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 The One-Dimensional Cutting Stock Problem consists in cutting long bars into smaller ones, to 
satisfy customers’ demand, minimizing waste and cost. In this paper the standard problem is 
extended with the inclusion of additional constraints that are generally neglected in scientific 
literature, although relevant in many industrial applications. We also modified the standard 
objective function, by assuming that bars may have a different economical value and a different 
processing or shipping priority. Moreover, in line with business requirements, among solutions that 
generate the same cutting waste, we prefer the ones that generate a low number of leftovers, 
especially if leftovers are long, so that the likelihood of their reuse is high. To solve the problem, 
we propose a Simulated Annealing based heuristic, which exploits a specific neighbor search. The 
heuristic is implemented in a parametric way that allows the user to set the priorities of the bars 
and to choose the specific sub-set of constraints he or she wants to consider. The heuristic is finally 
tested on many problem instances, and it is compared to three benchmarks and to one commercial 
software. The outcomes of this comparative analysis demonstrate both its quality and effectiveness. 
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1. Introduction 

 
Waste reduction is a key issue for many companies, both in terms of costs and of environmental sustainability. Materials’ 
waste, in fact, must be either recycled or disposed of, generating costs with a significant impact on the income (Bertolini et 
al., 2021). The cutting process is undoubtedly one of the most wasteful industrial processes (Cheng et al., 1994) and, because 
of this, the minimization of waste from cutting activities is an issue of paramount importance, which has been studied since 
the early thirties (Kantorovich, 1960). How to optimally cut an object into smaller parts of specified size and shape is indeed 
a well-known operation research problem, generally referred to as the Cutting Stock Problem (CSP). In general, letting a 
‘cutting pattern’ be a feasible combination of cuts, the optimal solution is the set of cutting patterns that generate all the 
required cuts, and that minimizes an objective function, which is usually the minimization of the cut material that cannot be 
used and that is wasted. Bar cutting is a typical case to which this problem applies, but similar considerations also apply to a 
variety of other industrial cases, such as cutting of trunks and wooden planks (Kokten & Sel, 2020), two-dimensional cutting 
of metal sheets (Cintra et al., 2008), or fabric cutting in the textile industry (Javanshir et al., 2010).  
  
In this paper we focus on a common version of the cutting problem, namely the One-Dimensional Cutting Stock Problem 
(1DCSP), which concerns the cutting of standard-sized items into smaller pieces of specified size, as requested by the end 
customer. Standard-size items are generally rotation solids with axial symmetry such as bars, pipes, trunks, rolls, coils, and 
ropes. So, neither the shape nor the section of the standard-sized item is altered by the cuts, as they are always executed 
perpendicularly to the axis of symmetry. For the sake of clarity, a feasible solution of the 1DCSP is provided in Fig. 1, where 
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three bars of equal length are cut into six usable parts coloured in white. In the same figure, the generated waste is coloured 
in grey; these are residual bars that cannot be put back in stock, because they are too short to be reused. 

 

 
Fig. 1. An example of feasible cutting patterns generated by a perpendicular cut. 

 
The 1DCSP is a generalization of the bin packing problem and, as such, it is known to be a NP-hard combinatorial problem 
(Martello et al., 1990a). Therefore, an exhaustive search of all the feasible cutting patterns would make the problem 
untreatable, even for a small number of orders and stocked bars (Abuhassan & Nasereddin, 2011). Nonetheless, a quasi-
optimal solution can be obtained in a polynomial time using the famous ‘columns generation scheme’ first proposed in the 
seminal works by Gilmore & Gomory (1961). This method solves the 1DCSP starting from an initial set of cutting patterns, 
say , generated by a constructive heuristic. A linear programming model is then used to select the subset  that satisfies the 
demand with the minimum waste. Next, an auxiliary knapsack problem, which exploits dual variables information, is solved 
and the best cutting pattern not yet included in  is found. If the current best subset of cutting patterns  cannot be improved by 
adding  to the original set , the process stops and  is declared optimal. Otherwise,  it is extended with the inclusion of  and the 
linear programming problem is solved again. This procedure is iteratively repeated until the stopping criteria is finally met, a 
condition that certainly occurs before all possible cutting patterns have been enumerated. The columns generation scheme is 
an extremely elegant and high performing approach that is used in many operational research problems, as in the works by 
Wilhelm (1999), Wilhelm (2001), Lübbecke and Desrosiers (2005) and Erhald (2021). However, this approach becomes 
untreatable as soon as additional operating constraints are included in the 1DCSP. For instance, the generation of non-used 
parts that may be returned to stock for future use, namely leftovers, is a typical feature that is difficult to deal with using the 
columns generation scheme, and which requires the use of fast performing heuristics (Cherry et al., 2009). In addition to 
leftovers, we also consider constraints related to the available inventory, and to the technical details needed to carry out the 
cut correctly. We also account for the fact that stocked bars may have different values and priorities and that, among solutions 
that are similar in terms of waste, the one that generates the minimum number of leftovers is generally preferable, especially 
if the generated leftovers are long, so that the likelihood of their future reuse is high. All these features are commonly required 
in industrial practice and cannot be neglected to obtain a qualitatively acceptable cut. Nonetheless, they are seldom, or never, 
considered in scientific literature. Therefore, their consideration can be seen as the main contribution of the paper. 
  
Furthermore, we also provide an efficient heuristic to obtain, in an acceptable time, a feasible and very good solution. 
Specifically, the heuristic can be classified as a hybrid Simulated Annealing (SA), as the cutting patterns are generated using 
different approaches, but most of the time they are created using a SA that exploits a specific and effective neighbour search.  
  
The remainder of the paper is structured as follows. At first, a brief overview on the 1DCSP is presented in Section 2. Then, 
an accurate description of the problem and of the additional constraints herein considered is provided in Section 3. The 
proposed heuristic is described in Section 4, and it is validated in Section 5. Specifically, it is compared with a commercial 
software and with three well-known algorithms (Next Fit Decreasing, First Fit Decreasing and Best Fit Decreasing) that are 
typically used to solve the bin packing problem. Conclusions and future research perspectives are finally drawn in Section 6. 

2. Literature review 
 
The 1DCSP can be formulated as follows: given a set of standard-sized bars (or solids with axial symmetry) available in stock 
and a set of sub-bars to be cut, the objective is to select an optimal set of cutting patterns that satisfies demands while 
minimizing waste (Haessler & Sweeney, 1991). Note that with the term ‘cutting pattern’ we refer to a specific way of cutting 
a bar of length 𝐿  into sub-bars of lengths 𝑙௜ ൏ 𝐿 . Also, we denote a cutting pattern with the mapping 𝑐 ൌ ሼ𝑙ଵ:𝑥ଵ,𝑙ଶ: 𝑥ଶ, … , 𝑙௜: 𝑥௜ , … ሽ, which specifies the number 𝑥௜ of bars of length 𝑙௜ that are cut from the original bar of length 𝐿. The first 
known formulation of the 1DCSP dates to 1931 and it can be ascribed to the Russian economist Kantorovich (1960). Since 
then, the 1DCSP has become one of the most studied operational research problems, due to its complexity and mathematical 
attractiveness and, above all, to its practical relevance. Literature in the subject matter is extensive, as demonstrated by the 
review by Sweeney & Paternoster (1992), which catalogues about 500 works (books, articles, and dissertations) concerning 
the 1DCSP. Over years, many linear programming models have been proposed to solve the 1DCSP. Among them, the most 
famous one is undoubtedly the ‘delayed column generation scheme’ proposed by Gilmore & Gomory (1961, 1963), which is 
based on an integer linear programming model, enhanced by an auxiliary knapsack problem that generates new solutions by 
exploiting dual variables information. However, the problem is known to be NP-hard, and therefore exact linear programming 
models are limited to a few peculiar and/or oversimplistic situations and they become inapplicable as soon as additional 
features are considered. Because of this, the problem is generally solved using approximate algorithms, which make use of 
upper and lower bounds to guide the search through the exploration of the solution space (Martello & Toth, 1990 b; Crainic 
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et al., 2007; Balogh et al., 2015). As a viable alternative, heuristics or metaheuristics have been increasingly used in recent 
years. According to Delorme et al. (2016), the first two heuristics were proposed by Roodman (1986) and by Vahrenkamp 
(1996). In the first study, an initial greedy solution is progressively improved with a local search; in the second one, new 
cutting patterns are generated using a random search based on the constructive heuristic proposed by Haessler (1975). After 
these publications, the interest in heuristics has exploded, and many extensions and readaptation of classic approximation 
algorithms have been proposed (Osogami & Okano, 2003; Bhatia et al., 2009; Fleszar & Charalambous, 2011). Beside these, 
also standard and/or population-based metaheuristics have been frequently used. Typical examples include Simulated 
Annealing (Kämpke, 1988; Loh et al., 2008), Tabu Search (Alvim et al., 2004; Jahromi et al., 2012), Ant Colony Optimization 
(Levine & Ducatelle, 2004) and Genetic Algorithm (Ülker et al., 2008; Quiroz-Castellanos et al., 2015). Some evolutionary 
approaches specifically designed for the 1DCSP have also been proposed, as in the work by Liang et al. (2002) and Sim & 
Hart (2013). Other interesting works focus on boundary conditions and/or additional constraints that frequently occur in real 
industrial cases. These contributions have great managerial implications, as they provide efficient and ready to use solutions. 
For instance, Cherry et al., (2009) and Cui & Yang (2010), introduced the concept of ‘reusable leftovers’, while Benjaoran 
and Bhokha (2014) considered the need to prioritise leftovers, anytime a new cut is made. This is a very common requirement, 
as many companies prefer using leftovers rather that cutting virgin items, if not necessary. A last notable work is the one by 
Garraffa et al. (2016), which shows that cutting waste can be reduced by optimizing the sequence in which cuts are made. 
This also streamlines production planning and shipping orders. 
 
To the authors’ view, the present work belongs to the latter stream of research. Our heuristic, in fact, is operation-oriented, 
and allows one to include many operating constraints identified in close collaboration with a famous Italian firm, that operates 
in the field of metal bars cutting. 

