction pool. 
 

 

Fig. 3. Distribution Center Closure Schematic ②  Distribution center open 
 

Among the unselected distribution centers, one is randomly selected to be open and the φ nodes closest to that distribution 
center are selected to be removed from the solution and put into the destruction pool. 
 

 

Fig. 4. Distribution Center Closure Schematic ③  Randomly eliminating the affected points 
In the current solution, φ affected points are randomly selected to eliminate them into the destruction pool. 
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Fig. 5. Distribution Center Closure Schem ④  Randomly Remove Paths 
 

In the current solution, a path is randomly selected, the route is removed, and the affected points on that route are put into the 
destruction pool. 
 

 

Fig. 6. Diagram of the immediate deletion path  
(2) Repair operator 
 
After the destroy operator removes some nodes from the current solution, the repair operator is needed to reinsert the nodes 
in the destroy pool into the current solution to form a new neighborhood solution. 
 ①  Random insertion 
 
Randomly insert the affected points in the destruction pool into the feasible positions until the number of nodes in the 
destruction pool is 0. Although it may produce poorer solutions, it can increase the diversity and randomness of the solutions 
to avoid falling into the local optimum. 

4.3.9. Solution acceptance criterion 

If the random solution can dominate the current solution, then the random solution replaces the current solution, and if the 
random solution cannot dominate the current solution, then the random solution is accepted with the probability of accepting 
the poor solution based on the simulated annealing algorithm proposed by Sankarao and Yoo (2011) with the following 
formula: 
 𝑝 = ෑ exp ቈ−൫𝑓௪ − 𝑓ௗ൯𝑇 

ୀଵ  (40) 𝑇 = 𝛼𝑇ିଵ (41) 
 
where 𝑇 denotes the cooling temperature from iteration to generation 𝑖. Setting the initial temperature as 𝑇 and the cooling 
coefficient as 𝛼 and i is the number of iterations. In summary, the flow of the hybrid IMOCS-LNS algorithm is as follows: 
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Start

Initialize the parameters of the IMOCS-LNS algorithm

Randomly generate initial solutions

Find the current set of solutions on the Pareto front by non-dominated 
sorting of the current solutions and computing the congestion degree

Update the nest location by the nest location change equation (32) and 
calculate the objective function

Does the new birdhouse 
dominate the old birdhouse?

New Birdhouse Replaces Old Birdhouse

Abandon the bird's nest with the abandonment probability formula (38) and 
generate a new bird's nest by a large neighborhood search algorithm
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Fig. 7. Flowchart of the improved multi-objective cuckoo algorithm 
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5. Example analysis 

In this paper, data from Christofides69 in the standard dataset of LRP problems proposed by Barreto et al. were chosen for 
testing (Barreto et al., 2007). This dataset contains a total of 75 groups of data on the affected sites and 10 groups of data on 
alternative distribution centers, including X and Y coordinates of the affected sites and alternative distribution centers, demand, 
and capacity of the distribution centers. The following table shows the information on the coordinates of the alternative 
distribution centers, some of the coordinates of the affected sites, and the information on the demand. Table 1 shows the data 
for the 10 groups of alternative distribution centers and Table 2 shows the data for the 10 groups of affected sites. 
 
Table 1  
Information on alternative distribution centers 

No. 𝑋 𝑌 Capacity 
A1 44 41 300 
A2 56 7 300 
A3 40 72 300 
A4 62 12 300 
A5 46 5 300 
A6 25 75 300 
A7 69 22 300 
A8 69 61 300 
A9 51 67 300 
A10 33 73 300 

 
Table 2  
Information on the affected site 

No. 𝑋 𝑌 Demand 
B1 22 22 18 
B2 36 26 26 
B3 21 45 11 
B4 45 35 30 
B5 55 20 21 
B6 33 34 19 
B7 50 50 15 
B8 55 45 16 
B9 26 59 29 
B10 40 66 26 

5.1 Parameter setting 

The algorithm was implemented using MATLAB 2017a programmed on a 64-bit machine on a Win10 system with 8G of 
memory, a population size of 200, and a maximum number of 300 iterations, with the specific parameters shown in Table 3 
and Table 4. 
 
