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 This research delves into the software testing process and its environmental factors to uncover the 
core elements influencing software reliability. Specifically, it focuses on the learning and negligent 
aspects of the software reliability growth model. The learning factor accelerates reliability growth, 
leading to an S-shaped curve in the mean value function, while the negligent factor highlights the 
occurrence of imperfect debugging. The study also uses Brownian motion and stochastic 
differential equations to establish statistical confidence intervals for reliability and costs. These 
intervals aid software managers in assessing potential release risks at various confidence levels, 
allowing them to make informed decisions considering resource constraints and desired system 
reliability levels across different scenarios. 
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1. Introduction 

 
The paramount concern of software developers and users lies in software reliability, a factor that augments user satisfaction 
and mitigates potential losses stemming from system failures. In recent decades, software reliability has become the 
predominant benchmark for evaluating software quality and is a fundamental pillar for devising effective software testing 
strategies. Within the software industry, a central challenge pertains to enhancing reliability while concurrently managing the 
fiscal outlays associated with software development. Numerous software reliability growth models (SRGMs) have been 
introduced, with the prevalent reliance on the Non-Homogeneous Poisson Process assumption for characterizing the dynamics 
of software testing and debugging phenomena. (Goel & Okumoto, 1979; Pham & Zhang, 2003; Huang, 2005; Chiu et al., 
2008; Kapur et al., 2011; Li & Pham, 2019; Huang et al., 2022; Tian et al., 2022; Huang et al., 2023). 

The prevailing pattern for software test data typically exhibits an S-shaped or exponential trajectory. However, prior models 
have often been constrained to apply effectively to only one of these data patterns, limiting their adaptability. An ideal model 
should be capable of accommodating the diverse test data patterns for superior fitting results. For instance, Huang et al. (2007) 
introduced a software reliability growth model incorporating testing effort, acknowledging the rapid early-stage growth 
followed by a gradual deceleration, resulting in an S-shaped curve for the growth rate of testing effort over time. Chiu et al. 
(2008) emphasized learning effects during testing and debugging, introducing two critical factors related to learning effects 
within their model. Their experiments, focused on fitness excellence, revealed an S-shaped pattern in the test data, 
substantiating the impact of learning effects during testing. Ramsamy et al. (2012) underscored that many existing software 
reliability models overlooked the learning factors of testers and proposed a model that integrates debugging and learning 
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indices to enhance adaptability across various software testing projects. Similarly, Ahmad et al. (2010) established NHPP-
based inflection S-shaped software reliability models, offering applicability to both exponential and S-shaped data types. 
Pachauri et al. (2015) advanced a multi-stage SRGM for software upgrades, incorporating an inflection S-shaped curve, fault 
reduction factors, and imperfect debugging processes. Jin and Jin (2016) optimized parameters of the Huang test-effort model 
via quantum particle swarm optimization, yielding superior fitting performance for diverse software testing data sets 
encompassing both exponential and S-shaped patterns. Chiu et al. (2019) and Huang et al. (2022) incorporated learning factors 
into their models. These models could evolve linearly or exponentially over time, enabling adaptability to S-shaped and 
exponential testing data, contingent on the learning effects. 

Furthermore, it is imperative to acknowledge the inherent imperfection in the debugging process, challenging the idealized 
scenario of flawless debugging. Imperfections imply that errors may not be entirely eradicated once errors are detected, 
potentially giving rise to new errors. Recent research endeavors have increasingly considered this notion when developing 
Software Reliability Growth Models (SRGMs). For instance, Chatterjee et al. (2012) proposed an SRGM incorporating 
imperfect debugging and time-related error detection capabilities. Aktekin and Caglar (2013) introduced a model featuring a 
multiplicative failure rate that dynamically fluctuates during the testing phase, elucidating the imperfections in debugging 
practices. Wang et al. (2015) adopted a fault content function to accommodate the log-logistic distribution, presenting an 
imperfect debugging model to estimate software reliability. Li and Pham (2017, 2019) introduced an SRGM that considers 
the uncertainty of the operating environment, acknowledging that debugging and test coverage may not be flawless. Zhao et 
al. (2018) employed a Bayesian approach to address the uncertainty of software reliability, accounting for both perfection and 
imperfection factors. Saraf and Iqbal (2019) developed an imperfect debugging model catering to multiple software versions 
and change points. Shrivastava et al. (2021) introduced a software reliability-based model for handling software scheduling 
issues, considering change-point scenarios. Ke and Huang (2020) proposed an SRGM featuring multiple change points to 
depict the consumption of testing effort and enhance software reliability analysis effectiveness. Significantly, this study 
departs from the conventional imperfect debugging models by considering the error correction process and its efficiency, 
contingent on detected error patterns. It recognizes that pure testing should avoid introducing new errors as the system code 
remains unaltered during pure testing phases. 

In addition, there have been debates regarding the applicability of the Non-Homogeneous Poisson Process (NHPP) to software 
reliability growth models. Cai et al. (2008) conducted experiments comparing the mean value function's accumulated errors 
to its variance and discovered that the variance does not amplify proportionally as testing time elapses. Wang et al. (2016) 
introduced a global optimization method for NHPP models coupled with a refined dataset to enhance the accuracy of software 
error prediction. Their approach sought to enhance the performance of traditional NHPP-based models. These conflicting 
perspectives on NHPP-based software reliability growth models have raised questions about whether any such models adhere 
to the NHPP. 

Additionally, interval estimation holds significance in software reliability research. Yamada and Osaki (1985) initially devised 
a formula for calculating confidence intervals of the mean value function, expressed as 𝑚ෝሺ𝑇ሻ ± 𝑍஼ோ/ଶඥ𝑚ෝ(𝑇). CR denotes the 
critical region, and 𝑍஼ோ/ଶ signifies the critical value for a given area 𝐶𝑅/2 in the standard normal distribution. It is worth 
noting that this formula aligns with the traditional NHPP assumption, as it posits that the variance of the mean value function 
increases with testing time. Huang (2005) employed confidence intervals to construct a test-effort Software Reliability Growth 
Model (SRGM), estimating the potential range of errors detectable at various testing times. 

Nevertheless, the conventional method for evaluating confidence intervals can decrease accuracy in estimating cost ranges as 
the recommended confidence intervals expand with time. This may seem counterintuitive in practice, given that the number 
of remaining software errors naturally decreases with testing time. Fang and Yeh (2016) proposed an alternative estimation 
method for the traditional model, facilitating the evaluation of confidence intervals for the mean value function. Although 
their model did not account for imperfect debugging, the suggested confidence intervals did not exhibit expansion as testing 
time progressed. 

The primary application of Software Reliability Growth Models (SRGM) is to support decision-makers in identifying the 
optimal software release time, considering diverse costs, system reliability, and imposed constraints. Consequently, studies in 
this domain consistently integrate these factors into their software release models, shaped by their unique testing environments. 
Cortellessa et al. (2015) devised an optimization-based approach to minimize the cost of software evolution while factoring 
in software reliability and performance constraints. Awad (2016) proposed allocating testing time in central systems and 
subsystems to minimize system failures within given time and cost limitations. Kooli et al. (2017) discussed differences 
between software testing and software fault injection techniques in the context of reliability evaluation concerning time and 
cost. Li and Pham (2017) considered environmental uncertainties, introducing a software reliability model that encompasses 
testing coverage, wherein the optimal software release time hinges on software reliability and cost. Zhu and Pham (2018) 
contended that achieving error-free software releases for every iteration is nearly impossible due to resource constraints, 
underscoring the necessity of defining an acceptable threshold for multiple software releases. Cao et al. (2019) and Tian et al. 
(2022) put forth software reliability models to minimize cumulative testing and penalty costs after software release, 
elucidating the threshold structure that underpins optimal release policies. Levitin et al. (2020) proposed an optimal 
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rejuvenation policy for real-time software tasks, accommodating arbitrary state transition time distributions within their cost 
evaluation model. 

Considering the preceding discussions, this study introduces a software reliability growth model that incorporates the learning 
and negligence factors associated with software testers. Moreover, the proposed model provides a rational means of estimating 
confidence intervals for software reliability and cost. This model is a valuable tool for software engineers to assess software 
release risks across different confidence levels. The remainder of this paper is structured as follows: Section 2 outlines the 
model development, addressing the learning and negligence factors. Section 3 offers the mathematical derivation of 
confidence intervals for the mean value function employing stochastic differential equations. Section 4 presents the validation 
of the proposed model and comparative analysis with other models. Section 5 introduces a practical decision model for optimal 
software release, while Section 6 offers an illustrative example and pertinent discussion. Finally, in Section 7, concluding 
remarks and recommendations for future research are provided. 

2. Model Development with Considerations of Learning Factor and Negligent Factor 

This research model is based on a real-world software testing scenario. Incorporating the learning factor in this model 
elucidates the mechanism behind the acceleration of software reliability growth, leading to the formation of an S-shaped mean 
value function. However, when the impact of the learning factor remains inconspicuous, the mean value function exhibits an 
exponential pattern. Notably, most previously published Software Reliability Growth Models (SRGMs) can only represent 
one of these two patterns, either S-shaped or exponential. In contrast, the model introduced in this study can represent both 
patterns. Furthermore, in the context of imperfect debugging, most previous studies employed a function simulating a rise in 
the number of initial software errors over time, often in the form of a(t)=a(1+ αt) (Pham et al., 1999). However, this assumption 
may not align with the realities of software testing, as the testing process does not introduce new software errors. Instead, the 
generation of new errors stems from the error-removal process, where previously unidentified software errors come to light. 
In other words, unless the program code is modified to address the error, new errors do not spontaneously emerge. This study 
explores the concept of software reliability growth from its foundational principles. 