3. Problem description and preliminary notations 
 
In this section we clearly describe the additional constraints we included in the 1DCSP, and their industrial implications. Since 
the study of the 1DCSP arose from a research collaboration done with a metallurgical company, we will refer to the stocked 
items as ‘bars’; nonetheless, the problem and the proposed solution can be generalized and extended to other cases with no 
need for further modifications. We also point out that, to the authors best knowledge, some of the considered aspects can be 
found in other scientific contributions, but they have never been treated together. For sake of clarity, all the symbols and 
notations used in this section (and in the rest of the paper) are accurately described in Appendix A. We just point out that the 
subscript 𝑖 is used to indicate a bar ordered by a customer and the subscript 𝑗 is used to denote a specific type of bar available 
in stock.  

3.1. Additional constraints 
 

The additional constraints included in the 1DCSP are listed below.  
 

1. The number and type of the bars available in stock is limited. 
2. The bars ordered by the end customer can be of different lengths 𝑙௝ and they may also differ in terms of material 𝑚௝ (e.g., steel, casted iron, copper, brass, etc.) and cross-sectional area 𝑎௝ (e.g., circular, squared, hexagonal, etc.).  
3. Materials and cross-sectional areas define the type of bars available in stock. 
4. Leftovers are admitted. After cutting, the residual material can be returned to stock for future use, provided it is 

sufficiently long. The minimum acceptable length 𝑤෥  is a fixed parameter greater than or equal to the minimum 
length that a customer can order.  

5. Bars in stock may be either virgin bars or leftovers. Virgin bas are bars of standard lengths, while the length of the 
leftovers depends on the precedent cuts. Not to confuse the lengths of the bars ordered by the customer with the 
lengths of the bars available in stock, the first ones are denoted with the letter 𝑙௜, whereas the latter ones with the 
letter 𝐿௝.  

6. The thickness of the cutting blade, say 𝜀, is not negligible. This is a very important practical aspect, which is rarely 
considered in the literature. When cutting big and hard objects, a thick and resistant blade is needed. Hence, at each 
cut, a significant amount of material is inevitably lost, as Figure 2 shows. Note that the residual materials 𝑤 (fielded 
in grey) can be either waste or a leftover, depending on its length. 

 L 
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Fig. 2. An example of three perpendicular cuts, with blade width 𝜀 and residual material 𝑤. 
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7. Virgin bars must be trimmed on both sides before use. Specifically, two ‘head-cuts’ ℎ (with ℎ > 𝜀) are needed to 
remove the extreme parts of the bar, which could be uneven, partially deformed, or damaged. As a convention, the 
quantity ℎ (that is lost to trim the bar on a single side) includes the waste 𝜀 of the cutting blade.  

8. To ensure stability, cantilever cutting is not allowed. Hence a gripping area is needed, as clearly shown in Figure 
3, where 𝐹 is the clamping force applied to the bar, and 𝑔 is the length of the gripping area. According to this 
scheme, if head-cuts are needed, the following conditions must hold: ℎ ≥ (𝑔 + 𝜀). 

 F  F 

F F
gripping area

blade

work table
 g  

 
Fig. 3. Schematic representation of a cutting station. 

Neither the head-cuts nor the gripping area have ever been considered before in the literature; yet they are very common 
technical requirements that must be fulfilled to provide a ready to use solution. Indeed, they entail strong limitations in the 
generation of feasible cutting patterns. To clarify this concept, suppose that a customer ordered a bar of 𝑙௜ millimetres. To 
meet the request, if a leftover is used, the length 𝐿௝ must be either equal to 𝑙௜ or greater than ( 𝑙௜  + 𝑔 + 𝜀). In the first case 
there is a perfect match between the length of the ordered bar and that of the leftover; in the second case the leftover is long 
enough to be cut to size. Similarly, if a virgin bar is used, the following condition must hold 𝐿௝ ≥ (𝑙௜ + 2ℎ).  

3.2. Optimization goal 
 
The main objective is the minimization of the cutting waste generated during the cut. This issue will be better explained in 
Section 4; here we just want to introduce two concepts that will be extensively used in the rest of the paper. When a leftover 
is used, a cutting pattern is said to be ‘perfect’ if it generates only the unavoidable waste due to the thickness of the blade. 
This condition occurs when 𝑥 sub-bars are generated with (𝑥 − 1) cuts, and the total waste is only 𝑤 = 𝜀 ∙ (𝑥 − 1). Similarly, 
a cutting pattern is said to be ‘almost perfect’ if, in addition to the unavoidable waste, also the material underneath the gripping 
area 𝑔 is lost. In this case, to generate 𝑥 sub-bars, exactly 𝑥 cuts are needed, and the total waste becomes 𝑤 = (𝜀 ∙ 𝑥 + 𝑔). 
This is graphically shown by Fig. 4(a) and Fig. 4(b). 
 

 L 
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Fig. 4(a). An example of a perfect cutting pattern, obtained from a leftover with 𝑥 =  3. 
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Fig. 4(b). An example of an almost perfect cutting pattern, obtained from a leftover with 𝑥 =  3. 

In case of virgin bars there is no distinction between perfect and almost perfect cuts. In fact, as Fig. 4(c) shows, since 𝑔 < ℎ , 
the part of the bar underneath the gripping area is always an unavoidable lost. Therefore, to obtain 𝑥 sub-bars a minimum of 
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waste becomes 𝑤 = 𝜀 ∙ (𝑥 − 1) + 2ℎ. 
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Fig. 4(c). An example of a perfect cutting pattern obtained from a virgin bar, with 𝑥 =  3. 

In all the other cases (i.e., cutting patterns that are neither perfect nor almost perfect), either a leftover or a waste 𝑤 bigger 
than the unavoidable quantity is always created.  
 
To conclude, we anticipate that, as a second optimization criterion, we will try to minimize the number of leftovers, especially 
if they are short bars of length close to the minimum acceptable one . Leftovers, in fact, need to be returned to stock, where 
they occupy almost the same space of virgin bars, thus reducing the effective storage capacity of the warehouse. This issue is 
particularly critical when an Automated Storage & Retrieval System (ASRS) is used. In this case, bars of equal length are 
grouped in bundles stored inside cases of standard size, which can be easily moved by a bridge crane equipped with extendable 
forks. Since each case can store one bundle at most, a bundle made of short bars occupies the same volume of a bundle made 
of long bars (Zammori et al., 2021). 

4. Problem solution 
 
In this section, the proposed algorithm is introduced starting from a high-level description. Afterwards, a more accurate and 
detailed discussion is provided. 
 
4.1. Initialization and codification 
 
All virgin bars (or leftovers) that are of the same length, material and cross-sectional area are indistinguishable and perfectly 
equivalent. Therefore, they can be considered as a single group, and the triplet (𝐿௝ ,𝑚௝ ,𝑎௝) can be used to identify a specific 
type of bar. The available stock can therefore be coded by the mapping 𝐵 ={(𝐿ଵ,𝑚ଵ,𝑎ଵ): (𝑛ଵ, 𝑣ଵ, 𝑝ଵ), … , (𝐿௝ ,𝑚௝ ,𝑎௝): (𝑛௝ ,𝑣௝ , 𝑝௝), … , (𝐿ே,𝑚ே, 𝑎ே): (𝑛ே, 𝑣ே,𝑝ே)}, which links the triplet ൫𝐿௝ ,𝑚௝ ,𝑎௝൯ that 
codifies a bar of type 𝑗, to the triplet (𝑛௝ ,𝑣௝ ,𝑝௝) that defines: 
 

- the number of bars 𝑛௝ available in stock, 
- the nature of the bar, which can be either a virgin bar or a leftover. In the first case the Boolean value 𝑣௝ is true, 

otherwise it is false.  
- the priority 𝑝௝  of the bar. 

 
We note that priorities will be used to differentiate cutting patterns that are similar in terms of waste. Basically, if two cutting 
patterns produce the same amount of waste, the one obtained cutting the bars with the highest priority will be selected. Apart 
from this technicality (explained in Section 4.9), what is important to note is the fact that priorities must be assigned by the 
user, depending on the operational performances he or she wants to improve. Two alternative approaches are generally 
recommended: 
 

- If the goal is to free up storage space, a higher priority should be assigned to leftovers and to short virgin bars, as 
these bars reduce the storage capacity of the warehouse (Benjaoran & Bhokha, 2014). 

- If the goal is to increase productivity, higher priority should be assigned to the longest bars (Garraffa et al., 2016). 
In fact, most of the time needed to cut a bar is due: (i) to changeover activities, incurred every time a bar of different 
shape or length is cut, and (ii) to the adjustments needed to place and fix a bar on the cutting machine. The use of 
long bars is therefore beneficial, as it reduces the total number of bars needed to fulfil an order, thus decreasing the 
time needed both for changeovers and adjustments.  

 
Following a similar approach, customers’ requests are coded by the mapping 𝑅 ={(𝑙ଵ,𝑚ଵ,𝑎ଵ):𝑛ଵ, … , (𝑙௜ ,𝑚௜ ,𝑎௜):𝑛௜ , … , (𝑙ெ ,𝑚ெ ,𝑎ெ):𝑛ெ}, which associates to each type of ordered bar (𝑙௜ ,𝑚௜ ,𝑎௜) the ordered 
quantity 𝑛௜.  
 
Lastly, a cutting pattern (defined on a bar of type 𝑗) is codified by the mapping 𝑐௝ = {𝑙ଵ: 𝑥ଵ, … , 𝑙௜: 𝑥௜ , … , 𝑙ெ:𝑥ெ}, where each 
pair of values (𝑙௜ , 𝑥௜) indicates how many sub-bars 𝑥௜ of length 𝑙௜ are cut from a bar of type 𝑗.  
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4.2. Preliminary operations 
 
Neither the material 𝑚 nor the cross-sectional area 𝑎 affects the way in which cutting patterns are generated. Hence, in a first 
preliminary step, orders are partitioned into non-overlapping subsets, say 𝑅௠,௔, that are homogeneous in terms of both 𝑚 and 𝑎, i.e., 𝑅 = ⋃ ൫𝑅௠,௔൯௠,௔  and ⋂ 𝑅௠,௔௠,௔ = ∅. A similar partitioning is made also on the stocked bars 𝐵. By doing so a set of 
independent subproblems ൫𝑅௠,௔,𝐵௠,௔൯ is defined, and each subproblem can be individually solved. The overall solution can 
be finally obtained bringing together the partial solutions. Owing to this fact, from here on we will implicitly refer to the 
solution of a generic subproblem and we will no longer make use of the subscripts 𝑎 and 𝑚 in the notation.  
 