Table 3  
Algorithm parameter settings 

Algorithms Parameter settings 
IMOCS 𝑃 = 0.1，𝑃௫ = 0.9， 𝜔 = 0.3，𝜔௫ = 0.9 

NSGA-Ⅱ 𝑃 = 0.5，𝑃 = 0.1 
 
Table 4  
Setting of other parameters 

Basic parameters Value of parameters Basic parameters Value of parameters 𝑚 10 𝑆 5 units/min 𝑛 75 𝐶 RMB4/kilometre 𝐴𝐶 18000 𝐺 RMB 1000/vehicle 𝑉 45 km/h ℎ 1 RMB/minute/unit 𝑄 300 units 𝑅 16 𝑄 60 units 𝛼 0.88 𝐾 7 𝛽 0.88 𝐵 200 km 𝜆 2.25 LT୬ 3 hours   

5.2 Analysis of calculation results 

By comparing the results of the IMOCS-LNS, MOCS and NSGA-II algorithms for solving the model, the total system 
response time obtained by the IMOCS-LNS algorithm is somewhat longer, 1.41 hours and 3.57 hours longer than that obtained 
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by the other two algorithms, respectively. However, the number of distribution centers being selected using this algorithm is 
less than that obtained by the other two algorithms, and the total cost is lower. In addition to these, the level of psychological 
panic of the people in the affected places obtained with the IMOCS-LNS algorithm is the lowest. This is very much in line 
with humanitarianism, as the level of people's psychological panic has a direct impact on the harmonious development of 
society, so from one point of view, the results obtained by this algorithm have a strong advantage. The IMOCS-LNS algorithm 
also yields the highest material utilization rate of the three algorithms, reducing material waste. In summary, although the 
IMOCS-LNS algorithm is at a disadvantage in terms of time compared to the other two algorithms, the results are better in 
terms of total cost of consumption, the number of distribution centers opened, the panic level of people in the affected areas, 
and the material utilization rate, so it is evident that the improved algorithm in this paper solves the model better. 

  
Table 5 
Algorithm comparison results 

Algorithms 

Number of 
distribution 

centers 
selected 

Time Cost 
level of 

psychological 
panic 

Utilization 
of 

materials 

IMOCS-LN 6 95.71 160731.74 1246.36 75.78% 

MOCS 6 94.3 161623.67 1250.14 75.78% 

NSGA-Ⅱ 8 92.14 199246.33 1250.42 56.83% 

 
The results of the IMOCS-LNS algorithm to solve the model are shown in the table below. The distribution centers activated 
are 1, 2, 5, 6, 8 and 9, with 6 transporters, 4 transporters, 6 transporters, 5 transporters, 2 transporters and 6 transporters 
respectively. The total time spent on distribution is 95.71 hours, and the total cost is $160,731.74, the psychological risk 
perception of the people in the affected areas is 1,246.36, and the material utilization rate is 75.78%. The distribution roadmap 
is shown in Fig. 8. 

  
Table 6 
Model’s results 

DC Route of vehicle distribution  Time  Cost  level of psychological 
panic  

Utilization of   
materials  

A1  

A1→B26→B7→B8→A1  

95.71  160731.74  1246.36  75.78%  

A1→B17→B3→B6→A1  
A1→B4→B2→A1  
A1→B27→B30→B29→A1  
A1→B16→B23→B1→A1  
A1→B34→B13→B12→A1  

A2  

A2→B71→B20→B37→B15→A2  
A2→B5→B45→B57→A2  
A2→B47→B48→B36→A2  
A2→B70→B60→A2  

A5  

A5→B61→B22→B64→A5  
A5→B62→B73→B63→B68→A5  
A5→B43→B56→A5  
A5→B28→B69→A5  
A5→B21→B33→A5  
A5→B74→B41→B42→A5  

A6  

A6→B39→B9→B25→A6  
A6→B31→B55→B18→A6  
A6→B50→B44→A6  
A6→B40→A6  
A6→B32→B24→B49→A6  

A8  A8→B59→B54→B52→A8  
A8→B14→B19→A8  

A9  

A9→B35→B46→A9  
A9→B11→B53→A9  
A9→B38→B10→B72→A9  
A9→B66→B65→A9  
A9→B58→B51→A9  
A9→B67→B75→A9  
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Fig. 8. Model’s result 

5.3 Case analysis of different scales 

In the dataset, 4 groups of data with less than 30 nodes are randomly selected as small scale cases, 5 groups of data with 
less than 70 nodes and more than 30 nodes are selected as medium scale cases, and 6 groups of data with more than 70 nodes 
are selected as large scale cases to be analyzed, and the results are shown in the table below: 

 
Table 7  
Analysis of small-scale examples 

Case name MOCS-LNS  MOCS  NSGA-Ⅱ  
panic level  cost  panic level  cost  panic level  cost  

Srivastava86（8×2） 130.5  34015.72  137.9  45161.93  135.68  47004.45  
Perl83（12×2） 199.2  45076.77  199.6  45336.36  199.6  45318.95  
Gaskell67（21×5） 340.6  147663.3  363.9  921584  356.3  754198.8  
Gaskell67（22×5） 374.3  241711.3  405.2  364499.1  390.2  308818.5  