In general, the software reliability growth process is typically described using mathematical functions encompassing error 
detection and correction procedures. Many relevant studies commonly employ the Non-Homogeneous Poisson Process 
(NHPP) as a foundation for their models, guided by the following key assumptions: 

(1) Immediate Removal of Detected Errors: It is assumed that once software errors are detected, they can be promptly and 
completely eliminated. 

(2) No Introduction of New Errors: There is an assumption that no new errors are generated during the error correction process.  

(3) NHPP for Error Detection: The error detection process is characterized as a Non-Homogeneous Poisson Process. 

With the considerations above, the detection of software errors can be represented as a counting process, denoted as {𝑁(𝑡), 𝑡 ≥0}, where 𝑁(𝑡) adheres to a Poisson distribution with a mean value function 𝑚(𝑡). (t). This probability can be formally 
expressed as: Pr(𝑁(𝑡) = 𝑘) = ሾ௠(௧)ሿೖ௘ష೘(೟)௞! ,𝑘 = 0,1,2, . ..  (1) 

Looking at it from an alternate viewpoint, the mean value function can be represented as the anticipated count of errors 
detected over a specified time span (0, 𝑡): 𝑚(𝑡) = ׬ 𝜆(𝑥)𝑑𝑥௧଴ . (2) 

Additionally, software reliability, denoted as 𝑅(𝑥 | 𝑡), is the probability of no error being detected during the interval [𝑡, 𝑡 +𝑥]. It is important to note that the symbol 𝑥  denotes a particular operational period in alignment with practical needs. 
Consequently, the formulation for 𝑅(𝑥 | 𝑡) can be expressed as follows: 𝑅(𝑥 | 𝑡) = 𝑒ି[௠(௧ା௫)ି௠(௧)], (3) 

and as the time t approaches infinity (𝑡 → ∞) , the software reliability value approximates 1, indicating high reliability. 

The study employs the following notations consistently: 
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Notations: 𝑏: the autonomous errors-detected factor  𝛾: the learning factor 𝜀: the negligent factor  𝑎: the initial number of all potential errors in the software system 𝜎: the standard deviation of the detection rate from the testing process 𝑓(𝑡): the intensity function of the fraction of the errors detected at time 𝑡 𝐹(𝑡): the cumulative function represents the fraction of errors detected during a specific time interval (0, 𝑡]   𝑚(𝑡): the mean value function, and it represents the accumulated number of software errors detected during the time 
interval (0, 𝑡) 𝜆(𝑡): the intensity function that denotes the number of the errors detected at time 𝑡 𝐷(𝑡): the function of the error detection rate 𝑅(𝑥|𝑡): the software reliability which is defined as the probability of no error detected within the time interval [𝑡, 𝑡 + 𝑥] ω(𝑡): the function of the residual errors at testing time t 𝐵(𝑡): the variable for the Brownian Motion 
 

2.1 Model Development 

In recent years, several studies have begun acknowledging the presence of a learning effect within the software testing process, 
though they have grappled with its precise identification. Consequently, quantifying and integrating these learning effects into 
software reliability growth models has emerged as a critical endeavor for software developers. Researchers like Huang et al. 
(2022) and Chiu et al. (2019) have explored this learning effect when formulating software reliability growth models under 
NHPP assumptions. However, their models have generally omitted the consideration of the negligent factor. The negligent 
factor pertains to the potential for software debugging staff to make errors while addressing software defects. This factor's 
significance is influenced by the number of unidentified error patterns within the software system, and its impact tends to 
diminish over time as the debugging experience grows through the recognition of previously detected defects. To illustrate 
our study's software reliability growth process, we have employed a causal loop diagram, presented in Fig. 1, which elucidates 
the logical concept of the software testing and debugging process. 
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Fig. 1. Causal Loop Diagram of the Proposed SRGM 

As delineated in Fig. 1, the pace at which errors are detected is linked to three key factors: the autonomous errors-detected 
factor denoted as 𝑏, the learning factor represented as 𝛾 and the negligent factor labeled as 𝜀. Remarkably, the negligent factor 𝜀 chiefly contributes to imperfect debugging. Specifically, 𝑏 implies that testing staff may serendipitously uncover hitherto 
unnoticed software errors, while 𝛾  signifies that testing staff can deliberately seek software errors based on previously 
recognized patterns. As such, the influence of the learning factor is intricately tied to the testing staff's expertise in error 
removal, with the process contingent upon how swiftly the erroneous pattern is identified. In this context, we define 𝐹(𝑡) as 
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the fraction of cumulative errors detected during the period (0, t). Consequently, the impact on the detection rate (𝐷(𝑡)) will 
be governed by 𝛾𝐹(𝑡). Conversely, the probability of testing staff making errors during the error removal process is linked to 
the fraction of unseen error patterns. Here, 1 − 𝐹(𝑡) denotes the fraction of undetected errors at the time 𝑡, thus resulting in a 
decline in the detection rate of 𝜀(1 − 𝐹(𝑡)). The detection rate is shaped by three interrelated factors: 𝑏 and 𝛾 exert a positive 
influence, while 𝜀  introduces a negative impact. The causal loop diagram facilitates the simplification of these 
interrelationships among the factors into a differential equation, articulated as follows: 

𝐷(𝑡) = 𝑑𝐹(𝑡)/𝑑𝑡1 − 𝐹(𝑡) = 𝑓(𝑡)1 − 𝐹(𝑡) = 𝑏 + 𝛾𝐹(𝑡) − 𝜀൫1 − 𝐹(𝑡)൯. (4) 

The values of 𝑏, 𝛾 and 𝜀 are intricately connected to the experience and capabilities of the testing staff. Equation (4) signifies 
the existence of imperfect debugging and learning effects within the error detection and debugging process. Through a 
differential equation analysis, 𝑓(𝑡) can be derived from Eq. (4) by solving the following equation: 

 𝑓(𝑡) = డி(௧)డ௧ = 𝑏 − 𝜀 − (𝑏 − 2𝜀 − 𝛾)𝐹(𝑡) − (𝜀 + 𝛾)𝐹(𝑡)ଶ (5) 

the explicit solutions of 𝐹(𝑡) and 𝑓(𝑡) are given by 

𝐹(𝑡) = 𝑒(௕ାఊ)௧ + (𝑏 − 𝜀)𝑒(௕ାఊ)௖𝑒(௕ାఊ)௧ − (𝜀 + 𝛾)𝑒(௕ାఊ)௖ (6) 

and 

𝑓(𝑡) = −(𝑏 + 𝛾)ଶ𝑒(௕ାఊ)(௧ା௖)(𝑒(௕ାఊ)௧ − (𝜀 + 𝛾)𝑒(௕ାఊ)௖)ଶ (7) 

It is essential to note that when the software testing/debugging process commences, the number of system errors discovered 
should be zero. Consequently, a constant 𝑐 adjusts the 𝐹(𝑡) function under the condition 𝐹(0) = 0. Based on the discussion 
above, the constant 𝑐 can be computed as follows: 

𝑐 = −ln(𝜀 − 𝑏)𝑏 + 𝛾  (8) 

By substituting the constant c into Eq. (6) and Eq. (7), 𝐹(𝑡) and 𝑓(𝑡) can be rearranged as:  

𝐹(𝑡) = (𝑏 − 𝜀)(𝑒(௕ାఊ)௧ − 1)(𝑏 − 𝜀)𝑒(௕ାఊ)௧ + 𝜀 + 𝛾 (9) 

and  

𝑓(𝑡) = (𝑏 − 𝜀)(𝑏 + 𝛾)ଶ𝑒(௕ାఊ)௧((𝑏 − 𝜀)𝑒(௕ାఊ)௧ + 𝜀 + 𝛾)ଶ (10) 

It is important to note that to ensure a gradual decrease in software errors through the debugging process, the values of 𝑏, 𝛾 
and 𝜀 must all be positive. Furthermore, for practical consistency, it is advisable for 𝑏 to be greater than 𝜀 to avoid the 
negligent factor's velocity surpassing that of the autonomous errors-detected factor. Additionally, the size of the software 
system Λ influences the estimation of the mean value function, and thus, an initial estimation of the total potential errors is 
required. Here, 𝑎 represents the anticipated count of potential errors, deduced from the software system's size and past testing 
project experience. Accordingly, the mean value function for the software error detection process can be expressed as follows: 

𝑚(𝑡) = 𝑎𝐹(𝑡) = 𝑎 ቆ (𝑏 − 𝜀)൫𝑒(௕ାఊ)௧ − 1൯(𝑏 − 𝜀)𝑒(௕ାఊ)௧ + 𝜀 + 𝛾ቇ, (11) 

The intensity function at time t is given by:  

𝜆(𝑡) = 𝑎𝑓(𝑡) = 𝑎 ቆ (𝑏 − 𝜀)(𝑏 + 𝛾)ଶ𝑒(௕ାఊ)௧((𝑏 − 𝜀)𝑒(௕ାఊ)௧ + 𝜀 + 𝛾)ଶቇ. (12) 

In order to capture the fluctuations in the error detection rate per error at time 𝑡, we define the error detection rate as: 



  

 

110𝐷(𝑡) = 𝜆(𝑡)𝑎 −𝑚(𝑡) = (𝑏 − 𝜀)(𝑏 + 𝛾)𝑒(௕ାఊ)௧(𝑏 − 𝜀)𝑒(௕ାఊ)௧ + (𝛾 + 𝜀) = (𝑏 + 𝛾)𝑒(௕ାఊ)௧ఊାఌ௕ିఌ + 𝑒(௕ାఊ)௧  (13) 

It is worth noting that the boundaries of the error detection rate fall within the range of 𝑏 − 𝜀 to 𝑏 + 𝛾 at any given testing 
time, signifying an improvement in the error detection rate over time in real-world scenarios. 