A second preliminary step is also needed to find the so-called ‘perfect matches’, that is orders of length 𝑙௜ that can be fulfilled 
with leftovers of length 𝐿௝ = 𝑙௜, without having to make any cuts. All the orders that can be fulfilled with a perfect match are 
removed from 𝑅, and the used leftovers  are removed from 𝐵. 

4.3. The main procedure  
 
Basically, the optimization algorithm consists in an iterative procedure that ends when all the customers’ orders have been 
fulfilled, or when the stock ends. In the first case, the list of the optimal cutting patterns is returned, whereas in the second 
case the problem is declared unfeasible, and the partial list of the optimal cutting patterns is returned, together with the backlog 
list of the unfulfilled orders.  

4.3.1. Optimization tasks performed at each iteration 
 
At each iteration 𝑡, and for each bar of type 𝑗 ∈ 𝐵௧, an integer optimization problem is solved (as described in Section 4.4), 
and the best cutting pattern 𝑐௝,௧∗   that can be obtained on a bar of length 𝐿௝ using the ordered lengths 𝑙௜ in 𝑅௧ is obtained. Note 
that we included the subscript 𝑡 in the notation, to keep track of the current iteration. So 𝐵௧ denotes the available stock at 𝑡, 𝑅௧ is the set of the unfulfilled orders at 𝑡, and 𝑐௝,௧∗  is the cutting pattern with the minimum waste obtained from a bar of type 𝑗 
at iteration 𝑡.  A simple example should clarify this concept. Let 𝑗  be a 1,050 mm leftover and 𝑅௧ = {500 ∶ 4,300: 3,   1000: 1} be the set of the customers’ requests. Therefore, 4 sub bars of 500 mm, 3 of 300 mm, and 1 of 1,000 mm 
were ordered. Assuming a blade 𝜀 = 50 [mm] and a gripping area 𝑔 = 100 [mm], and recalling that leftovers do not need 
head-cuts, 5 alternative cutting patterns can be made on 𝑗, as shown below. 
 

- 𝑐௝,௧ଵ = {500 ∶ 1, 300 ∶ 0, 1,000 ∶ 0}, 
- 𝑐௝,௧ଶ = {500 ∶ 2, 300 ∶ 0, 1,000 ∶ 0}, 
- 𝑐௝,௧ଷ = {500 ∶ 0, 300 ∶ 1, 1,000 ∶ 0}, 
- 𝑐௝,௧ସ = {500 ∶ 0, 300 ∶ 2, 1,000 ∶ 0}, 
- 𝑐௝,௧ହ = {500 ∶ 1, 300 ∶ 1, 1,000 ∶ 0}. 

 
It is easy to see that the best one is 𝑐௝,௧∗ = 𝑐௝,௧ଶ = {500 ∶ 2, 300 ∶ 0, 1,000 ∶ 0}. This cutting pattern, in fact, is optimal as it 
generates only the unavoidable waste. Repeating the optimization procedure for each bar of type 𝑗 in the set 𝐵௧, a list 𝐶௧∗ =[𝑐ଵ,௧∗ , 𝑐ଶ,௧∗ , … , 𝑐௝,௧∗ , … , 𝑐ே,௧∗ ] of 𝑁 optimal cutting patterns is finally obtained. Next, this list is sorted, and the top element, say 𝑐௧௢௣,௧∗ , is selected and used (or repeated) as many times as possible. Please note that, by the expression “repeating a cutting 
pattern 𝑐௝ for 𝑛 times” we mean that 𝑛 bars of type 𝑗 are cut as defined by the cutting pattern 𝑐௝. The way in which 𝐶௧∗ is sorted 
is fully detailed in Section 4.9, but basically, the generated waste is used as the main sorting criterion. If two or more cutting 
patterns generate the same waste, the priority 𝑝௝ (of the bar on which they were cut) is used as the secondary sorting criterion.  
Concerning the number of repetitions, the top-ranked cutting pattern 𝑐௧௢௣∗  is repeated until either the required bars terminate, 
or the number of generated sub-bars of length 𝑙௜ exceeds the ordered quantity 𝑛௜,௧. More formally, if 𝑐௧௢௣,௧∗ ≡ 𝑐௝,௧∗  the number 
of repetitions 𝑟 is computed as in (1): 
 𝑟 = 𝑚𝑖𝑛 ൬𝑛௝,௧; min௜ ൬ඌ𝑛௜,௧𝑥௜ ඐ൰൰ (1) 
 

where 𝑛௝,௧ is the number of bars of type 𝑗 available in stock at iteration 𝑡, 𝑛௜,௧ is the number of sub-bars of length 𝑙௜ ordered 
by the customers that at iteration 𝑡 has not been fulfilled yet, and 𝑥௜ is the number of cuts of length 𝑙௜ in 𝑐௝,௧∗ . For instance, 
referring to the example above, the cutting pattern 𝑐௝,௧∗ = {500 ∶ 2, 300 ∶ 0, 1,000 ∶ 0}  could be repeated at most 𝑟 =min ቀ𝑛௝,௧, min ቀቔସଶቕቁቁ = 2 times, as each cutting pattern generates only 2 sub-bars of length 𝑙௜ = 500  (𝑥௜ = 2) and 4 cuts of 
that length are needed (𝑛௜,௧ = 4 ). Lastly, 𝑅௧  and 𝐵௧  are updated, by removing the fulfilled requests 𝑛௜,௧ = ൫𝑛௜,(௧ିଵ) −𝑟 ∙ 𝑥௜൯ and the used bars 𝑛௝,௧ = ൫𝑛௝,(௧ିଵ) − 𝑟൯, respectively. Similarly, the optimal cutting pattern 𝑐௝,௧∗  and the number of 
repetitions 𝑟 are saved in the set of the optimal cutting patterns 𝐶்௢௧, After updating these quantities, the iterative procedure 
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restarts and proceeds until all orders have been fulfilled. At this point the algorithm ends and the set 𝐶்௢௧ of the optimal cutting 
patterns is returned.  

4.3.2. Some additional insights 
 
It is interesting to note that, starting from the second iteration, there is no need to solve an integer optimization problem for 
each bar of type 𝑗 in 𝐵. Let 𝑐௝∗ = {𝑙ଵ: 𝑥ଵ, … , 𝑙௜: 𝑥௜ , … , 𝑙ெ: 𝑥ெ}, be the optimal cutting pattern generated for bar 𝑗 at the previous 
iteration. Provided that the condition 𝑥௜ ≤ 𝑛௜ is satisfied for each required length 𝑙௜, the cutting pattern 𝑐௝∗ is still optimal and 
should not be regenerated. Conversely, if the condition is not met, 𝑐௝∗ is no longer useful, as it would generate more cuts of 
length 𝑙௜ than needed. Only in this case a new optimal cutting pattern must be regenerated for a bar of type 𝑗. We also note 
that, as the algorithm gets close to the end, generating perfect or almost perfect cutting patterns becomes increasingly difficult. 
This is because most of the sub-bars of length 𝑙௝ will have been cut and, similarly, the number of different lengths 𝐿௝ in stock 
will have shrunk. With few lengths 𝐿௝ to cut and even fewer length 𝑙௝ to be cut, the generation of perfect cuts is hard. Therefore, 
even the top-ranked cutting pattern 𝑐௧௢௣,௧∗  in 𝐶௧∗ could generate either some waste or a leftover. In the latter case, 𝑟 leftovers 
(one for each repetition of 𝑐௧௢௣,௧∗ ) will be re-stocked. However, none of these 𝑟 leftovers will be used to update the available 
stock B, and none of them will be considered in next generation of the optimal cutting patterns. This choice can be motivated 
as follows: 
 

- First, the algorithm returns the set of the optimal cutting patterns, but it does not specify in which orders they should 
be processed (because this choice typically depends on exogenous logistic constraints, such as shipping times or 
the likes). So, the cutting sequence is unknown and there is no way to know, in advance, when a leftover will be 
returned to stock and will be available for future use.  

- Secondly, leftovers are generally placed in a separate storage area, close to the cutting machine, where they wait to 
be bundled before being brought back to the warehouse. Their immediate reuse is therefore problematic, from a 
practical point of view.  

 
For the sake of clarity, a block diagram presenting the main procedure is shown in Fig. 5.  
 

The generation of the optimal cutting pattern (for a specific type of bar 𝑗) is a non-linear extension of the Bounded 
Knapsack Problem (BKP). Specifically, if the considered bar is a leftover, the problem can be formulated as follows. 

Objective Function  

 𝑚𝑎𝑥 ൭෍𝑥௜𝑙௜ெ
௜ୀଵ ൱ ∙ 𝛼 + (1 − 𝛼) ∙ 𝑤 (2.1) 

Constraints  

൭𝐿 −෍(𝑙௜ + 𝜀) ∙ 𝑥௜  − 𝜀ெ
௜ୀଵ ൱ ∙ 𝑧 = 0 (2.2) 

൭෍(𝑙௜ + 𝜀) ∙ 𝑥௜ + 𝑔ெ
௜ୀଵ ൱  ∙ (1 − 𝑧) ≤ 𝐿        (2.3) 

𝑤 = min ൝𝑤෥ ,൭𝐿 −෍(𝑙௜ + 𝜀) ∙ 𝑥௜ெ
௜ୀଵ ൱  ∙ (1 − 𝑧)ൡ (2.4) 

𝑥௜ ≤ 𝑛௜   ∀ 𝑖  (2.5) 𝑥௜ ∈ ℕ଴   ∀ 𝑖 (2.6) 𝑧 ∈ {0; 1} (2.7) 

Where, in addition to the already introduced notation: 
- 𝑥௜ is the decision variable, that is the number of cuts of length 𝑙௜ that are made. 
- 𝐿 is the length of the bar,  
- 𝑀 is the number of different ordered lengths 𝑙௜, 
- 𝑤 is the length of an eventual leftover, and 𝑤෥  is the minimum admissible length for a leftover, 
- 𝑧 is a Boolean variable that is one for a perfect cutting pattern and it is zero otherwise, 
- 𝛼 ∈ [0;  1] is a weight factor. 