 
Table 8  
Analysis of medium-sized examples 

Case name MOCS-LNS  MOCS  NSGA-Ⅱ  
panic level  cost  panic level  cost  panic level  cost  

Min92（27×5）  460.98  395360.3  490.99  622697.5  475.11  570625.7  
Gaskell67（29×5）  514.04  994944.7  574.95  1177484  566.37  1052492  
Gaskell67（32×5）  556.57  940534  567.65  995770  570.37  1305185  
Gaskell67（36×5）  652.23  169553  655.49  171775.9  655.25  171884.9  
Christofides69（50×5）  932.19  190291.5  955.27  200728.7  932.74  205477.2  
Perl83（55×15）  956.65  257969  962.17  269042.1  958.11  294496.9  

 
Table 9  
Analysis of large-scale examples 

Case name MOCS-LNS  MOCS  NSGA-Ⅱ  
panic level  cost  panic level  cost  panic level  cost  

Perl83（85×7)  1475.29  293878  1476.89  294759.5  1477.34  294909.2  
Christofides69（100×10）  1951.36  300978.2  2265.37  402013.6  2009.34  319150.8  
Or76（117×14）  2445.06  443228.7  2519.9  452887.8  2550.88  457439.6  
Min92（134×8）  2501.09  868607.5  2566.62  894726.7  2544.66  900639.7  
Daskin95（150×10）  3214.41  1407175  3261.2  1483080  3240.68  1567094  
Perl83（318×4）  5916.81  1225582  6012.79  1231179  5994.96  1235916  
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In the four objective functions chosen in this paper, after an emergency, the decision maker should firstly take the panic of the 
people in the affected area as the primary consideration from the humanitarian point of view, and the panic degree of the 
people in the affected area is determined by the delivery time of the materials, in order to let the table show the results more 
clearly, only the panic degree of the people in the affected area is presented in the two objectives; the material utilization rate 
can reflect the warehouse's status, a high material utilization rate indicates that the number of open warehouses is appropriate, 
and vice versa, it indicates that the number of open warehouses is inappropriate, resulting in a waste of costs, however, in the 
total consumed costs, there are not only the costs related to warehouses, but also the delivery costs and the penalty costs, 
therefore, in order to be able to more intuitively see the cost of costs, the cost is selected as the second evaluation index in 
these two objectives. From Tables 6, 7 and 8, it can be concluded that the IMOCS-LNS algorithm produces significantly better 
results than the MOCS algorithm and the NSGA-II algorithm in solving cases of different sizes and can generate solutions 
with less panic and cost. Therefore, the IMOCS-LNS algorithm has a better optimal search in solving the site selection-path 
problem and is suitable for this problem. 

6. Conclusions and future research 

Firstly, in this paper, a model is developed for distribution centers for emergency supplies location - routing optimization with 
the objectives of system response time, total cost of consumption, psychological panic of people in the disaster-stricken area,  
and material utilization rate. The total response time of the system includes distribution time and loading and unloading time. 
Total consumption costs include distribution costs, distribution center operating costs and penalty costs. And psychological 
the panic level of people at the demand point is expressed by the psychological risk perception function based on the prospect 
theory, which can better quantify the panic psychology of disaster victims. 
 
Subsequently, an improved hybrid multi-objective cuckoo-large neighborhood search algorithm was designed, introducing 
Tent mapping, nonlinear inertia weights, dynamically adjusted discovery probabilities and congestion distances into the 
algorithm. After the solution is discarded, a new solution is generated using a large-scale neighborhood search algorithm. 
When the generated new solution fails to dominate the old one, the probability of accepting a poor solution based on the 
simulated annealing algorithm is used as an acceptance criterion. 
 
Finally, the LRP standard example is selected as the model data and solved by the IMOCS-LNS algorithm, which shows that 
the results of this algorithm are only slightly worse than the other two algorithms in terms of the system response time and 
better than the other two algorithms in terms of the total cost, the psychological panic of the people in the affected area, the 
material utilization rate, and the number of distribution centers selected. The results of this algorithm are able to minimize the 
total cost and the psychological fear of the people in the affected area, as well as maximize material utilization. In addition to 
this, cases of different sizes were brought into the model and solved by the algorithm, and it was found that the results obtained 
were also better than the other two algorithms. This shows that the algorithm is effective in solving the model and can provide 
decision-makers with a basis for decision-making. However, the paper only investigates the location-routing optimization 
model for emergency supply distribution centers under certain parameters, but in the actual post-disaster relief process, the 
demand and road capacity vary randomly, so future research can explore the location-routing optimization of emergency 
supply distribution centers under uncertain information on this basis. 
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