Proposition 1:  

Considering the error detection rate defined as 𝐷(𝑡) = (௕ାఊ)௘(್శം)೟ംశഄ್షഄା௘(್శം)೟ , where the parameters 𝑏, 𝛾, 𝜀 are all positive, and 𝑏 > 𝜀, 

it is evident that the error detection rate consistently exhibits an ascending trajectory. The boundaries of this rate consistently 
fall within the range of 𝑏 − 𝜀 to 𝑏 + 𝛾. 

Proof: 

To ascertain whether the function 𝐷(𝑡) exhibits strict monotonicity (i.e., it is strictly increasing), we can derive the first-order 
derivative of 𝐷(𝑡) concerning the testing time t resulting in the following equation: 𝜕𝐷(𝑡)𝜕𝑡 = (𝑏 − 𝜀)𝑒(௕ାఎ)௧(𝑏 + 𝛾)ଶ(𝜀 + 𝛾)((𝑏 − 𝜀)𝑒(௕ାఎ)௧ + (𝜀 + 𝛾))ଶ > 0 (∵  𝑏 > 𝜀) 

Since డ஽(௧)డ௧ > 0, it is evident that the error detection rate consistently demonstrates an ascending trend regardless of the 
testing time t. 

Moreover, the lower and upper boundaries of the error detection rate can be determined by evaluating the limits as t 
approaches zero (lim௧→଴ 𝐷(𝑡)) and as t tends toward infinity ( lim௧→ஶ𝐷(𝑡)). 

The lower boundary:  

lim௧→଴ 𝐷(𝑡) = lim௧→଴ (𝑏 + 𝛾)𝑒(௕ାఊ)௧ఊାఌ௕ିఌ + 𝑒(௕ାఊ)௧ = 𝑏 + 𝛾ఌାఊ௕ିఌ + 1 = 𝑏 − 𝜀 

The upper boundary:  

lim௧→ஶ𝐷(𝑡) = lim௧→ஶ (𝑏 + 𝛾)𝑒(௕ାఊ)௧ఊାఌ௕ିఌ + 𝑒(௕ାఊ)௧  

By using L’Hôpital’s rule, it can be obtained 

lim௧→ஶ𝐷(𝑡) = lim௧→ஶ (𝑏 + 𝛾)ଶ𝑒(௕ାఊ)௧(𝑏 + 𝛾)𝑒(௕ାఊ)௧ = 𝑏 + 𝛾 

The differentiation between exponential-shaped and S-shaped behaviors hinges on whether the value of the inflection point is 
greater than zero. The proposed model exhibits an S-shaped pattern when 𝛾 + 𝜀 > 𝑏 − 𝜀 (indicating a positive inflection 
point). Conversely, it takes an exponential shape when 𝛾 + 𝜀 ≤ 𝑏 − 𝜀. An inflection point suggests that the learning effect 
plays a relatively more significant role than the autonomous errors-detected rate during the testing and debugging. The exact 
inflection time point is determined by 

𝑡f = ln(𝛾 + 𝜀) − ln(𝑏 − 𝜀)𝑏 + 𝛾  (14) 

Proposition 2:  

Under the premise that the mean value function 𝑚(𝑡) is continuous and differentiable, and the condition 𝛾 + 𝜀 > 𝑏 − 𝜀 is 
satisfied, an inflection point can be identified at the time represented by ௟௡(ఊାఌ)ି௟௡(௕ିఌ)௕ାఊ . Additionally, the maximum value of 

the intensity function will be ௔(௕ାఊ)మସ(ఌାఊ) . This maximum value underscores the significance of the learning effect in the software 
debugging process, particularly in driving the emergence of an S-shaped behavior. 
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Proof: 

Referring to the mathematical form of Eq. (11), it is evident that the mean value function 𝑚(𝑡) maintains its continuity and 
differentiability at any given time t within the defined parameters of 𝑏 ≥ 0, 𝛾 ≥ 0 and 𝜀 ≥ 0. To ascertain the inflection time 
point within the specified timeframe, we can determine it by computing the second-order derivative of 𝑚(𝑡) concerning time 
t, which results in the following equation: 𝜕ଶ𝑚(𝑡)𝜕𝑡ଶ = 𝑎(𝑏 − 𝜀)(𝑏 + 𝛾)ଷ𝑒(௕ାఊ)௧ ቀ(𝛾 + 𝜀) − (𝑏 − 𝜀)𝑒(௕ାఊ)௧ቁ((𝑏 − 𝜀)𝑒௧(௕ାఊ) + (𝛾 + 𝜀))ଷ  

The inflection point is determined by solving the equation డమ௠(௧)డ௧మ = 0for t, and the maximum value of the intensity function is 

obtained at 𝑡 = ୪୬(ఊାఌ)ି୪୬(௕ିఌ)௕ାఊ . As long as the condition 𝛾 + 𝜀 > 𝑏 − 𝜀 holds, the inflection time point must be greater than 
zero to signify the presence of a learning effect (∵ ln(𝛾 + 𝜀) − ln(𝛾 − 𝜀) > 0). Furthermore, by substituting the solution =୪୬(ఊାఌ)ି୪୬(௕ିఌ)௕ାఊ  into the intensity function 𝜆(𝑡), the maximum value of 𝜆(𝑡) can be calculated as ௕(௕ାఊ)మସ(ఌାఊ) . 

Proposition 3:  

Assuming that the mean value function 𝑚(𝑡) remains continuous and differentiable, and given the condition 𝛾 + 𝜀 > 𝑏 − 𝜀, 
an inflection point exists at the time represented by ௟௡(ఊାఌ)ି௟௡(௕ିఌ)௕ାఊ . Furthermore, the maximum value of the intensity function 

is ௕(௕ାఊ)మସ(ఌାఊ) , indicating the pronounced impact of the learning effect in the software debugging process on the emergence of an 
S-shaped behavior. 

Proof: 

Based on the mathematical form of equation (11), it is established that the mean value function 𝑚(𝑡) maintains its continuity 
and differentiability over time t within the specified parameters of 𝑏 ≥ 0, 𝛾 ≥ 0, and 𝜀 ≥ 0. To determine the inflection time 
point within the planned horizon, we can derive the second-order derivative of 𝑚(𝑡) concerning time t, yielding the following 
equation: 𝜕ଶ𝑚(𝑡)𝜕𝑡ଶ = 𝑎(𝑏 − 𝜀)(𝑏 + 𝛾)ଷ𝑒(௕ାఊ)௧ ቀ(𝛾 + 𝜀) − (𝑏 − 𝜀)𝑒(௕ାఊ)௧ቁ((𝑏 − 𝜀)𝑒(௕ାఊ)௧ + (𝛾 + 𝜀))ଷ  

The inflection point can be identified by solving the equation డమ௠(௧)డ௧మ = 0 for t, and the maximum value of the intensity function 

is attained at 𝑡 = ୪୬(ఊାఌ)ି୪୬(௕ିఌ)௕ାఊ . Given that the condition 𝛾 + 𝜀 > 𝑏 − 𝜀 is met, the inflection time point must be greater than 
zero to indicate the presence of the learning effect (∵ ln(𝛾 + 𝜀) − ln(𝑏 − 𝜀) > 0). Furthermore, by substituting the solution t = ୪୬(ఊାఌ)ି୪୬(௕ିఌ)௕ାఊ  into the intensity function 𝜆(𝑡), the maximum value of 𝜆(𝑡) can be calculated as ௕(௕ାఊ)మସ(ఌାఊ) . 

To measure software reliability during the testing phase, we adopt the definition provided by Zhang and Pham (2006) to 
determine the reliability function of the study, as defined below: 𝑅(𝑥 | 𝑡) = 𝑒ି[௠(௧ା௫)ି௠(௧)] = exp ቂ𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌା௥ − (௕ିఌ)(௘(್శം)(೟శೣ)ିଵ)(௕ିఌ)௘(್శം)(೟శೣ)ାఌାఊቁቃ, (15) 

2.2 Parameters Estimation 

In this study, we employ two primary methods for estimating the parameters of the various software reliability growth models: 
the Least Squares Estimation (LSE) and Maximum Likelihood Estimation (MLE). The LSE method is used to estimate the 
parameters 𝑎, 𝑏, 𝛾 and 𝜀 based on n+1 observed data pairs: (𝑡଴,𝑚଴), (𝑡ଵ,𝑚ଵ), (𝑡ଶ,𝑚ଶ), . . . , (𝑡௡,𝑚௡), where 𝑚௜ represents the 
total number of errors detected within the time interval (0, 𝑡௜). For LSE, we formulate the objective function 𝐸𝑟(𝑎, 𝑏, 𝛾, 𝜀) as 
the sum of squared differences between the observed data points and the model's predictions. The objective function is 
minimized as follows: 

min 𝐸𝑟(𝑎 𝑏 𝛾 𝜀) = ෌ (𝑚௜ − 𝑚(𝑡௜))ଶ௡௜ୀଵ = ෎ ቆ𝑚௜ − 𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁቇଶ௡
௜ୀଵ . (16) 
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We differentiate this objective function concerning 𝑎, 𝑏, 𝛾 and 𝜀, setting the partial derivatives to zero to obtain the estimates 
for these parameters. 