Note that 𝑥௜ and 𝑧 are the decision variables, whereas 𝑤 is a dependent variable, whose value directly depends on the one 
taken by 𝑥௜ and 𝑧. All the others are known parameters. 
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Fig. 5. Flow diagram of the algorithm 
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4.4. Generation of the optimal cutting patterns 
 
As Eq. (2.1) states, the objective is to maximize the useful cut length, defined as a weighted sums of the cut lengths 𝑙௜ and of 
the eventual leftover 𝑤. Clearly, by maximizing the useful length, the cutting waste is automatically minimized. Constraints 
(2.2) and (2.3) assure the feasibility of the generated cutting pattern. Specifically, constraint (2.2) and (2.3) apply to the perfect 
and non-perfect patterns, respectively. In the first case, in fact, the sum of the cut lengths 𝑙௜ and of the cutting scrapes 𝜀 must 
be exactly equal to the length of the bar 𝐿. Also note that in a perfect pattern, the number of cuts is one less than the number 
of generated sub-bars. That is why the value of 𝜀 is finally subtracted in eq. (2.2). In the second case, instead, the sum of the 
cut lengths 𝑙௜, cutting scrapes 𝜀, and gripping area 𝑔, must be less than or equal to the total length of the bar 𝐿.  
The last three constrains assure that 𝑥௜ is an integer, less or equal than the ordered quantity 𝑛௜ and that 𝑧 is Boolean. 
 
As mentioned, this formulation is valid for a leftover; if the used bar is virgin, head cuts are also needed and constraints (2.2) 
and (2.3) must be changed as shown below.  ൭𝐿 − 2ℎ −෍(𝑙௜ + 𝜀) ∙ 𝑥௜  − 𝜀ெ

௜ୀଵ ൱ ∙ 𝑧 = 0 (2.8) 

൭෍(𝑙௜ + 𝜀) ∙ 𝑥௜ெ
௜ୀଵ ൱  ∙ (1 − 𝑧) ≤ 𝐿 − 2ℎ        (2.9) 

We conclude this section with a last operating consideration. If, as is often the case, head cuts are made as soon as a virgin 
bar is received (that is before the virgin bar is taken in the warehouse for the first time), all bars can be considered as leftovers, 
provided that the original length 𝐿 is rectified, by subtracting the unusable quantity 2ℎ. If so, the first formulation of the 
integer optimization problem can be applied to all the bars available in stock. 

4.5 Solution approaches 
 
To solve the integer optimization problem for the generation of the optimal cutting patterns, three different procedures are 
used, as shown below.  
 

1. An exhaustive search. 
2. A dynamic programming approach. 
3. A metaheuristic based on Simulated Annealing (SA).  

 
Whenever possible, cutting patterns are generated using either the exhaustive or the dynamic programming approach, as both 
procedures converge to the global optimum. Should there be multiple optimal solutions, the first one is returned. Conversely, 
the metaheuristic returns a feasible cutting pattern with a very good objective function, but optimality cannot be granted. 
Hence, from here on, this solution will be referred to as the ‘pseudo-optimum’. To decide whether to use the exhaustive or 
the dynamic approach the total number of iterations, say 𝐼, needed to reach convergence is computed (using eq. (3) and eq. 
(4) provided in the next subsections). The approach with the smallest value of 𝐼 is selected. Since the considered problem is 
NP hard, these two procedures can be used only for problem instances of medium-low size; a condition that frequently occurs 
when short bars are cut and/or when, after a certain number of iterations, only a limited number of lengths 𝑙௜ remain to be cut. 
Anyhow, to prevent the computational time from growing too much, a threshold limit 𝐼௠௔௫ is defined on the number of 
acceptable iterations. Anytime 𝐼 exceeds 𝐼௠௔௫, the metaheuristic is used, and the search of the global optimum is abandoned, 
in favour of a pseudo-optimum generated in a reasonable amount of time. The choice of 𝐼௠௔௫  is subjective, but it could be 
guided by the following approach. 
 

- 𝑍 complexity levels 𝐼 = {𝐼ଵ, 𝐼ଶ, … , 𝐼௞, … , 𝐼௓} are selected, with 𝐼ଵ < 𝐼ଶ < ⋯ < 𝐼௞ < ⋯ < 𝐼௓. 
- 𝑊 problem instances are generated, for each complexity level 𝐼௞ (for a total of 𝑊 ∙ 𝑍 problems). 
- Each set of problems at level 𝐼௞ is optimally solved with the dynamic programming approach, and the average 

computational time is determined. 
- The biggest value of 𝐼, for which the average computational time is deemed acceptable, sets the threshold level 𝐼௠௔௫. 

4.6. Exhaustive search 
 
The exhaustive search evaluates all possible cutting patterns that can be generated on a bar of length 𝐿, when there are 𝑀 
ordered lengths 𝑙௜, each of which has to be cut 𝑛௜ times, i.e., 𝑅 = {𝑙ଵ:𝑛ଵ, … , 𝑙௜:𝑛௜ , … , 𝑙ெ:𝑛ெ}. Recalling that a cutting pattern 
is defined as 𝑐 = {𝑙ଵ:𝑥ଵ, 𝑙ଶ:𝑥ଶ, … , 𝑙௜: 𝑥௜ , … , 𝑙ெ: 𝑥ெ} , with 𝑥௜  ≤ 𝑛௜ , all the cutting patterns can be easily generated, by 
considering all the values of 𝑥௜ ∈ {0, 1, 2, … ,𝑛௜} for each length 𝑙௜. Hence, the total number of iterations can be computed as 
in eq. (3).  
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𝒩௘௫ = ෑ(𝑛௜ + 1)ெ
௜ୀଵ  (3) 

All the 𝒩௘௫ patterns are generated one by one, discarding those that are not feasible. For the feasible ones the objective 
function is computed as in (2.1), and the best one is returned. To reduce the computational time, if a cutting pattern turns out 
to be perfect (as defined in Section 3.2), the procedure is immediately interrupted, and the cutting pattern is returned. A perfect 
cutting pattern, in fact, is certainly optimal.  

4.7. Dynamic programming 
 
We propose an extension of the well-known dynamic programming procedure used to solve the BKP, which is clearly 
described by Martello and Toth (1990 a). Dynamic programming is a technique that can be efficiently used if the main problem 
can be subdivided into overlapping sub-problems with an optimal substructure property. For the problem at a hand, given a 
bar of length 𝐿 and 𝑀 lengths to be cut {𝑙ଵ, 𝑙ଶ, … , 𝑙௜ , . . , 𝑙ெ}, a sub problem is defined as the search of the best cutting pattern 𝑐௜,ఒ∗  that can be made on a sub-bar of length 𝜆, with 𝜆 ∈ {0, 1, 2, 3, … , 𝐿}, using cuts of length 𝑙 less than or equal to 𝑙௜ (i.e., the 
possible lengths that can be cut are 𝑙ଵ, 𝑙ଶ, … , 𝑙௜). 
 
If, for convenience, we also consider the null cutting length 𝑙଴= 0, all the best cutting patterns 𝑐௜,ఒ∗  can be organized in a ((𝑀 + 1)  × (𝐿 + 1)) matrix 𝐷, whose generic element (or problem state) 𝐷[𝑖, 𝜆] is the best cutting pattern 𝑐௜,ఒ∗ . In other 
words, the column index defines the length of the bar to be cut, whereas the row index defines which cutting lengths can be 
used (i.e., at row 𝑖 only cuts of length 𝑙଴ to 𝑙௜) can be made. Therefore, all the elements in the first row, say 𝐷଴, are null (i.e., 𝐷[0, 𝜆] = 0 ∀ 𝜆). In this row, in fact, only the null cutting length 𝑙଴ can be used. Conversely, the elements of the second row 𝐷ଵ are obtained trying to add one or more cuts of length 𝑙ଵ to the elements of 𝐷଴ and, similarly, the elements of the third row 𝐷ଶ are obtained trying to add one or more cuts of length 𝑙ଶ to the elements of 𝐷ଵ, and so on for all the subsequent rows.  
More formally, the generic state 𝐷[𝑖, 𝜆] is computed as follows: 
 

− The maximum number of possible cuts of length 𝑙௜ is computed as 𝓃௜,ఒ = ⌊𝜆 (𝑙௜ + 𝜀)⁄ ⌋ 
− If 𝓃௜,ఒ = 0, a cut of length 𝑙௜ cannot be made and so the value of 𝐷[𝑖, 𝜆] is set to 𝐷[(𝑖 − 1), 𝜆]. This value, in fact, 

is the best cutting pattern that can be generated on a sub bar of length 𝜆 using cuts of length {𝑙଴, 𝑙ଵ, 𝑙ଶ, … , 𝑙௜ିଵ}. 
− Otherwise, 𝓃௜,ఒ new cutting patterns 𝑐௜,ఒఔ  are generated adding 𝜈 cuts of length 𝑙௜ to the optimal cutting patterns 

found at state 𝐷௜ିଵ[(𝑖 − 1), 𝜆 − (𝑙௜ + 𝜀) ∙ 𝜈 + 𝑔], with 𝜈 = 1, 2, … ,𝓃. According to constraint (2.3), in fact, the 
cutting pattern in 𝐷௜ିଵ[(𝑖 − 1), 𝜆 − (𝑙௜ + 𝜀) ∙ 𝜈 + 𝑔] is the best one (made with cuts shorter than 𝑙௜ ) that can 
accommodate 𝜈 new cuts of length 𝑙௜.  

- The objective function of all the new cutting patterns 𝑐௜,ఒఔ  is computed, and it is compared with that of the cutting 
patterns stored at state 𝐷[𝑖, 𝜆 − 1] and at state 𝐷[(𝑖 − 1), 𝜆] (i.e., the best solutions found at the previous step, and 
the best solutions found for a bar of the same length 𝜆, but considering only cutting length shorter that 𝑙௜).  

− Let 𝑐௜,ఒ∗  be the best objective function of the above mentioned (2 + 𝜈) patterns. State 𝐷[𝑖, 𝜆] is finally updated with 
this value (i.e., 𝐷[𝑖, 𝜆] = 𝑐௜,ఒ∗ ).  

 
Note that if 𝜆 = 𝐿, constraint (2.3) is substituted by constraint (2.2), because in this case only perfect cuts can be considered. 
So, cutting patterns 𝑐௜,ఒఔ  are generated starting from the optimal cutting patterns found at state 𝐷௜ିଵ[(𝑖 − 1), 𝜆 − (𝑙௜ + 𝜀) ∙(𝜈 − 1)]. Also note that, if a virgin bar is used, constraint (2.2) and (2.3) are substituted by constraint (2.8) and (2.9), 
respectively. Once the matrix 𝐷 has been completed, the optimal solution can be read in the final state 𝐷[(𝑀 + 1), (𝐿 + 1)] 
and, starting from this cell, the best cutting pattern can be reconstructing backtracking through the table. For the sake of clarity, 
a simple example is provided in Appendix B.  
 
For what we said, it should be clear that the number of required iterations is proportional to the product of the number of 
cutting length and the length of the used bar, which is 𝑂(𝑀 ∙ 𝐿). Also, since at each state at most 𝓃௜,ఒ new cutting patterns are 
generated, in the worst-case scenario, the total number of cutting patterns to be considered can be obtained a in Eq. (4) 
 𝒩ௗ௬௡ = ෍෍𝓃௜,ఒ௜∈ூఒ∈ஃ  (4) 

 
with Λ = {0, 1, 2, … , 𝐿} and 𝐼 = {𝑙଴, 𝑙ଵ, … , 𝑙ெ}   
 
Notably, if the Greatest Common Divisor (GCD) of 𝐿, 𝜀, 𝑔 and of all the cutting length 𝑙௜ is greater than 1, the number of 
iterations 𝒩ௗ௬௡ can be reduced. Indeed, rather than using a unitary step from one state to the next one in 𝐷௜, steps of size GCD(𝐿, 𝜀,𝑔, 𝑙ଵ, 𝑙ଶ, … , 𝑙ெ) can be used, since GCD is the minimum increment that allows the introduction of a new cut. If so, 
the total number of iterations drops to 𝒩ௗ௬௡/GCD.  
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4.8 Simulated Annealing (SA) 
 
The adopted SA is very similar to the standard framework by Kirkpatrick et al. (1983), and its structure is represented in the 
pseudo code of Figure 6, written in a Python 3.7 style. Briefly, the algorithm is based on two solutions, namely the current 
best 𝑐∗ and the current solution 𝑐, which may or may not coincide. In each epoch 𝑘, a neighbor search is performed on 𝑐, and 
the best neighbor 𝑐௡௘௪ is selected. If 𝑐௡௘௪ is either a perfect or an almost perfect cutting pattern, the SA ends and 𝑐௡௘௪ is 
returned as the optimal solution. In both cases, in fact, it is almost impossible to further improve the objective function. 
Otherwise, three alternative conditions can occur, as defined next. 
 

- if 𝑐௡௘௪ is better than 𝑐∗, 𝑐௡௘௪ replaces both 𝑐 and 𝑐∗, 
- if 𝑐௡௘௪ is better than 𝑐 but not than 𝑐∗, 𝑐௡௘௪ replaces 𝑐, 
- if 𝑐௡௘௪ is feasible, but it is worse than c, the Boltzmann’s rule (Eq. (5) provided in subsection 4.8.1) is used to 

decide whether it should still be accepted as the new current solution.  
 
After this choice the current epoch ends and the temperature 𝑇  is linearly decreased, according to eq. (6) provided in 
subsection 4.8.1. If 𝑇 falls below zero, the SA ends and the current best 𝑐∗ is returned as the pseudo-optimal solution. Lastly, 
unless 𝑐∗ is a perfect or an almost perfect cutting pattern, a last neighbor search is made aiming to further improve the current 
best. To this aim the Advanced First Fit Decreasing method, described in Section 4.8.3, is used.  
 

# INITIALIZATION 
Generate an initial solution 𝑐∅ # The initial solution can be an ‘empty’ cutting pattern. 
Set Perfect ← False; c ← 𝑐∅;  𝑐∗ ← 𝑐∅; 𝑇 ← 𝑇଴; # The initial cutting pattern and starting temperature. 
While 𝑇 ≥ 0: 
 

# GENERATION OF NEIGHBOR SOLUTIONS 
Set 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐿𝑔ℎ𝑠 ←  𝑠ℎ𝑢𝑓𝑓𝑙𝑒([𝑙ଵ, 𝑙ଶ, … , 𝑙ெ]) # The shuffled list of the lengths that must be cut. 
For 𝑙 in 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐿𝑔ℎs: 

  

Set 𝑂𝐹𝑠 ← [ ] # An empty list; it will be filled with the value of the objective function of the neighbors. 
Set 𝑁𝑔ℎ𝑠 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑒𝑎𝑟𝑐ℎ(𝑙, 𝑐) # A function returning a list of neighbors, as detailed in (4.8.2). 
''' The value of the objective function 𝑜𝑓(𝑛)of each neighbor is stored in the list OFs Note that if a neighbor 
is unfeasible, its objective function is negative. ''' 
For 𝑛𝑔ℎ in 𝑁𝑔ℎ𝑠: 𝑂𝐹𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑜𝑓(𝑛𝑔ℎ))  
Set 𝑚 ← max(𝑂𝐹𝑠)  
If 𝑚 > 0: # A feasible solution has been found; the for loop ends and the best neighbor is returned. 

   Set 𝑐௡௘௪ ← 𝑁𝑔ℎ𝑠[𝑂𝐹𝑠. 𝑖𝑛𝑑𝑒𝑥(𝑚)] # The best neighbor is found. 
Break # Exit the for loop. 

 Else: # This part is executed if none of the length in 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝐿𝑔ℎ𝑠 has generated a feasible solution.  
  Break # The while loop ends.  

 #ACCEPTANCE STEP 
If 𝑚 > 𝑜𝑓(𝑐∗):  

  Set 𝑐∗ ← 𝑐௡௘௪; 𝑐 ← 𝑐௡௘௪; 
  If perfect_cut(𝑐∗) Or almost_perfect_cut(𝑐∗):  
    Set Perfect ← True 

Break # The while loop ends, 𝑐∗ cannot be improved any more. 
 Else:         
  If accepted(𝑐௡௘௪ , 𝑐): # The Boltzmann’s acceptance rule is applied, as in eq. (5) 
   Set 𝑐 ← 𝑐௡௘௪;  
 Set 𝑇 = (𝑇 − ∆𝑇) # The temperature is decreased, and the while loop proceeds. 
# LAST IMPROVEMENT 
If not Perfect: 
 For 𝑟 in range(1 to 𝑅): # 𝑅 is a user defined parameter, less than the number of cutting lengths 𝑀. 
         Set 𝑐௡௘௪ ← 𝐴𝑓𝑓𝑑(𝑐∗, 𝑟) # The advanced first fit decreasing procedure is applied on 𝑐∗ (see section 4.8.3). 
         If 𝑜𝑓(𝑐∗) < 𝑜𝑓(𝑐௡௘௪) Set 𝑐∗ ← 𝑐௡௘௪ 
Return 𝑐∗# The optimization procedure ends, and 𝑐∗ is returned. 

Fig. 6. Pseudo-code of the proposed SA. 

4.8.1 Basic features of the SA 
 
In each epoch 𝑘 of the SA we made use of: 

- the Boltzmann’s acceptance rule, with exponentially decreasing acceptance probability 𝑃, as in Eq. (5), 
- a linear decreasing temperature, as in Eq. (7). 



  

 

160𝑃 = 𝑒𝑥𝑝 ൬−∆𝐸௞𝛽𝑇௞ ൰ (5) 

∆𝐸௞ = 𝑂𝐹(𝑐௞∗) − 𝑂𝐹(𝑐௞)𝑂𝐹(𝑐௞∗)  
(6) 

𝑇௞ = 𝑇௞ିଵ − ∆𝑇 (7) 
 
where: 

- ∆𝑇 is the constant cooling factor, 
- 𝛽 is a non-negative parameter that plays the role of the Boltzmann's constant in the annealing process, 
- ∆𝐸௞ is the variation in energy level, expressed as the percentage worsening of the objective function. 

 
Since 𝑐,  𝑐∗and 𝑇 dynamically changes as the SA progresses, in the notation we made use of the subscript 𝑘 to indicate the 
value taken by these variables at the current epoch 𝑘. 

4.8.2 Initialization and neighbor search 
 
To initiate the SA, an initial cutting pattern must be defined. This initial solution could be generated in any way but, in virtue 
of the peculiar neighbor search described next, even an empty cutting pattern, say 𝑐∅ = {𝑙ଵ: 0, 𝑙ଶ: 0, … , 𝑙ெ: 0} can be used, as 
suggested in the pseudo-code of Fig. 6. Concerning the neighbor search, first we try a basic strategy and next, if this strategy 
is ineffective, a more complex one is performed. Specifically, to generate a neighbor solution, say 𝑐௞,௜ା , a cut of length 𝑙 is 
randomly selected from the set {𝑙ଵ, 𝑙ଶ, … ,  𝑙௜ , … , 𝑙ெ}. Let this length be 𝑙௜, the new cutting pattern is obtained by incrementing 
of one the number 𝑥௜ of cuts of length 𝑙௜ in 𝑐௞, that is 𝑐௞,௜ା = {𝑙ଵ: 𝑥ଵ, 𝑙ଶ: 𝑥ଶ, … ,  𝑙௜: (𝑥௜ + 1), … , 𝑙ெ:𝑥ெ}. The notation 𝑐௞,௜ା  is 
used, expressively, to indicate that the neighbor is obtained adding one cut of length 𝑙௜ to 𝑐௞. This basic approach works well 
during the early epochs of the SA, when new cuts are added to an initially empty patter 𝑐∅. Conversely, when the sum of the 
lengths of the cuts (performed on 𝑐௞) approaches the length of the bar 𝐿, it becomes difficult to find enough space to add and 
additional cut of length 𝑙௜. Therefore, quite often the neighbor 𝑐௞,௜ା  results unfeasible. If so, an opposite generation strategy is 
used and, rather than increasing the number 𝑥௜ of the randomly selected cut 𝑙௜, a new solution, say 𝑐௞,௜ି , is obtained by removing 
one cut of length 𝑙௜ from 𝑐௞, that is 𝑐௞,௜ି = {𝑙ଵ: 𝑥ଵ, 𝑙ଶ:𝑥, … ,  𝑙௜: (𝑥௜ − 1), … , 𝑙ெ: 𝑥௠}. Next, three alternative neighbor solutions 
are generated from 𝑐௞,௜ି  using the following approaches:  
 

1. Inc_1. For each value 𝑣 𝜖 {1, 2, … ,𝑀} , with 𝑣 ≠ 𝑖, a neighbor solution is generated increasing by one the number 
of cuts 𝑥௩ of length 𝑙௩ in 𝑐௞,௜ି . 