డா௥(௔,௕,ఊ,ఌ)డ௔ = ෎ ቆ𝑚௜ − 𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁቇ ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁ௡
௜ୀଵ = 0, (17) 

డா௥(௔,௕,ఊ,ఌ)డ௕ = ෎ ቆ𝑚௜ − 𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁቇ ቀ௔௘(್శം)೟(ఌାఊା(௕ିఌ)(௕ାఊ)௧)ି௔(ఌାఊ)(௘(್శം)೟(௕ିఌ)ାఌାఊ)మ ቁ௡
௜ୀଵ = 0, (18) 

డா௥(௔,௕,ఊ,ఌ)డఊ = ෎ ቆ𝑚௜ − 𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁቇ ቀ௔(௕ିఌ)(ଵା௘(್శം)೟(௧(௕ାఊ)ିଵ))((௕ିఌ)௘(್శം)೟ାఌାఊ)మ ቁ௡
௜ୀଵ = 0 and  (19) 

డா௥(௔,௕,ఊ,ఌ)డఌ = ෎ ቆ𝑚௜ − 𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁቇ ቀ ௔(௘(್శം)೟ିଵ)(௕ାఊ)((௕ିఌ)௘(್శം)೟ାఌାఊ)మቁ௡
௜ୀଵ = 0  (20) 

MLE is the second method for estimating unknown parameters. The likelihood function for the proposed model is expressed 
as: 𝐿 = 𝑃𝑟{𝑁(𝑡ଵ) = 𝑚ଵ,𝑁(𝑡ଶ) = 𝑚ଶ,𝑁(𝑡ଷ) = 𝑚ଷ, . . . ,𝑁(𝑡௡) = 𝑚௡} 

     = ෑ (௠(௧೔)ି௠(௧೔షభ))(೘೔ష೘೔షభ)(௘ష(೘(೟೔)ష೘(೟೔షభ)))(௠೔ି௠೔షభ)!௡௜ୀଵ . 
(21) 

Taking the natural logarithm of the likelihood function, we have: ln(𝐿) = ෌ (𝑚௜ −𝑚௜ିଵ)ln(𝑚(𝑡௜) −𝑚(𝑡௜ିଵ))௡௜ୀଵ −෌ ൫𝑚(𝑡௜) −𝑚(𝑡௜ିଵ)൯௡௜ୀଵ −෌ ln൫(𝑚௜ −𝑚௜ିଵ)!൯௡௜ୀଵ . 
 

(22) 

We further simplify ln(L) based on Equation 20 to obtain: ln൫𝑚(𝑡௜) −𝑚(𝑡௜ିଵ)൯ 
= ln൭𝑎(𝑏 + 𝛾) ൬ 1(𝑏 − 𝜀)𝑒(௕ାఊ)௧೔షభ + 𝜀 + 𝛾 − 1(𝑏 − 𝜀)𝑒(௕ାఊ)௧೔ + 𝜀 + 𝛾൰൱ 

= ln(𝑎) + ln(𝑏 + 𝛾) + ln( ଵ(௕ିఌ)௘(್శം)೟೔షభାఌାఊ − ଵ(௕ିఌ)௘(್శം)೟೔ାఌାఊ). 

(23) 

Thus, ln(𝐿) = ෍ (𝑚௜ −𝑚௜ିଵ) ቀln(𝑎) + ln(𝑏 + 𝛾) + ln ቂ ଵ(௕ିఌ)௘(್శം)೟೔షభାఌାఊ − ଵ(௕ିఌ)௘(್శം)೟೔ାఌାఊቃቁ௡௜ୀଵ −𝑎 ቀ (௕ିఌ)(௘(್శം)೟೙ିଵ)(௕ିఌ)௘(್శം)೟೙ାఌାఊቁ −෌ ln((𝑚௜ −𝑚௜ିଵ)!)௡௜ୀଵ . 
(24) 

The estimators for the parameters 𝑎, 𝑏, 𝛾 and 𝜀 are obtained by solving the equations డ୪୬(௅)డ௔ = డ୪୬(௅)డ௕ = డ୪୬(௅)డఊ = డ୪୬(௅)డఌ = 0 
using numerical methods. In addition to parameter estimation, we calculate confidence intervals for the parameters 𝜃ଵ,𝜃ଶ,..,𝜃௞ 
using the variance-covariance matrix ∑. The Fisher information matrix F is used to derive ∑. Then, we determine the 
confidence intervals for the estimated parameters 𝜃௜ using the two-sided approximate 100*CR% confidence limits, where 𝑡಴ೃమ ,௡ି௞ is the critical value from the student-t distribution. 

𝑭 = ⎣⎢⎢
⎡𝐸 ቂିడమ ୪୬(௅)డఏభమ ቃ . . . 𝐸 ቂିడమ ୪୬(௅)డఏభడఏೖ ቃ. . . . . . . . .𝐸 ቂିడమ ୪୬(௅)డఏೖడఏభ ቃ . . . 𝐸 ൤ିడమ ୪୬(௅)డఏೖమ ൨⎦⎥⎥

⎤
. (25) 
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∑ = 𝑭ିଵ = ቎ 𝑉𝑎𝑟[𝜃෠ଵ] . . . 𝐶𝑜𝑣[𝜃෠ଵ,𝜃෠௞]. . . . . . . . .𝐶𝑜𝑣[𝜃෠௞,𝜃෠ଵ] . . . 𝑉𝑎𝑟[𝜃෠௞] ቏. (26) 

𝜃෠௜ ± 𝑡಴ೃమ ,௡ି௞ට𝑉𝑎𝑟[𝜃෠௜], i=1..k, (27) 

3. Model Development based on Stochastic Differential Equation 

In previous research, the widely adopted approach for calculating confidence intervals (CIs) relied on the estimation method 
introduced by Yamada and Osaki in 1985. However, it is essential to note that this method was primarily developed for 
assessing hardware deterioration based on Non-Homogeneous Poisson Processes (NHPP). In the context of this method, 
systems degrade over time, leading to a gradual increase in errors and subsequently causing confidence intervals to expand 
with time. Yamada and Osaki's definition for estimating confidence intervals in the context of software error detection during 
testing is as follows: 𝑚ෝ(𝑇) ± 𝑍஼ோ/ଶඥ𝑚ෝ(𝑇), (28) 

where CR represents the two-tail critical region, ඥ𝑚ෝ(𝑇) is the standard deviation of the mean value function 𝑚(𝑇), and 𝑍஼ோ/ଶ 
is the critical value corresponding to a specific 𝐶𝑅/2 area in the standard normal distribution. It is worth emphasizing that 
these confidence intervals naturally widen over time because the standard deviation ඥ𝑚ෝ(𝑇) is positively linked with time T. 
However, in the context of software systems, the number of remaining errors tends to decrease over time. This fact contradicts 
the notion that error deviations should increase with time. To illustrate this distinction, Fig. 2 visually compares the 
conventional and proposed confidence intervals. This graphical representation underscores that traditional CIs tend to expand 
over time, even though error deviations are, in reality, converging and not escalating with time. Consequently, the CIs deduced 
in our proposed model align more closely with the actual data. The research presented in Section 3.1 outlines the process of 
deriving these proposed CIs. 
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Fig. 2. The Difference between the Traditional and the Proposed Confidence Intervals with CR=5%. 

3.1 Model Development 

For deriving the proposed confidence intervals, certain additional assumptions must be made: 

(1) Irregular fluctuations stem from the error detection rate. 
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(2) These irregular fluctuations follow Brownian motion and a Normal distribution. 
 

Firstly, let ω(𝑡) = 𝑎 − 𝑚(𝑡). We assume that the irregular fluctuation is related to the error detection rate during the testing 
period and can be expressed as a stochastic differential equation (SDE): 

𝐷(𝑡) + 𝜎𝑑𝐵(𝑡) = ఒ(௧)௔ି௠(௧) + 𝜎𝑑𝐵(𝑡) = ೏೘(೟)೏೟௔ି௠(௧) + 𝜎𝑑𝐵(𝑡), (29) 

where 𝐵(𝑡) represents Brownian motion, and 𝜎 is a positive constant representing the magnitude of the irregular fluctuation.  

Substituting ω(𝑡) for 𝑎 −𝑚(𝑡), Equation (29) can be rewritten as: ω′(𝑡)ω(𝑡) = −൫𝐷(𝑡) + 𝜎𝑑𝐵(𝑡)൯ (30) 

Let Ψ(𝑡) = ln [ω(𝑡)]. Using Itô's calculus, we obtain the following equation: 

𝑑Ψ(𝑡) = ൬−𝐷(𝑡) − 12𝜎ଶ൰𝑑𝑡 − 𝜎𝑑𝐵(𝑡) (31) 

By integrating from 0 to T, we can determine Ψ(𝑇) as follows: 

න 𝑑Ψ(𝑡)்
଴ = −න 𝐷(𝑡)்

଴ 𝑑𝑡 − න 𝜎ଶ2 𝑑𝑡்
଴ − න 𝜎𝑑𝐵(𝑡)்

଴  (32) 

→Ψ(𝑡)|଴் = ׬− 𝐷(𝑡)଴் 𝑑𝑡 − ׬ ఙమଶ 𝑑𝑡଴் − ׬ 𝜎𝑑𝐵(𝑡)଴்  

→ln[ω(𝑇)] − ln [ω(0)] = ׬− 𝐷(𝑡)଴் 𝑑𝑡 − ׬ ఙమଶ 𝑑𝑡଴் − ׬ 𝜎𝑑𝐵(𝑡)଴்  

→ln[ω(𝑇)] − ln [𝑎] = ׬− 𝐷(𝑡)଴் 𝑑𝑡 − ׬ ఙమଶ 𝑑𝑡଴் − ׬ 𝜎𝑑𝐵(𝑡)଴்  (as ω(0) = 𝑎, the initial number of software errors must be a) 

→ln[ω(𝑇)] = ln [𝑎] − ׬ 𝐷(𝑡)଴் 𝑑𝑡 − ׬ ఙమଶ 𝑑𝑡଴் − ׬ 𝜎𝑑𝐵(𝑡)଴்  

→𝑒୪୬[ன(்)] = 𝑒୪୬ [௔]ି׬ ஽(௧)೅బ ௗ௧ି׬ ഑మమ ௗ௧೅బ ׬ି ఙௗ஻(௧)೅బ  

→ω(𝑇) = 𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧ି഑మ೅మ ିఙ஻(்) (33) 

Assume ω(𝑇) is a random variable. The corresponding expectation can be determined as: 

𝐸[ω(𝑇)] = 𝐸[𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧ି഑మ೅మ ିఙ஻(்)] = 𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧ି഑మ೅మ 𝐸[𝑒ିఙ஻(்)]. (34) 

Since 𝐸ൣ𝑒ିఙௐ(்)൧ = ׬ (𝑒ିఙ௭) ൬ ଵ√ଶగ் 𝑒ିೋమమ೅൰ 𝑑𝑧ାஶିஶ = 𝑒഑మ೅మ , Eq. (6) can be simplified as: 

𝐸[ω(𝑇)] = 𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧ି഑మ೅మ ൬𝑒഑మ೅మ ൰ = 𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧. (35) 

Consequently, the expectation of 𝑚(𝑇) can be expressed as: 𝐸[𝑚(𝑇)] = 𝐸[𝑎 − ω(𝑇)] = 𝑎 − 𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧ = 𝑎 − 𝑎𝑒ି׬ ష೏ౢ౤[ಡ(೅)]೏೟೅బ ௗ௧ 
        = 𝑎 − 𝑎𝑒୪୬[ன(்)]ି୪୬[ன(଴)] = 𝑎 − 𝑎൫ω(𝑇)൯𝑎ିଵ = 𝑎 − ω(𝑇) = 𝑚(𝑇). 