2. Inc_2. The neighbor is generated with the same strategy used by Inc_1, but this time the number of cuts 𝑥௩ of length 𝑙௩ is increased by two.  
3. Inc_1_1. For each pair of values (𝑣, 𝑧) with 𝑣 ≠ 𝑖, 𝑧 ≠ 𝑖, 𝑣 ≠ z, a new solution is generated increasing by one the 

number of cuts 𝑥௩ and of 𝑥௭ in 𝑐௞,௜ି . 
 
Hence, at total of (0.5𝑀ଶ + 0.5𝑀 − 1) neighbors are generated; specifically, (2𝑀 − 2) are generated by Inc_1 and Inc_2, 
and the remaining [0.5 ∙ (𝑀 − 1) ∙ (𝑀 − 2) ] are generated by Inc_1_1. The best neighbor is selected and used as candidate 
solution for the acceptance step. If none of the generated neighbors is feasible, another length 𝑙௜ is randomly selected and the 
neighbor search is repeated. So, at most (0.5𝑀ଷ + 0.5𝑀ଶ −𝑀 ) neighbors are generated during each epoch.  

4.8.3 Deep neighbor search 
 
In the event that the value 𝑐∗ returned by the SA is neither an optimal nor an almost optimal cutting pattern, an additional 
deep neighbor search is executed on 𝑐∗ , using an approach readapted from the Advanced First Fit Decreasing (AFFD) 
procedure by Cherri et al. (2009). Let 𝑞 be a natural number in the range [1,𝑄], with 𝑄 a user defined parameter. First, the 𝑞 
longest cuts are removed from 𝑐∗, to generate a sub cutting pattern 𝑐∗ି . Next, the removed cuts are virtually joined with the 
residual material (either waste or leftover) of the original cutting pattern 𝑐∗ to create a new dummy bar 𝑑. A simple example 
should clarify this concept. Let us consider the cutting pattern 𝑐∗ = {500 ∶  1, 300 ∶ 2, 200 ∶ 4}, and let 𝑞 =  2. Therefore, 
the two longest cuts to be removed are the 500 and the 300 mm ones, and the sub cutting pattern becomes 𝑐∗ି = {500 ∶ 0,300 ∶ 1, 200 ∶ 4}. Also, joining the removed cuts with the remaining material a dummy bar 𝑑 of length 𝐿 = (500 + 300 +𝑤 + 2𝜀) is generated, as clearly shown in Fig. 7. The best cutting pattern that can be generated on the dummy bar 𝑑, say 𝑐ௗ∗ , 
is found using one of the three optimization approaches described above. In doing so, all the lengths 𝑙௜ in 𝑅 can be used, 
except the ones that have already been used in the sub cutting pattern 𝑐∗ି . Lastly, 𝑐ௗ∗  and 𝑐∗ି  are rejoined to form a real bar and, 
in case of improvement, the overall best 𝑐∗ is updated accordingly. After the deep search has been repeated for all values of 𝑞 ∈ [1,𝑄], the optimization process ends, and the current best 𝑐∗ is returned as the pseudo-optimal solution. To conclude we 
note that, since the dummy bar 𝑑 is short, 𝑐ௗ∗  is almost always generated using the exhaustive or the dynamic approach; hence 
the AFFD procedure has a very fast execution time.  
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 L = 500 + 300 + w + 2ε   
 Fig. 7. Generation of the sub cutting pattern and dummy bar. 

4.9 Selecting the best cutting pattern to replicate 
 
After executing the optimization procedure on all bars in 𝐵, a set of 𝑁 optimal or nearly optimal cutting patterns 𝐶∗ ={𝑐ଵ∗, 𝑐ଶ∗, … , 𝑐ே∗ } is obtained. Therefore, a criterion is needed to select the overall best patter in 𝐶∗ that will be replicated as many 
times as possible. There is no doubt that preference should be given to the perfect and, next, to the almost-perfect cutting 
patterns. Hence, if in 𝐶∗ there is only a perfect cutting patter, it is immediately selected as the overall best. Conversely, if there 
are two or more perfect cutting patterns, they are sorted in descending order of the priorities 𝑝௜ of the bars from which they 
were cut, and the first one is selected. If there are no perfect cutting patterns, the same approach is repeated on the almost-
perfect ones.  
 
The choice is less obvious if in 𝐶∗ there are neither perfect nor almost-perfect cutting patterns. In this case, in fact, a trade off 
must be solved, since there is the need to compare cutting patterns of different length that generate either waste or a leftover. 
To this aim we recall that the longer is a leftover the better it is. A short leftover (close in length to the minimum acceptance 
size 𝑤෥), in fact, has a bad volumetric occupation of the storage space and has little chances to be reused in the next future. 
Hence, it could remain unused for a long time inside the warehouse. In view of this, and in agreement with the technical staff 
of the company for which the algorithm was developed, within certain limits, a cutting pattern that generates a small waste 
(i.e., a solution that approximates an almost perfect cut) is generally preferable than a solution that generates a short leftover. 
To concretise this idea, we suggest using the utility function 𝑈, computed as in eq. (8), to compare alternative and sub-optimal 
cutting patterns: 
 

𝑈 = ⎩⎪⎨
⎪⎧1 − ቀ𝑤𝑤෥ቁ ,                                      𝑖𝑓 𝑤 < 𝑤෥

min ቄ𝑠௠ ∙ ቀ𝑤𝑤෥ቁ , 𝑠ெቅ , 𝑖𝑓 𝑤 ≥ 𝑤෥  (8) 

 
where 𝑤 is the length of the unused material (either waste or leftover), 𝑤෥  is the minimum allowed length of a leftover, 𝑠௠ and  𝑠ெ are the minimum and maximum utility of a leftover, with 0 ≤ 𝑠௠ <  𝑠ெ < 1. 
According to Eq. (8): 
 

- The utility of the generated waste linearly decreases (from one to zero) as the length 𝑤 increases. More precisely, lim௪→௪෥ష 𝑈 = 0, which means that the utility of a piece of waste that is just shorter than the minimum acceptable 
leftover 𝑤෥  is null.  

- The utility of a leftover starts at its minimum value  𝑠௠ (when 𝑤 = 𝑤෥) and linearly increases, until the maximum  𝑠ெ is reached for a length 𝑤 ≥ 𝑤෥ ∙ ቀ  ௦ಾ  ௦೘ቁ. In this way long leftovers are preferred over the short ones.  
- A very little waste, such that 𝑤 < 𝑤෥ ∙ (1 −   𝑠ெ), is always preferable to a leftover regardless of its length. 

 
Also in this case, should there be cutting patterns with the same or very similar utility, the sorting is based on the priority 𝑝௜ of 
their bars.  

5. Computational Experiments 
 
The algorithm was tested on many problem instances, and it was compared to three well-known benchmarks and to a 
commercial software for bars cutting, that is very common in the steel industry. To this aim, the algorithm and the three 
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benchmarks were implemented in Visual Basic.Net and they were executed on a personal computer Intel Dual Core i3 CPU 
at 2.4GHz with 8Gb RAM powered by Windows 7 operative system. All the operational details are provided next. 

5.1 Parameters setting 
 
To fine-tune the parameters of the algorithm, we considered a set of 100 cutting problems provided to us by the partner 
company. The dimension of these problems is shown in Table 1. 
 
Table 1 
Dimensions of the problems used to fine tune the operating parameters 

Problem’s feature Min. Value Max. Value 

Number of bars available in stock 200 500 

Different bars’ lengths 𝐿௜ 10 20 

Different ordered lengths 𝑙௜, 15 30 

Number of cuts to be made 2,000 4,000 
 
With the objective to find a solution within the maximum time deemed acceptable in industrial applications, we set 𝐼௠௔௫ =100,000, 𝑄 = 2, 𝛽 = 1, 𝑇଴ = 1 and ∆𝑇 = 0.02. With these parameters, in fact, any problem of the original set can be solved 
in no more than 1 minute of time, and the average duration of the exhaustive procedure stays in in the range [0.4; 1.2] seconds. 
We also note that a value of 𝛽 = 1 is very frequent because, joined with an initial temperature 𝑇଴ = 1, it assures an acceptance 
probability of around 90% for a solution worse than 10% of the current best (Bertolini et al., 2019). We also note that, with 
the selected parameters, the acceptance probability drops below 1% when the temperature reaches its ending value of 𝑇௘௡ௗ =0.02. 
 
All the other parameters (more subjective and user-dependent) were set in agreement with the experts of the partner company. 
Specifically, the weight factor (used in the objective function) was set to 𝛼 = 1, and the minimum and maximum utility of a 
leftover were set to 𝑠௠ = 0.2 and  𝑠ெ = 0.6, respectively. 

5.2 The benchmark algorithms  
 
The proposed algorithm was compared with three classic heuristics, which are typically used for the solution of the bin packing 
problem (Martello & Toth 1990b). These are: Next Fit Decreasing (NFD), First Fit Decreasing (FFD), and Best Fit Decreasing 
(BFD). As a fourth and last benchmark, we also considered RealCut1D, a frequently used commercial software, developed, 
and commercialized by the Optimal Programs company. A brief overview of each of these methods is provided next. 

 
5.2.1 Next Fit Decreasing, First Fit Decreasing, and Best Fit Decreasing: a brief introduction 
 

NFD is a very simple and straightforward approach. Basically, any time an order (i.e., a cut of length 𝑙௜) is considered, a check 
is made to see if it fits in the currently used bar. If so, the order is assigned to the current bar and the next order is considered. 
Otherwise, the bar is ‘closed’, and the order is assigned to a new bar. The orders assigned to a bar define a cutting pattern, 
which is returned (as output) anytime a bar is closed. For the sake of clarity, the pseudo code of NFD is provided in Figure 8, 
limited to the case of a feasible problem.  

Set 𝑅 ← 𝑠𝑜𝑟𝑡([𝑙ଵ, … , 𝑙௜ , … ], 𝑙𝑒𝑛𝑔𝑡ℎ) # The list of the orders, sorted in ascending order of their length. 
Set 𝐵 ← 𝑠𝑜𝑟𝑡(ൣ𝑏ଵ, … , 𝑏௝ , … ൧, 𝑙𝑒𝑛𝑔𝑡ℎ) # The list of the bars, sorted in ascending order of their length. 
Set 𝑏 ← 𝐵.𝑝𝑜𝑝() # The last bar in 𝐵 (i.e., the longest one) is used as the initial ‘open’ bar 𝑏. 
Set 𝑐 ← 𝑐∅ # The initially empty cutting pattern. 
Set 𝐶∗ = [ ] # An empty list that will be filled with the generated cutting patterns. 
While 𝑙𝑒𝑛(𝑅) > 0: 

 Set 𝑟 ← 𝑅.𝑝𝑜𝑝()# The last order in R (i.e., the longest one). 
If 𝑓𝑖𝑡(𝑟, 𝑏): # function fit() returns true if there is enough space to accommodate 𝑟 in the current bar 𝑏. 