(36) 

Similarly, the variance of 𝑚(𝑇) can be dstermined as: 𝑉𝑎𝑟[𝑚(𝑇)] = 𝑉𝑎𝑟[ω(𝑇)] = 𝐸[ω(𝑇)ଶ] − 𝐸[ω(𝑇)]ଶ (37) 

To calculate 𝑉𝑎𝑟[𝑚(𝑇)], we need to find 𝐸[ω(𝑇)ଶ] and 𝐸[ω(𝑇)]ଶ. The process of deducing 𝐸[ω(𝑇)ଶ] and 𝐸[ω(𝑇)]ଶ is as 
follows: 
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Since 𝐸ൣ𝑒ିଶఙ஻(்)൧ = 𝑒ଶఙమ் (please see the proof of proposition 4), Equation (38) can be simplified as:  𝐸[ω(𝑇)ଶ] = 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧൫𝑒ିఙమ்൯𝐸ൣ𝑒ିଶఙ஻(்)൧ = 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧൫𝑒ିఙమ்൯൫𝑒ଶఙమ்൯ = 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧൫𝑒ఙమ்൯ (39) 

Likewise, referring to Eq. (35), since 𝐸[ω(𝑇)] = 𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧, we can intuitively obtain 𝐸[ω(𝑇)]ଶ as follows:  𝐸[ω(𝑇)]ଶ = 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧ (40) 

Proposition 4:  

As 𝐵(𝑇) represents a variable in the context of Brownian motion, the expected value 𝐸ൣ𝑒ିଶఙ஻(்)൧ can be obtained as 𝑒ଶఙమ்.  

Proof: 

Since 𝐵(𝑇) follows Normal distribution, the expected value can be obtained as the following equation:  

𝐸ൣ𝑒ିଶఙ஻(்)൧ = ׬ (𝑒ିଶఙ௭) ൬ ଵ√ଶగ் 𝑒ି೥మమ೅൰d𝑧ାஶିஶ ׬= ൬ ଵ√ଶగ் 𝑒ି೥మమ೅ିଶఙ௭൰d𝑧ାஶିஶ  = ଵ√ଶగ் ׬ ቆ𝑒ଶఙమ௧ିቀ೥శమ഑೅√మ೅ ቁమቇd𝑧ାஶିஶ . 

Substitute 𝑢 = ௭ାଶఙ்√ଶ்  → ୢ௨ୢ௭ = ଵ√ଶ் → dz=√2𝑇d𝑢. 

Therefore, the above formulation can be transformed into ଵ√ଶగ் ׬ ൫𝑒ଶఙమ்ି௨మ൯√2𝑇d𝑢ାஶିஶ . 

After the arrangement, the above formulation will be 

ଵ√ଶగ் ׬ 𝑒ଶఙమ்൫𝑒ି௨మ൯√2𝑇d𝑢ାஶିஶ  = ௘మ഑మ೅√గ ׬ ൫𝑒ି௨మ൯d𝑢ାஶିஶ . 

Since ׬ ൫𝑒ି௨మ൯d𝑢ାஶିஶ =√𝜋, the original formulation can be obtained as follows: 

௘మ഑మ೅√గ ׬ ൫𝑒ି௨మ൯d𝑢ାஶିஶ =௘మ഑మ೅√గ √𝜋 = 𝑒ଶఙమ். 

Accordingly, the equation 𝐸ൣ𝑒ିଶఙ஻(்)൧ = 𝑒ଶఙమ் can be proved. 

Hence, in accordance with Eq. (39) and Eq. (40), the variance of 𝑚(𝑇) can be expressed as: 𝑉𝑎𝑟[𝑚(𝑇)] = 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧൫𝑒ఙమ்൯ − 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧ = 𝑎ଶ𝑒ିଶ׬ ஽(௧)೅బ ௗ௧൫𝑒ఙమ் − 1൯= ቀ𝑎𝑒ି׬ ஽(௧)೅బ ௗ௧ቁଶ ൫𝑒ఙమ் − 1൯ = (𝐸[ω(𝑇)])൫𝑒ఙమ் − 1൯ = (𝑎 − 𝐸[𝑚(𝑇)])ଶ൫𝑒ఙమ் − 1൯= ൫𝑎 − 𝑚(𝑇)൯ଶ൫𝑒ఙమ் − 1൯ (41) 

Furthermore, the integration of the detection rate 𝐷(𝑡) under the definition in [0,𝑇] can be calculated as shown below: 

න 𝐷(𝑡)்
଴ 𝑑𝑡 = න (𝑏 + 𝛾)𝑒(௕ାఊ)௧ఊାఌ௕ିఌ + 𝑒(௕ାఊ)௧்

଴ 𝑑𝑡 = ln ൤𝑏𝑒(௕ାఊ)் + 𝛾 + 𝜀𝑏 + 𝛾൨ (42) 

Furthermore, understanding how to compute the variance of the fault detection rate, 𝜎ଶ, using actual software testing data is 
crucial for deriving the confidence intervals of 𝑚(𝑇). Estimating the standard deviation from the testing process, denoted as 𝜎ො, can be obtained by the relationship between 𝑉𝑎𝑟[𝑚(𝑇)] and 𝜎 in Eq. (41), which is represented as: 𝜎ොଶ = ෍ (1 𝑡௜⁄ )ln ቂ(௠೔ି௠ෝ (௧೔))మ௡ିଵ (𝑎ො − 𝑚ෝ(𝑡௜))ଶൗ + 1ቃ௡௜ୀଵ . (43) 
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Hence, the confidence intervals can be estimated using the unspecified parameters and 𝜎ොଶ. 

3.2 Estimation of Confidence Intervals of the Proposed Model 

In Section 3.1, the analysis considers the variance in software debugging efficiency attributed to the error detection rate. The 
construction of confidence intervals for the mean value function is based on Eq. (36) and Eq. (41). The following equation 
outlines the proposed confidence intervals for the mean value function: 

𝐸[𝑚(𝑇)] ± 𝑡಴ೃమ ,௡ି௞ඪ𝑉𝑎𝑟[𝑚(𝑇)]൮1 + 1𝑛 + ൫𝑇 − t൯ଶ෍ ൫𝑡௜ − t൯ଶ௡௜ୀଵ
൲ 

= 𝑚ෝ(𝑇) ± 𝑡஼ோ/ଶ,௡ି௞ඨ(𝑎ො − 𝑚ෝ(𝑇))ଶ൫𝑒ఙమ் − 1൯ ൬1 + ଵ௡ + (்ି୲)మ෌ (௧೔ି୲)మ೙೔సభ ൰, 

(44) 

Here, 𝑡஼ோ/ଶ,௡ି௞ represents the critical value of the Student's t-distribution with 𝑛 − 𝑘 degrees of freedom. To simplify, the 
upper and lower confidence intervals for 𝑚(𝑇) are denoted as 𝑚௎஻஼ோ (𝑇) and 𝑚௅஻஼ோ(𝑇), respectively. 

In summary, the traditional model assumes that the variance in the number of software errors detected is linked to 𝑚(𝑇), 
while the proposed model attributes it to 𝐷(𝑡). As a result, the confidence intervals in the traditional model exhibit divergence 
over time, whereas they converge in the proposed model. It explains the decreasing variance of software errors during later 
testing periods, as depicted in Figure 1. Furthermore, the upper and lower confidence intervals for software reliability, 𝑅(𝑥 𝑇⁄ ), can be deduced from 𝑚௎஻஼ோ (𝑇) and 𝑚௅஻஼ோ(𝑇), as indicated in Eq. (45) and Eq. (46). 𝑅௎஻஼ோ(𝑥 𝑇⁄ ) = 𝑒ି[௠ೆಳ಴ೃ (்ା௫)ି௠ೆಳ಴ೃ (்)] (45) 𝑅௅஻஼ோ(𝑥 𝑇⁄ ) = 𝑒ି[௠ಽಳ಴ೃ(்ା௫)ି௠ಽಳ಴ೃ(்)] (46) 

4. Models Validation 

To validate the suitability of our proposed model, we conducted a comparative analysis with three classic perfecting Software 
Reliability Growth Models (SRGMs), as presented in Table 1. The SRGM by Wang et al. (2015) employs five parameters, 
while other SRGMs (Pham et al., 1999; Kapur et al., 2008; our model) use four parameters. In general, models with more 
parameters have better fitting capabilities. Parameter estimation in this study was performed using the least squares estimation 
(LSE) method. We evaluated the fitting abilities of these models using eight datasets from prior research, as outlined in Table 
2. Detailed information about these datasets is provided in Table 3. 