  Set 𝑐 ← 𝑎𝑑𝑑(𝑟, 𝑐) # The order is added to the cutting pattern. 
 Else:        

  
𝐶∗.𝑎𝑝𝑝𝑒𝑛𝑑(𝑐) # The cutting pattern is added to the list. 
Set 𝑏 ← 𝐵.𝑝𝑜𝑝() # A new bar is opened.  
Set 𝑐 ← 𝑎𝑑𝑑(𝑟, 𝑐∅) # For simplicity we assume that a new order always fits on a new bar. 

Return 𝐶∗ 
Fig. 8. Pseudo code of the NFD algorithm. 
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FFD is very similar to NFD. The only difference is that a bar remains open until its residual length is greater than or equal to 
the minimum ordered length 𝑚𝑖𝑛௜(𝑙௜) added to the blade’s thickness 𝜀. Only in this case, in fact, a bar cannot accommodate 
any other cut. Therefore, any time a new order is taken, all the bars that are still open are considered, and the order is assigned 
to the first bar that has enough space to accommodate it.  
 
Concerning BFD, what distinguishes it from FFD is the idea to place new orders in the ‘tightest’ open bar. Specifically, any 
time an order is taken, all the ‘open’ bars are considered, and the order is assigned to the bar that, after the assignment, remains 
with the shortest residual length.  

 
5.2.2 RealCut1D 
 
RealCut1D is a commercial software known to be well-designed and efficient. Although it is not open-source software, and 
the operation of its optimization engine is unknown, its functioning is well aligned with our approach, as it considers the 
thickness of the blade, and it also manages bar priorities. Unfortunately, it does not consider head cuts and so the stocked bars 
must be pre-trimmed before they can be used as input. The software is widely used by many companies operating in the steel 
and wood sectors, as well as the partner company that inspired this work. Because of this, we chose RealCut1D as a worthy 
benchmark. 

5.3 Results and discussion 
 
5.3.1 Generated scenarios 
 

To validate our approach, we generated and solved a comprehensive set of cutting stock problems, with size and complexity 
typical of the steel industry. As Table 2 shows, problems were organized in four macro-scenarios, which differ in the range 
of the lengths used for the stocked bars 𝐿௝ and for the ordered bars 𝑙௜.  
Table 2 

The four generated scenarios. 

Scenario Length 𝐋𝐣 of stocked bars Length 𝐥𝐢 of customers’ orders 

1 Short 
[100 mm  -  2,500 mm] 

Short 
[50 mm  -  2,300 mm] 

2 Short 
[600 mm  -  4,000 mm] 

Long 
[100 mm  -  3,500 mm] 

3 Long 
[1,200 mm  -  6,500 mm] 

Short 
[50 mm  -  2,300 mm] 

4 Long 
[1,200 mm  -  6,500 mm] 

Long 
[100 mm  -  3,500 mm] 

 
Both in scenario 1 and scenario 2, the length 𝐿௝ of the stocked bars is labelled as Short, although the used ranges differ. A 
different range was purposely chosen, to avoid that an unproper overlapping of the range used for 𝐿௝ and for 𝑙௝ could cause a 
frequent generation of unfeasible problems (with ordered lengths longer than the lengths of the bars available in stock).  
 

A brief discussion on the choices we made is provided next.  
- Scenario 1. Stocked bars are short, and their length is similar to those ordered by the customers. So, the algorithms 

are tested in a hard condition because the chance of finding a perfect cutting pattern is low and the probability of 
generating cutting waste is high. 

- Scenario 2. This scenario is like the previous one, but the expected quantity of generated waste is even higher. The 
likelihood of generating unfeasible customers’ orders is also high. 

- Scenario 3.  Ordered lengths are short, relative to the length of the stocked bars. Hence, the probability to find 
perfect cutting patterns is rather high. For the same reason (i.e., short, ordered lengths) the generation of leftovers 
is expected, too. 

- Scenario 4. Ordered lengths can be similar but also much shorter than those of the stocked bars. So, the number of 
perfect cutting patterns and of sub-optimal cutting patterns (including either waste or leftovers) should be similar.  

5.3.2 Data generation and parameters’ setting 
 
For each scenario and for each problem instance, data were generated using the following procedure.  
 

- To generate the initial stock: 
 10 lengths {𝐿ଵ, 𝐿ଶ, … , 𝐿௜ , … , 𝐿ଵ଴} were defined, by dividing the range of Table 2 into 10 equal parts,  
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 the number 𝑛௜ of stocked bars of length 𝐿௜ (for each 𝑖 = 1, …, 10) was randomly generated, using a uniform 
distribution between 10 and 200. 

- To generate the customers’ orders, 25 lengths {𝑙ଵ, 𝑙ଶ, … , 𝑙௝ , … , 𝑙ଶହ} were defined using the same approach, and the 
number of orders 𝑛௝ was randomly generated using a uniform distribution between 5 and 150. 

 
For each scenario, 50 feasible problems were generated, and the following realistic parameters were used: 𝜀 = 5, 𝑔 = 10, 𝑤෥ = 50 and ℎ = 0.  
 
As mentioned above, head-cuts were not considered, because RealCut1D is unable to handle them. Concerning priorities, we 
stress that in our algorithm they are used just as a second sorting criterion, and they are not accounted for in the objective 
function. A similar behaviour is also provided by RealCut1D that tends to prioritize longer bars, regardless of the priority 
assigned to them. In view of this and considering that priorities are not accounted for by the other three benchmarks, we chose 
to give the same priority to all the stocked bars, so as to assure a fair comparison of the tested algorithms.  

 
5.3.2 Performance measures and results 
 

The comparison was made with respect to three performance measures: (i) TL [mm], the total or cumulative length (in 
millimetres) of the stocked bars used to fulfil customers’ orders, (ii) TW [mm], the total cutting waste, and (iii) RWL, the 
dimensionless ratio between TW and TL (i.e., the percentage generated waste). Obtained results (averaged over the 50 solved 
problems) are reported in Table 3, where, for each scenario, the best value of each performance measure is highlighted in 
bold. 

Table 3 
Results of the numerical experiments, averaged over the 50 solved problems 

 SCENARIO 
 1 2 3 4 

Proposed approach 
TL [mm] 969,620 1,222,663 2,063,172 1,883,177 
TW [mm] 12,834 15,491 11,304 11,117 
RWL [-] 1.32% 1.27% 0.55% 0.59% 

RealCut1D 
TL [mm] 853,390 1,124,313 1,942,574 1,702,132 
TW [mm] 16,067 17,997 14,998 12,818 
RWL [-] 1.88% 1.60% 0.77% 0.75% 

Next Fit Decreasing 
TL [mm] 1,013,000 1,306,330 2,136,340 2,091,560 
TW [mm] 14,527 17,032 13,116 13,861 
RWL [-] 1.43% 1.30% 0.61% 0.66% 

First Fit Decreasing 
TL [mm] 796,954 1,034,670 1,801,620 1,677,340 
TW [mm] 17,953 18,832 14,982 14,047 
RWL [-] 2.25% 1.82% 0.83% 0.84% 

Best Fit Decreasing 
TL [mm] 826,404 1,077,638 1,794,700 1,733,814 
TW [mm] 21,832 19,621 18,296 14,496 
RWL [-] 2.64% 1.82% 1.02% 0.84% 

 
First Fit Decreasing is the approach that uses the smallest number of stocked bars. In fact, with respect to TL, it outperforms 
both the proposed approach and RealCut1D. However, this performance is negatively counterbalanced by two negative issues: 
(i) cutting waste is much higher than that generated by the other approaches, and (ii) usable leftovers are hardly ever generated 
(i.e., cutting patterns are almost always characterized by some waste).  
 
Next Fit Decreasing shows a diametrically opposed behaviour, as it uses the largest number of bars, and it also generates 
leftovers disproportionately. This is because, as soon as an order cannot be placed on the current bar, the current bar is closed 
and never considered again to satisfy future orders. 
 
Our approach is the one with the best overall performance. Indeed: 
 

- It obtains the smallest value (i.e., the best) of both TW and RWL, consistently in all the investigated scenarios.   
- Although TL is sub-optimal, it does not deviate much from the value obtained by the other methodologies, 

especially from the value obtained by the commercial software RealCut1D. 
 
Concerning the last point, we also note that the tendency to use more bars is a direct consequence of the preference we gave 
to the generation of long leftovers instead of short leftovers or waste. As previously explained, this is a reasonable choice that 
is frequently required in the industry. Also, since the strength of this tendency is defined through the weight factor alpha, if 
needed, it could be mitigated by decreasing this parameter.  For the sake of completeness, these conclusions have been 
graphically summarized by the box plots of Fig. 9, Fig. 10, and Fig. 11. 
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Fig. 9. Box plot of the results, relative to the TL performance measure. 

 

 
Fig. 10. Box plot of the results, relative to the TW performance measure. 

 

 
Fig. 11. Box plot of the results, relative to the RWL performance measure. 

 
6. Conclusions and future works 
 
The paper focused on the one-dimensional cutting stock problem and proposed an optimization procedure that minimizes the 
generated waste and that accounts for leftover bars (that can be returned to stock) as well as for other constraints related to 
the available inventory and to technical details needed to carry out the cut. It also allows users to assign different priorities to 
the bars and to define if, and how much, a long leftover is preferable to a small waste. Specifically, our algorithm can be 
classified as a hybrid Simulated Annealing (SA), because the cutting patterns are generated using different approaches, but 
most of the time they are created using a SA that exploits a specific and effective neighbor search. The algorithm, compared 
to three well-known heuristics and to a commercial software, showed favorable results in all tested scenarios. Noticeably, in 
fact, our algorithm outperforms the other ones in terms of the generated cutting waste.  
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Upcoming developments could address two shortcomings of the proposed heuristic. The first one is the need to maintain an 
association among the bars generated by the cutting patterns and the bars ordered by the end customers. In other words, if a 
cutting pattern generates a bar of length , provided that this length has been order by two or more customers, there is the need 
to determine to which customer the bar should be given. Although the problem might seem a simple instance of elementary 
labelling, it could become complex if additional operational constraints are considered, such as the limited spaces available 
to place the cut bars and/or to the timing with which shipments must be made. If so, in the generation of the cutting patterns 
one should also consider the associated customer orders and the physical bundling (and the constraints associated with it) for 
their shipment. A further development could be to expand the concept of prioritization from being subjectively determined 
according to various business operating policies (dictated by the specific use case), to being determined according to expected 
cut-off time and/or inventory costs. 
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Appendix A. 
 