To assess the effectiveness of these models, we employed three criteria: 

(1) Mean Square Error (MSE): The definition is 𝑀𝑆𝐸 = ෌ (௠೔ି௠(௧೔))మ೙೔సభ ௡ି௞ , where 𝑚௜ represents the actual cumulative number 
of errors at time 𝑡௜, 𝑚(𝑡௜) is the estimated cumulative number of errors at time 𝑡௜ derived from the fitted mean value function, 𝑛 is the number of observations, and 𝑘 is the number of model parameters.  

(2) R-squared (Rsq): The definition is 𝑅𝑠𝑞 = 1 − ෍ ൫௠೔ି௠(௧೔)൯మ೙೔సభ෎ ቆ௠೔ି෍ ௠ೕ ௡⁄೙ೕసభ ቇమ೙
೔సభ

.  
(3) Akaike information criterion (AIC) (Akaike, 1973): AIC is a measure defined as the log-likelihood term penalized by the 

number of model parameters and is given by 
RSSAIC *ln 2n k

n
 = +  

. 

Table 1 
Summary of Mean Value and Error Detection Rate Functions for the Imperfect Debugging SRGMs 

Imperfect Debugging SRGMs 𝒎(𝒕) and 𝒅(𝒕) 

Pham et al. (1999) 𝑚(𝑡) = ௔(ଵି௘ష್೟)(ଵାఈ௧ାഀ೟್)ଵା௘ష್೟ఉ  and 𝑑(𝑡) = ௕ଵାఉ௘ష್೟. 
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Kapur et al. (2008) 𝑚(𝑡) = ௔(ଵି௘ష್೛(భషഀ)೟)ଵିఈ  and 𝑑(𝑡) = (ଵିఈ)௕௣ଵିఈ௘ష್೛೟(షభశഀ). 
Wang et al. (2015) 𝑚(𝑡) = ௔(ఈ௧)೏ଵା(ఈ௧)೏ + 𝐶(1 − 𝑒ି௕௧) − 𝑎𝑑(𝛼𝑡)ௗ𝑒ି௕௧ ቀଵௗ + ௕௧ଵାௗ + ௕మ௧మଶ(ଶାௗ)ቁ and 𝑑(𝑡) = 𝑏. 

Proposed model 𝑚(𝑡) = 𝑎 ቀ (௕ିఌ)(௘(್శം)೟ିଵ)(௕ିఌ)௘(್శം)೟ାఌାఊቁ and 𝑑(𝑡) = (௕ାఊ)௘(್శം)೟ംశഄ್షഄା௘(್శം)೟ . 

 

Table 2  
Datasets Used for Validation 

Dataset Reference Source 
[1] Zhang & Pham (2006) Failure data of Telecommunication system 
[2] Yang et al. (2016) Mozilla Firefox 3.5 testing data 
[3] Wang et al.(2016) Medium scale software project 
[4] Hsu et al.(2011) Open source project management software 
[5] Peng et al.(2014) Testing data for the Room Air Development Center 
[6] Zhang & Pham (1998) Failure data of Misra system 
[7] Shyur (2003) Failure data of Misra system 
[8] Singpurwalla & Willson (1999) Failure data of NTDS system 

 

Table 3  
The Detail of the Datasets 

Data1={{0.5,5},{1,5},{1.4,5},{1.9,10},{2.4,15},{2.9,15},{3.3,15},{3.8,25},{4.3,30},{4.8,40},{5.2,45},{5.7,55},{6.2,65
},{6.7,65},{7.1,80},{7.6,80},{8.1,85},{8.6,90},{9,90},{9.5,90},{10,100}}; 

Data2={{1,9},{2,12},{3,16},{4,25},{5,27},{6,29},{7,29},{8,32},{9,34},{10,35},{11,36},{12,36},{13,39},{14,39},{15,
40},{16,40},{17,40},{18,41},{19,42},{20,43},{21,43},{22,44},{23,45},{24,45},{25,46},{26,47},{27,47},{28,4
9},{29,50},{30,50},{31,50},{32,50},{33,51},{34,52},{35,53},{36,54},{37,55},{38,55},{39,55},{40,55},{41,56
},{42,59},{43,60},{44,60},{45,60},{46,61},{47,62},{48,62},{49,62},{50,62},{51,62},{52,64},{53,65}}; 

Data3={{1,12},{2,23},{3,43},{4,64},{5,84},{6,97},{7,109},{8,111},{9,112},{10,114},{11,116},{12,123},{13,126},{1
4,128},{15,132},{16,141},{17,144}}; 

Data4={{1,9},{2,15},{3,19},{4,24},{5,28},{6,29},{7,32},{8,36},{9,36},{10,40},{11,41},{12,41},{13,45},{14,47},{15,
49},{16,52},{17,52},{18,55},{19,57},{20,58},{21,61},{22,61},{23,64},{24,66},{25,67},{26,69},{27,70},{28,7
3},{29,74},{30,75},{31,75},{32,78},{33,79},{34,80},{35,82},{36,83},{37,83},{38,84},{39,84},{40,85},{41,85
},{42,87},{43,87},{44,87},{45,89},{46,89},{47,91},{48,91},{49,94}}; 

Data5={{4,2},{8.3,2},{10.3,2},{10.9,3},{13.2,4},{14.8,6},{16.6,7},{31.3,16},{56.4,29},{60.9,31},{70.4,42},{78.9,44},
{108.4,55},{130.4,69},{169.9,87},{195.9,99},{220.9,111},{252.3,126},{282.3,132},{295.1,135},{300.1,136}}; 

Data6={{1,27},{2,43},{3,54},{4,64},{5,75},{6,82},{7,84},{8,89},{9,92},{10,93},{11,97},{12,104},{13,106},{14,111}
,{15,116},{16,122},{17,122},{18,127},{19,128},{20,129},{21,131},{22,132},{23,134},{24,135},{25,136}}; 

Data7={{0.625,9},{1.065,13},{1.465,20},{2.145,26},{2.765,31},{3.425,34},{4.155,36},{4.89,41},{5.81,45},{6.524,47}
,{7.169,51},{7.816,58},{8.176,58},{8.716,63},{9.111,66},{9.791,69},{10.401,72},{11.027,76},{12.014,86},{1
2.264,89},{12.384,90},{12.934,92},{13.424,96},{14.064,101},{14.324,101},{14.984,103},{15.474,103},{15.99
4,105},{16.694,108},{17.539,114},{18.369,117},{18.969,118},{19.694,119},{20.594,123},{21.174,126},{21.7
74,128},{23.454,139},{24.579,148}}; 

Data8={{9,10},{21,20},{32,30},{36.,40},{43.,50},{45,60},{50,70},{58,80},{63,90},{70,100},{71,110},{77,120},{78,1
30},{87,140},{91,150},{92,160},{95,170},{98,180},{104,190},{105,200},{116,210},{149,220},{156,230},{25

0,250}}; 

 

The estimated parameters for each of the four models across all eight datasets are listed in Table 4, along with results from 
goodness-of-fit tests. Notably, when comparing the proposed model with the other three, it consistently ranks among the top 
two regarding goodness of fit. However, it is worth mentioning that Kapur's imperfect debugging SRGM could perform better 
with datasets 1 and 2, particularly when assessing criteria such as MSE and Rsq. It attributed to Kapur's model not adapting 
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effectively to S-type testing data. In contrast, it exhibits a good fit with the other datasets. This distinction becomes evident 
when examining the figures in datasets 1 and 8 in Fig. 4, where Kapur's model struggles to accommodate both S-type and 
concave-type testing data simultaneously, especially when compared to the proposed model. 

On the other hand, the imperfect debugging SRGM of Wang et al. demonstrates favorable applicability across most of the 
eight datasets, resulting in low MSE and Rsq values exceeding 95%. It is important to note that models with more parameters 
offer improved goodness of fit in terms of AIC. However, increasing the number of parameters should be done judiciously to 
avoid overfitting. In the case of Wang's model, overfitting becomes evident, where the model captures intricate details and 
noise in the training data to a degree that adversely affects its performance on new data. This phenomenon is particularly 
notable in datasets 1, 5, and 7, as seen in Fig. 5, especially during the early testing stages. Multiple curves turning points 
attempt to match the distribution of the testing data, but this overfitting can hinder the model's generalization capabilities. 

In summary, apart from Wang's imperfect debugging model, the proposed model consistently emerges as the most suitable 
choice. It is evident from the MSE and Rsq values presented in Table 5 that this study demonstrates superior suitability, except 
for dataset 2. Figs. 3-6 illustrate each imperfect debugging model's conventional confidence intervals (represented by red 
dashed lines). Figure 6 showcases the introduction of a new concept (blue dashed lines) in confidence intervals, in addition to 
the traditional approach. 

Table 4  
Estimated Values of Models’ Parameters for Different Data Set 

Data Set Pham et al. (1999) Kapur et al. (2008) Wang et al. (2015) Proposed model  
[1] a=102.07 

b=0.615581 
α=0.000000 
β=27.580800 

a=103.94 
b=0.028407 
α=2.107800 
p=2.411560 

a=101.80 
b=1.015990 
α=0.440787 
d=2.391560 
C=2.421650 

a=102.04 
b=0.021527 
γ=0.594335 
ε=0.000000 

[2] a=60.20 
b=0.071598 
α=0.000010 
β=0.000000 

a=60.21 
b=0.741666 
α=0.000002 
p=0.097826 

a=69.60 
b=1.292100 
α=0.051785 
d=0.981500 
C=8.950500 

a=63.50 
b =0.062347 
γ=0.000000 
ε=0.000000 

[3] a=146.12 
b=0.211463 
α=0.000000 
β=0.692870 

a=141.73 
b=0.702811 
α=0.080910 
p=0.217925 

a=150.70 
b=1.180560 
α=0.223392 
d=1.399540 
C=5.571260 

a=145.20 
b=0.216806 
γ=0.002745 
ε=0.093055 

[4] a=101.67 
b=0.045435 
α=0.000000 
β=0.000000 

a=101.68 
b=0.768848 
α=0.000004 
p=0.059007 

a=99.99 
b=1.078420 
α=0.045450 
d=1.472360 

C=14.341600 

a=100.75 
b=0.046262 
γ=0.000000 
ε=0.000000 

[5] a=130.13 
b=0.014867 
α=0.000007 
β=5.137940 

a=136.47 
b=0.081202 
α=0.757768 
p=0.048613 

a=150.80 
b=0.167197 
α=0.006806 
d=2.112940 
C=7.755370 

a=146.33 
b=0.009877 
γ=0.002630 
ε=0.007029 

[6] a=136.89 
b=0.135467 
α=0.000009 
β=0.000000 

a=136.32 
b=0.170887 
α=0.000029 
p=0.804763 

a=152.47 
b=2.094400 
α=0.095743 
d=1.107060 

C=24.739100 

a=135.98 
b=0.138236 
γ=0.000000 
ε=0.000000 

[7] a=212.32 
b=0.045812 
α=0.000035 
β=0.111308 

a=201.76 
b=0.612217 
α=0.158631 
p=0.070752 

a=150.38 
b=2.084310 
α=0.074674 
d=1.913120 

C=20.043100 

a=234.39 
b=0.037598 
γ=0.000000 
ε=0.000000 

[8] a=245.52 
b=0.039804 
α=0.000000 
β=18.390600 

a=245.76 
b=0.043850 
α=0.379483 
p=0.187553 

a=246.71 
b=0.070716 
α=0.027353 
d=2.560130 
C=4.590530 

a=250.11 
b=0.034449 
γ=0.002002 
ε=0.032082 
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Table 5 
Comparisons of Different Fitting Criteria 

MSE Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 
Pham et al. (1999) 7.96 15.79 44.92 7.40 17.35 32.02 13.81 44.66 
Kapur et al. (2008) 42.16 15.84 51.86 7.40 9.05 31.94 13.71 463.39 
Wang et al. (2015) 6.67 5.44 19.22 2.93 20.48 7.87 14.11 41.78 
Proposed model 7.96 17.72 44.19 7.36 8.78 31.92 13.66 42.46 
R-Squared Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 
Pham et al. (1999) 99.31% 91.22% 97.22% 98.64% 99.33% 96.63% 99.03% 99.13% 
Kapur et al. (2008) 96.37% 91.20% 96.79% 98.64% 99.65% 96.64% 99.04% 90.92% 
Wang et al. (2015) 99.43% 96.98% 98.81% 99.46% 99.21% 99.17% 99.01% 99.18% 
Proposed model 99.31% 90.15% 97.27% 98.65% 99.66% 96.64% 99.04% 99.17% 
AIC Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 
Pham et al. (1999) 50.55 153.25 71.65 105.08 66.90 93.64 106.75 98.16 
Kapur et al. (2008) 85.55 153.39 74.09 105.09 53.24 93.58 106.46 154.30 
Wang et al. (2015) 48.82 98.76 59.22 61.67 72.39 60.54 109.58 98.55 
Proposed model 50.55 159.35 71.37 104.79 52.59 93.56 106.34 96.95 

 

 

Fig. 3. The Fitting Results for the Imperfect Debugging SRGM proposed by Pham et al. (1999) 

 

Fig. 4. The Fitting Results for the Imperfect Debugging SRGM proposed by Kapur et al. (2008) 

 

Fig. 5. The Fitting Results for the Imperfect Debugging SRGM proposed by Wang et al. (2015) 
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Fig. 6. Comparisons between the Traditional and the Proposed Confidence Intervals for the Proposed Model.  

5. Decision for Optimal Software Release 

Software developers must carefully plan the duration of software testing before launching a new system online. Inadequate 
time allocated for testing can adversely affect the software's stability, potentially resulting in increased costs or user 
dissatisfaction. Conversely, excessive testing time escalates testing costs and leads to opportunity costs due to delayed 
software release. Therefore, this research model draws inspiration from Zhang and Pham's (1998) decision-making model for 
software testing costs and devises a novel decision-making model that accounts for confidence intervals. This model 
incorporates a conservative perspective, empowering decision-makers to approach average and worst-case scenarios with a 
nuanced mindset. 

Six distinct costs are associated with evaluating a software release. The first cost, denoted as 𝐶଴, covers the setup expenses of 
the software testing project, encompassing necessary fixed investments. 𝐶ଵ pertains to routine costs, including office rent, 
utility charges, and miscellaneous expenses. 𝐶ଶ and 𝐶ଷ represent the expected costs of rectifying a software error per unit of 
time during the testing and warranty phases, respectively. The estimated time needed for error resolution is 𝑢௬ during testing 
and 𝑢௪ during the warranty period. 𝐶ସ signifies the expected losses from a software error, and software experts can assess its 
impact on subsequent operations. 𝐶ହ accounts for the expected loss of business opportunities due to delayed software release, 
quantified through a power law function, reflecting opportunity loss over time. 

Furthermore, while Eq. (47) is employed to pinpoint the optimal software release time in an average-case scenario, Eq. (48) 
proves valuable for conservative decision-making, addressing potential inefficiencies in future testing work. Consequently, 
software project managers should consider the lower boundaries, 𝑚௅஻஼ோ(𝑇) and 𝑅௅஻஼ோ(𝑥|𝑇), within a specific critical region 
(CR). It allows project managers to establish confidence levels for their requirements and determine the optimal release time 
by balancing software quality and testing cost. 𝑚𝑖𝑛 𝐶(𝑇) = 𝐶0 + 𝐶ଵ𝑇 + 𝐶ଶ𝑚(𝑇)𝑢௬ + 𝐶ଷ(𝑚(𝑇 + 𝑇௪) −𝑚(𝑇))𝑢௪ + 𝐶ସ(1 − 𝑅(𝑥|𝑇)) + 𝐶ହ(𝑣ଵ + 𝑇)௩మ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:𝑅(𝑥|𝑇 + 𝑇௪) ≥ 𝑅௥௘௤ 

(47) 

𝑚𝑖𝑛 𝐶௅஻஼ோ(𝑇) = 𝐶0 + 𝐶ଵ𝑇 + 𝐶ଶ𝑚௅஻஼ோ(𝑇)𝑢௬ + 𝐶ଷ൫𝑚௅஻஼ோ(𝑇 + 𝑇௪) −𝑚௅஻஼ோ(𝑇)൯𝑢௪ + 𝐶ସ(1 − 𝑅௅஻஼ோ(𝑥|𝑇))+ 𝐶ହ(𝑣ଵ + 𝑇)௩మ  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:𝑅௅஻஼ோ(𝑥|𝑇 + 𝑇௪) ≥ 𝑅௥௘௤ 

(48) 

6. Application 

Suppose an app company has just completed the development of an industrial management system for a mechanical 
manufacturer. The company's manager is planning an appropriate testing timeline for the software release. However, they 
have three distinct candidate test plans for the industrial management system: low-input (P1), medium-input (P2), and high-
input (P3). Each testing staff member works 8 hours a day and 22 days a month, with rotating responsibilities. Additionally, 
the company provides a one-month warranty period, and the minimum software reliability must remain above 95% after this 
period. The costs of rectifying errors during testing differ from those in the warranty period, and the skill levels of the testing 
staff vary. Details regarding these test plans and their parameter estimations are presented in Table 6. 
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Table 6  
Related Software Testing Costs and Parameters Estimation of the Three Candidate Test Plans 

Plan 1 (P1) Plan 2 (P2) Plan 3 (P3) 
Low-input human resources Medium-input human resources High-input human resources 𝑎ො=650 𝑏෠=0.5, 𝛾ො=0.25 𝜀̂= 0.1, 𝜎ො=0.086 

𝑏෠=0.6, 𝛾ො=0.35 𝜀̂= 0.1, 𝜎ො=0.086 
𝑏෠=0.7, 𝛾ො=0.35 𝜀̂= 0.05, 𝜎ො=0.086 𝐶଴= $2,000, 𝐶ଶ= $19,000, 𝐶ଷ= $29,000 𝐶଴= $2,000, 𝐶ଶ= $20,000, 𝐶ଷ= $30,000 𝐶଴= $3,000, 𝐶ଶ= $25,000, 𝐶ଷ= $32,000 𝐶ଵ = $5000, 𝐶ସ= $120,000, 𝐶ହ= $2,800, 𝑣ଵ= 1, 𝑣ଶ= 1.3, x =0.5 hour, 

 𝑅௥௘௤= 95%, 𝑢௬= 1 hour, 𝑢௪=1 hour, 𝐶.𝑅. = 5% (Confidence Level=95%) 𝑇௪=1 month, working hours/per month=22days*8hours=176hours 
 

These three plans represent varying talent dispatch options, with higher investment in human resources leading to more 
efficient testing work and higher staffing costs. Consequently, the critical decision is to select the most suitable staffing plan. 
Based on the data in Table 6, we compare the total cost against testing time for these three plans in average cases shown in 
Fig. 7. Among these three plans, it is evident that test plan 2 (P2) is the most appropriate choice. Its expected optimal testing 
cost is the lowest, amounting to $125,441 (𝑇∗=3.45 months). While the initial software reliability of P2 stands at 88.92%, it 
reaches a reliability of 95.38% (𝑅(𝑥|𝑇∗ + 𝑇௪)) after the warranty period, satisfying the crucial 95% software reliability 
requirement. In contrast, test plan P3, with a minimal testing cost close to P2 ($125,732, 𝐶(𝑇∗)), only achieves software 
reliability of 90.51% after the warranty period, falling short of the essential 95% reliability requirement. To reach the desired 
reliability level, P3 would need to extend its testing time to over 4.2 months, resulting in a total testing period of 5.2 months 
(Fig. 8). It lengthens the testing period by 0.8 months compared to P2 and incurs additional costs to meet the minimum 95% 
software reliability. Consequently, based on the above analysis, test plan P2 emerges as the most rational and cost-effective 
choice among the three options. Thus, the company manager should opt for test plan P2 for decision-making. 