This section summarizes the notation used in the paper. Symbols are grouped by subject area and in order of appearance in 
the main text. 

Table A1 
Variables related to the bars. 

Symbol Meaning 𝐿 The length of a bar available in stock. 𝑙 The length of a bar ordered by a customer (i.e., a sub-bar cut from a bar of length 𝐿). 𝑚 The material of a bar. 𝑎 The cross-sectional area of a bar. 𝑗 The subscript used to denote a bar type available in stock; the bar type is uniquely defined by the 
triplet ൫𝐿௝ ,𝑚௝ ,𝑎௝൯. 𝑖 The subscript used to denote the type of an ordered bar; the bar type is uniquely defined by the 
triplet (𝑙௜ ,𝑚௜ , 𝑎௜). 𝐵 A mapping that codifies all the bars available in stock.  𝑁 The number of different types of bars available in stock. 𝑛௝ The number of 𝑗-type bars available in stock. 𝑝௝ The priority of 𝑗-type bars. 𝑣௝ A Boolean variable equal to 1 if 𝑗-type bars are virgin, and 0 otherwise. 𝑖 The letter 𝑖 is used to denote a generic bar ordered by a customer. 𝑅 A mapping that codifies all the bars ordered by the end customers. 𝑀 The number of different types of bars ordered by the end customers. 𝑛௜ The number of 𝑖-type bars ordered by the end customers. 

 
Table A2  
Variables related to the cutting patterns. 

Symbol Meaning 𝑐௝ A cutting pattern made on a bar of type 𝑗.  𝑥௜௝ The number of cuts of length 𝑙௜ obtained from a cutting pattern 𝑐௝. For convenience, when a specific bar type 𝑗 is considered, the subscript 𝑗 is dropped from the notation. 𝐶 A finite set of cutting patters that are sufficient to solve an instance of the stock cutting problem. 𝒞 The sub-set of 𝐶 that solves an instance of the stock cutting problem with the minimum waste. 𝑐௝∗ The best cutting patterns that can be made on a 𝑗-type bar. 𝐶∗ A 𝑁-dimensional vector (or list) containing all the best cutting patterns 𝑐௝∗ that can be obtained on each 𝑗-
type bar (with 𝑗 =  1, … ,𝑁).  𝑟 The number of repetitions of a certain cutting pattern 𝑐.  𝑂𝐹(𝑐௝) the value of the objective function of the cutting pattern 𝑐௝. 

 
Table A3  
Variables related to the cutting process. 

Symbol Meaning 𝜀 The thickness of the cutting blade. ℎ The width of a head cut  𝑔  The length of the gripping area. 



M. Bertolini et al.   / International Journal of Industrial Engineering Computations 15 (2024) 169𝑤 The residual material (or sub-bar) remaining after all the cuts of a cutting pattern have been made 𝑤෥  
The minimum length of a leftover. A sub bar of length 𝑤 ≥ 𝑤෥   can be returned to stock for later use.  
Conversely, a bar shorter than 𝑤෥  cannot be reused and must be disposed off. 

 

Table A4  
Variables related to the optimization algorithm. 

Symbol Meaning 𝛼 A factor used to weight the importance of leftover in the objective function. 𝑧 A Boolean variable equal to one for a perfect cutting pattern and zero otherwise. 𝜆 The length of a sub bar. 𝐷 The dynamic programming matrix (containing the optimal solution for different lengths 𝜆). 𝐼௠௔௫ A cap on the number of iterations that can be performed to find an optimal or quasi optimal solution. 𝐾 The number of epochs of the simulated annealing. 𝑇௞ The value of the temperature at epoch  ∆𝑇 The temperature drop, at each epoch 𝑘. 𝑃 The acceptance probability. 𝛽 The Boltzmann’s constant of the Simulated Anneling. ∆𝐸௞ The variation in energy level at epoch 𝑘, computed as the percentage worsening of the objective function. 𝑐 The current solution (cutting pattern), from which new solutions are generated.  𝑐∗ The best solution found so far.  𝑐௡௘௪ The best neighbor solution generated from 𝑐. 𝑐ା௞,௜ A cutting pattern generated at epoch 𝑘, by adding a cut of length 𝑙௜ from 𝑐. 𝑐ି௞,௜ Like before, but a cut of length 𝑙௜ is removed from 𝑐. 𝑞 ≤ 𝑄 The number of cuts to be removed from 𝑐∗ in the deep neighbour search procedure. 𝑐_∗ The partial cutting patterns obtained by removing the q longest cuts from  𝑐∗. 𝑈(𝑐௝∗) A utility function used to sort the optimal cutting patterns obtained on bars of different type 𝑗. 𝑠௠, 𝑠ெ The minimum and maximum utility that a leftover can get.  

Appendix B. 
 
Let us consider a customer’s order 𝑅 = {500: 2, 300: 4 }, a leftover of length 𝐿 = 1,200 mm, a cutting blade 𝜀 = 20 mm 
and a gripping area 𝑔 = 40 mm. At first, when only cuts of length 𝑙ଵ = 500 mm can be made, a minimum length 𝜆 = 520 mm 
is needed to make a cut. Hence, all states from 𝐷[1, 0] to 𝐷ଵ[1, 519] on Row #1 of matrix 𝐷 (remember that Row #0 has only 
null values) contain the null cutting pattern 𝑐௜,ఒ∗ = 𝑐ଵ,଴∗ = {500 ∶ 0}, and only at state 𝐷[1, 520] the first non-null cutting 
pattern 𝑐ଵ,ହଶ଴∗ = {500 ∶ 1} can be made. Note that this solution generates a useful length of 500 mm with a cutting scrap of 20 
mm and so, according to eq. (2.1), its objective function is 500𝛼. A second and last cut can be made at state 𝐷[1, 1040], 
where the optimal solution becomes 𝑐ଵ,ଵ଴ସ଴∗ = {500 ∶ 2} with an objective function of 1,000𝛼. Since no other cut of 500 mm 
can be added, this solution is shared by all successive states on Row #1 of 𝐷. Note, however, that the objective function of 
each state may change, as the length  𝜆 of the sub-bars increases from 1,040 to 1,200 mm. To clarify this concept, let us 
consider the generic state 𝐷[1, 1040 + 𝑤]. Relatively to state 𝐷[1, 1040] a residual bar of length 𝑤 is cut. If 𝑤 ≤ 𝑤෥  this 
residual bar is waste, otherwise it is a leftover; in the latter case, according to eq. (2.1), the objective function becomes 1,000𝛼 + (1 − 𝛼) ∙ 𝑤.  
For the sake of clarity, Row #1 of matrix 𝐷 is shown in Table B1.  
 
Table B1  
Row #1 of matrix 𝐷. 𝒋 = 𝟎 𝒋 = 𝟏 … 𝒋 = 𝟓𝟐𝟎 𝒋 = 𝟓𝟐𝟏 … 𝒋 = 𝟏,𝟎𝟒𝟎 𝒋 = 𝟏,𝟎𝟒𝟏 … 𝒋 = 𝟏,𝟐𝟎𝟎 

500:0 
300:0 

500:0 
300:0 

… 
… 

500:1 
300:0 

500:1 
300:0 

… 
… 

500:2 
300:0 

500:2 
300:0 

… 
… 

500:2 
300:0 
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OF = 0 OF = 0 … OF = 
500α 

OF = 
500α 

… OF = 
1,000α 

OF = 1,000α … OF = 
1,000α + 360(1−α) 

 

When the third row of 𝐷 is generated, also cuts of length 𝑙ଶ = 300 mm are admitted. Hence, a first cut can be made at length 𝜆 = 320 mm. This solution, saved at state, 𝐷[2, 320] is 𝑐ଶ,ଷଶ଴∗ = {500 ∶ 0, 300 ∶ 1} and has an objective function of 300𝛼. 
Also note that this solution is copied in all subsequent states till 𝐷[2, 519]. Conversely, at state 𝐷[2, 520] the solutions stored 
at 𝐷[1, 520] is preferred, because it has an objective function equal to 500α, higher than 300α. Following the same reasoning, 
Row #2 is generated as shown in Table B2. 

Table B2  
Row #2 of matrix 𝐷. 𝒋 = 𝟎 … 𝒋 = 𝟑𝟐𝟎 … 𝒋 = 𝟓𝟐𝟎 … 𝒋 = 𝟔𝟒𝟎 … 𝒋 = 𝟖𝟒𝟎 

500:0 
300:0 
OF = 0 

… 
… 
… 

500:0 
300:1 
OF = 300α 

… 
… 
… 

500:1 
300:0 
OF = 500α 

… 
… 
… 

500:0 
300:2 
OF = 600α 

… 
… 
… 

500:1 
300:1 
OF = 800α 

… … 𝒋 = 𝟗𝟔𝟎 … 𝒋 = 𝟏,𝟎𝟒𝟎 … 𝒋 = 𝟏,𝟏𝟖𝟎 … 𝒋 = 𝟏,𝟐𝟎𝟎 

… 
… 
… 

… 
… 
… 

500:0 
300:3 
OF = 900α 

… 
… 
… 

500:2 
300:0 
OF = 1,000α 

… 
… 
… 

500:1 
300:2 
OF = 1,100α 

… 
… 
… 

500:1 
300:2 
OF = 1,100α 

 

The cutting pattern 𝑐ଶ,ଵଶ଴଴∗ = {500 ∶ 1, 300 ∶ 2} found at state 𝐷[2, 1200] is indeed optimal. In fact, it uses three cuts to 
generate a useful length of (300 + 300 + 500) =  1,100 mm . Therefore, the total waste is (3 × 𝜀) + 𝑔 = 60 + 40 =100 mm and, as there is no waste in addition to the inevitable one, 𝑐ଶ,ଵଶ଴଴∗  is an almost perfect cutting pattern.  
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