  

Fig. 7. Comparison of Testing Costs among Test plans P1, 
P2 and P3 

Fig. 8. Comparisons of Reliability among Test plans P1, 
P2 and P3. 

With test plan P2 selected, the company manager is concerned that initial estimates may have been overly optimistic. If we 
ascertain the best software release time in a worst-case scenario, conservative decisions based on worse-case scenarios are 
illustrated in Fig. 9 and Fig. 10. In this scenario, the software release time should be 3.7 months to meet the minimum software 
reliability requirement of 95% (𝑅௅஻஼ோ(𝑥|𝑇 + 𝑇௪)=95.05%). At this point, the total cost 𝐶௅஻஼ோ(𝑇∗) is estimated at $124,051. If the 
manager desires a conservative approach, extending the original software release time by 0.3 months with a 95% confidence 
level is recommended. Detailed information regarding the upper and lower boundaries of reliability and test costs for test plan 
P2 is presented in Table 7. 

  
Fig. 9. The Testing Cost of Average Case, Upper Bound  
and Lower Bound for Test plan 2 

Fig. 10. The Reliability of Average Case, Upper Bound  
                and Lower Bound for Test plan 2 
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Table 7  
The Upper and Lower Boundaries of the Reliability and the Testing Cost for Test plan P2. 𝑇 𝑅௅஻஼ோ(𝑥|𝑇) 𝑅(𝑥|𝑇) 𝑅௎஻஼ோ(𝑥|𝑇) 𝑇 𝐶௅஻஼ோ(𝑇) 𝐶(𝑇) 𝐶௎஻஼ோ(𝑇) 

3 80.35% 84.03% 87.88% 3 $122,748 $126,244 $129,537 
3.05 81.05% 84.65% 88.40% 3.05 $122,761 $126,070 $129,189 
3.1 81.74% 85.25% 88.90% 3.1 $122,785 $125,918 $128,871 
3.15 82.40% 85.82% 89.39% 3.15 $122,820 $125,787 $128,584 
3.2 83.05% 86.38% 89.86% 3.2 $122,868 $125,678 $128,327 
3.25 83.67% 86.93% 90.30% 3.25 $122,928 $125,589 $128,099 
3.3 84.28% 87.45% 90.74% 3.3 $123,001 $125,522 $127,899 
3.35 84.87% 87.96% 91.15% 3.35 $123,087 $125,475 $127,728 
3.4 85.45% 88.45% 91.55% 3.4 $123,186 $125,448 $127,584 
3.45 86.00% 88.92% 91.93% 3.45 $123,298 $125,441 $127,466 
3.5 86.54% 89.37% 92.30% 3.5 $123,422 $125,454 $127,374 
3.55 87.06% 89.81% 92.65% 3.55 $123,560 $125,486 $127,308 
3.6 87.56% 90.23% 92.99% 3.6 $123,711 $125,537 $127,265 
3.65 88.05% 90.64% 93.31% 3.65 $123,875 $125,606 $127,246 
3.7 88.52% 91.03% 93.62% 3.7 $124,051 $125,693 $127,250 
3.75 88.98% 91.41% 93.91% 3.75 $124,240 $125,798 $127,277 
3.8 89.42% 91.78% 94.20% 3.8 $124,442 $125,920 $127,324 
3.85 89.84% 92.13% 94.47% 3.85 $124,655 $126,059 $127,393 
3.9 90.25% 92.46% 94.73% 3.9 $124,881 $126,214 $127,482 
3.95 90.64% 92.78% 94.98% 3.95 $125,119 $126,385 $127,590 

4 91.02% 93.09% 95.22% 4 $125,369 $126,571 $127,717 
4.05 91.39% 93.39% 95.44% 4.05 $125,630 $126,772 $127,862 
4.1 91.74% 93.68% 95.66% 4.1 $125,902 $126,988 $128,024 
4.15 92.08% 93.95% 95.87% 4.15 $126,186 $127,218 $128,204 
4.2 92.40% 94.22% 96.06% 4.2 $126,479 $127,461 $128,400 
4.25 92.72% 94.47% 96.25% 4.25 $126,784 $127,717 $128,611 
4.3 93.02% 94.71% 96.43% 4.3 $127,098 $127,987 $128,838 
4.35 93.31% 94.94% 96.61% 4.35 $127,423 $128,268 $129,079 
4.4 93.59% 95.17% 96.77% 4.4 $127,757 $128,561 $129,334 
4.45 93.86% 95.38% 96.93% 4.45 $128,101 $128,866 $129,603 
4.5 94.11% 95.58% 97.08% 4.5 $128,453 $129,183 $129,884 
4.55 94.36% 95.78% 97.22% 4.55 $128,815 $129,509 $130,179 
4.6 94.60% 95.97% 97.35% 4.6 $129,185 $129,847 $130,485 
4.65 94.83% 96.15% 97.48% 4.65 $129,563 $130,194 $130,803 
4.7 95.05% 96.32% 97.61% 4.7 $129,949 $130,551 $131,132 
4.75 95.26% 96.48% 97.73% 4.75 $130,344 $130,917 $131,471 
4.8 95.46% 96.64% 97.84% 4.8 $130,745 $131,292 $131,821 
4.85 95.65% 96.79% 97.94% 4.85 $131,154 $131,676 $132,181 
4.9 95.84% 96.93% 98.05% 4.9 $131,571 $132,068 $132,551 
4.95 96.01% 97.07% 98.14% 4.95 $131,994 $132,468 $132,929 

5 96.18% 97.20% 98.24% 5 $132,423 $132,876 $133,317 
 

Modifying the values for the critical region (CR) introduces decision variations. This study shows that CR value adjustments 
influence software reliability and cost estimations. An increase in the CR value leads to overestimated software reliability and 
costs, as observed in Fig. 11. It indicates that decision-makers can tailor their worst-case scenarios to suit their conservative 
perspectives. 

 

Fig. 11. The Lower Bounds of Reliability and Cost in Various Critical Regions 
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Understanding the variations in model parameters affecting software reliability and cost estimation is crucial, as numerical 
changes substantially impact future software testing decisions. As depicted on the left side of Fig. 12, the confidence interval 
for the detection rate expands with an increase in the standard deviation of the detection rate, subsequently broadening the 
range and uncertainty of the estimate for 𝑚(𝑡) and 𝑅(𝑡). Regarding the lower bound of software reliability, a wider confidence 
interval for 𝑅(𝑡) decreases the value of 𝑅௅஻஼ோ(𝑥|𝑇 + 𝑇௪). Hence, an increase in the parameter σ leads to a more conservative 
software reliability estimation. Additionally, a cost-benefit sensitivity analysis on the parameters 𝑏, 𝛾 and 𝜀 highlights the role 
of parameter values in cost implications. While an increase in 𝑏 and 𝛾 proves beneficial for reducing related costs, it also 
necessitates more training or senior personnel, incurring additional costs. Likewise, lowering the parameter 𝜀 in the debugging 
process enhances testing efficiency. Investment in online case tools and effective interactions among testing staff can prevent 
recurring mistakes. Therefore, software managers must carefully weigh the trade-off between cost and efficiency when 
making decisions. 

 

Fig. 12. The Variability of Reliability and Cost when Parameters Change 

7. Conclusion 

This study introduces an innovative debugging software reliability growth model that acknowledges the influence of learning 
and negligence factors. Our approach offers a more intuitive means of estimating parameters, facilitating expert evaluation. 
The negligence factor is employed to elucidate the concept of imperfect debugging. We contend that new errors surface only 
after previously identified issues are addressed in the source code. These new errors do not typically emerge during error 
detection but may arise during removal and correction. Unlike prior studies, which often oversimplified the assumption that 
new software errors only increase with testing time, we hypothesize that the growth rate of new errors will decrease due to 
the reduction in previously unseen error patterns. Additionally, we enhance the traditional model by broadening the confidence 
interval. This modification equips decision-makers with moderately conservative decision information, thus enhancing the 
quality of their choices. Our analytical findings empower decision-makers to grasp the pinnacle of software testing efficiency 
and understand the variations in detection rates within upper and lower bounds throughout the software testing process. This 
study offers a practical decision-making framework for managers to select the optimal alternative while considering the 
imperative of software reliability. It is noteworthy that adjusting the critical region (CR) values may lead to varying decisions, 
as higher CR values may overestimate software reliability and costs. Moreover, an increased standard deviation (σ) in the 
detection rate yields a more conservative estimate of software reliability. Regarding the impact of model parameters 𝑏, 𝛾 and 𝜀 on costs, while augmenting 𝑏 and 𝛾 can enhance debugging efficiency, it also demands more on-the-job training or senior 
expertise. This trade-off challenges decision-makers before arriving at a final verdict. Furthermore, reducing the value of 
parameter 𝜀 hinges on minimizing errors during the correction process, which can be achieved through on-the-job training 
and online case tools, which can prevent the repetition of the same mistakes. 

In conclusion, this study opens up two promising avenues for future research. First, we propose addressing the time delay 
issue in developing Software Reliability Growth Models (SRGMs). It is a critical factor often neglected in previous studies, 
as the time taken to correct software errors can significantly impact testing schedules and bias software reliability estimates. 
Future studies will integrate this time delay factor into the model for a more realistic representation. Second, we suggest 
expanding our research into a multi-version software testing model. The emergence of issues in multi-version software testing, 
often related to releasing new software versions for feature updates, makes this a compelling direction for future research, 
expanding the scope of the investigation. 
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